

$\begin{array}{c} \text{Matemática II (1.$^{\underline{0}}$ semestre, 2025/2026)} \\ \text{Mini-teste 3} \\ \text{10 de novembro de 2025} \end{array}$

Nome completo: ______ N.º de aluno/a:_____

O mini-teste tem uma duração de vinte (20) minutos.

5. Não é permitido o uso de calculadora.

Matemática II (1.º semestre, 2025/2026) – Mini-teste 3

r =

E. tem exatamente 3 pontos críticos.

F. nenhuma das anteriores.

Calcule o resto da divisão inteira dos últimos dois algarismos do seu número de aluno por 4. Denotamos este resto por r. Indique o

resultado na caixa à direita.

B. tem infinitos pontos críticos.

C. tem apenas 1 ponto crítico.

(4 val.) 5. Indique se as seguintes afirmações são verdadeiras (V) ou falsas (F):

Seja $f: \mathbb{R}^n \to \mathbb{R}$. Se f não é contínua, então não é diferenciável.

Seja $f: \mathbb{R}^n \to \mathbb{R}$. Se f não é diferenciável, então não é contínua.

Se $f: \mathbb{R}^2 \to \mathbb{R}$ é contínua, então tem extremantes globais (máximo e mínimo) no conjunto $\{(x,y) \in \mathbb{R}^2: x^2+y^2=1\}$.

	Indique a resposta mais apropriada na	s perguntas segui	ntes.
(4 val.)	1. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x,y) = (x-r)^2(y^2-1)$. O conjunto de todos os ponto críticos de f é		
	A. $\{(x,y) \in \mathbb{R}^2 : y = 1 \lor y = 0\}$		D. $\{(2,0),(2,1),(2,-1)\}$
	B. $\{(0,0),(0,1),(0,-1)\}$		E. $\{(1,0),(1,1),(1,-1)\}$
	$C. \{(x,y) \in \mathbb{R}^2 : x = r\}$		F. $\{(3,0),(3,1),(3,-1)\}$
(4 val.)	1.) 2. Considere a função $g(x,y)=x^5+x^ry^k$. A função $g(x,y)$ é homogénea para $k=$		
	A. 1		D. 4
	B. 2		E. 5
	C. 3		F. Não existe tal k
(4 val.)	3. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ uma função de classe C^1 em todo o seu domínio tal que $\nabla f(a,b) = (1,r)$. Então a		
	derivada direcional de f no ponto	(a,b) segundo o v	vetor $(r,1)$ é
	A. 0	D. 3	G. 6
	B. 1	E. 4	H. 7
	C. 2	F. 5	I. 8
(4 val.)	4. Considere a função $h(x,y) = e^{x+(x)}$	$^{-+1)y}$. A função h	
	A. não tem pontos críticos.		D. tem exatamente 2 pontos críticos.