PROGRAMMING LANGUAGES

LECTURE NOTES

EDITED BY

FiLIPE RODRIGUES
RAQUEL BERNARDINO

ISEG - LISBON SCHOOL OF ECONOMICS AND MANAGEMENT

Contents

(1 Variables and Operators|
[I.1 Types of Variables|
(1.2 Writing Variables — Output|
(1.3 Assigning Values to Variables — Input|.
(L4 Constant Variables| o
(1.5 Operators| e
[1.5.1 Arithmetic operators|o
[1.5.2 Relational Operators|
[1.5.3 Logical Operators|
[1.5.4 Ternary Operator (Supplementary Information)

2Control Structures|
2.1 Conditional Control Structuresl
[2.1.1 The of Structure]
[2.1.2 The of else Structurel
2.1.3 Nested Conditional Structuresl L oo

2.3 Loop Control Structures|
|2|;i|1 Illg: i!‘lhh‘!!: :illllg:l llIg:I ----------------------------------

[2.3.3 The for Structure|.
[2.3.4 Nested Loops|

3.2 Method .at() ws Operator | ||
[3.3 Vector Manipulation|
[3.3.1 Filling Vectors|.
[3.3.2 Printing Vectors|.
[3.3.3 Vector Sorting|.
3.4 Vectors of Vectors - Matrices

4 Functions|

[4.1 General Syntax ot a Function|o L

[4.2 Advantages of Functions|

[4.3 Pass-by-Value, Pass-by-Reference, and Pass-by-Constant-Reference]

[5 Error handling)
[>.1 Empty Classes|.

[5.2 Classes from the Standard Library|.

2.1 Class runtime erroxl

[5.2.2 Class out_of range|.

[6 Splitting a Project into Files|

[6.1 Namespaces| . .

[6.2 Redefinition of Data T'ypes - Type aliases|.

[f__Classes|

[8 Operator Overloading|

[9 Inheritance and Polymorphism|

(10 Writing and Reading Files|

(10.1 Writing to Files|

[10.2 Reading from Files|

[10.3 Instructions clear() and ignore()|.o

(10.4 String Streams|

40
41
45
45

48
90
93
93
o4

56
58
61

62

70

81

Introduction

Programming knowledge is essential nowadays because our civilization heavily depends on software.
Programming is present almost everywhere — from simple household appliances like washing machines to
large objects such as ships, airplanes, and satellites. To program, a programming language is needed, that
is, a coded language that can be understood by computers. There are several programming languages,
such as C++, C, C#, Java, Python, etc. In this course, we will use the C++ language because, in addition
to being one of the most widely used programming languages in the world and being available on almost
every type of computer, it induces good programming practices, which are essential for programmers in
early learning stages. With the knowledge gained in this course, you will later be able to easily learn
other programming languages on your own.

To write programs in C++, we will use Qt Creator. In addition to allowing us to write and run our
programs, Qt Creator also offers a number of other features, including graphical applications, which we
will not explore in this course but that you can learn on your own later if you wish.

This course booklet contains some additional information about the C++ programming language that
will not be taught or assessed in the Programming Languages course. The sections with this information
are marked as Supplementary Information.

The Basics

Programming is the act of telling the computer what it must do to achieve a specific goal or to solve
a particular problem. For this, it is necessary to write the instructions that the computer must execute
in detail, using a language it can understand. This set of instructions is what we call a program. Being
machines, computers do not have the ability to think, and therefore, all instructions must be written
explicitly and in detail. To validate all the instructions written, the computer uses a compiler. The
compiler’s role is to check whether the computer can understand and execute all the instructions we
wrote. This means that the compiler only detects writing errors (called syntax errors) in our code. It
does not detect runtime errors—that is, it does not check whether the instructions we wrote actually do
what we want the computer to do.

For the compiler to identify the end of each instruction, instructions usually end with a semicolon
“7, although there are some exceptions. In QT Creator, compilation errors appear in red and must be
corrected before the program can be executed. In addition, the compiler also issues warnings (shown
in yellow) which should also be corrected, although not correcting them does not prevent the program
from running. As we will see, some warnings can be ignored because they do not affect how the program
runs; however, others may severely distort the program’s behavior.

The compiler analyzes all the instructions we write, except those that are comments made by the
programmer, and complains whenever something is wrong. Comments are programmer notes and appear
after the symbol “//” or between the symbols “/* ... */7. They are completely ignored by the compiler,
so we can write anything we want in them. In QT Creator, comments appear in green.

The programs we will create use many functionalities that were previously defined by others, such as
the sine function or the square root function. These commands are often implemented using many lines
of code and are stored in specific C++ packages. These predefined commands (sine, square root, power,
etc.) can be used directly in the programs we create without needing to know how they were originally
implemented. However, for this to work, we must first inform the compiler where these commands are
defined. To do so, we use the #include directive followed by the name of the package that contains the
commands we want to use. For example, all mathematical functions are available in the cmath package,
so if we want to use them in our program, we must begin by writing #include <cmath>. Gradually,
we will learn which of the many available packages are useful to us. For now, just remember that
all mathematical functions are in the c¢math package and that the iostream package must be included
whenever we want to read/write information to/from the screen, as it contains all the basic input and
output commands we will use.

The header of a C++ program is called preamble, and this is where we include all external elements
the program needs, such as packages.

//Preamble

int main(){
//Comment: Write your code here

/* This is also
a

comment */

return O;

When a C++ program is executed, the starting point is always the main function, so this function
must always be present in the program. When this function is found, the program sequentially executes
all lines of code from top to bottom (unless there are instructions that change the program’s flow, as we
will see in Chapter 2). The main function is delimited by curly brackets “{ }”, within which we must
write our code. The last instruction of the main function is “return 0;”. This instruction was used in
many operating systems to check whether the program ended successfully. Therefore, the code shown
above is the skeleton of any C++ program.

The main function shown above contains only comments inside it, which will be completely ignored
by the compiler. Thus, the program shown is essentially an empty program since no instructions are
executed.

Chapter 1

Variables and Operators

Variables are the basic elements of any programming language and are essentially used to store
information in the computer’s memory.

Section presents the different types of variables. Sections and explain how to write
variables to the screen and how to read them from it, respectively. Section introduces constant
variables and, finally, Section details the various types of existing operators.

1.1 Types of Variables

An object is a region of the computer’s memory that can hold a value. A variable is a named object.
Each variable is characterized by a name and a type. The name of a variable must follow some rules:

1. It must start with a letter (it may also start with an underscore, but this should be avoided).

2. It cannot match reserved words of the language, such as: main, if, else, while, int, double, try,
etc. Reserved words are usually displayed in a different color in the Qt Creator.

3. It cannot contain spaces or characters other than numbers, letters, or the underscore.

The names we use should not be too long and should be as descriptive as possible to make the
program easier to read. For example, if we want to create a variable to store the age of a person, the
name age is probably the most descriptive one for that variable. It is important to note, however, that
the same program cannot have two variables with the same name. If we need two variables to store two
ages, we can, for example, use the names age_I and age_2 or simply agel and age2. It is also important
to note that C++ is case-sensitive, meaning that, for example, the names age and Age do not refer to
the same variable. In the programs we write, we should not use variables with similar names to avoid
confusion.

All variables used in a program must first be declared so that the computer can allocate memory
space for the data type to be stored. To do this, we must write the variable’s type followed by its name,
that is,

int age; //Declaration of a variable named age of type int

When a variable is declared, the value existing in the associated memory location - which is considered
a “garbage value” - is immediately assigned to it. To avoid using garbage (unknown) values in the

program, we should assign a value to the variables when they are created. This is called initialization
and is illustrated below:

int age;
age = 18; //Initialization of the variable age with the value 18

The declaration and initialization of a variable can be done in the same statement as follows:

int age = 18; //Initialization of the variable age with the value 18

Roughly speaking, creating variables is like creating boxes in the computer’s memory where values
of the defined type will be stored. Figure [1.1| contains a schematic representation of what happens in
the computer’s memory when a variable is declared (Figure |l.1al) and initialized (Figure |1.1b)).

Computer’s memory Computer’s memory
age age
2 18
(a) Declaration. (b) Initialization.

Figure 1.1: Declaration versus initialization of a variable.

The type of a variable indicates the nature of the values it can assume. Table contains examples
of different data types.

Table 1.1: Examples of variable types.

Types

Integer numbers short
int
long

long long int

Unsigned integer numbers size_t
Decimal numbers float

double

Character char

Text string
Boolean value bool

The first four data types are used to store integer values (positive or negative) and differ in the range
of values they can hold, that is, in the amount of memory space they occupy. The short type can store

smaller integer values (fewer digits), while the long long int type can store larger integer values (more
digits). In our programs, the int type is generally the most used because it can represent numbers
sufficiently large. The size_t type represents non-negative integer numbers. For decimal numbers, we
can use the float or double types. However, since the precision of the double type is greater than that of
the float type — that is, the double type allows for storing more decimal places — we will only use it. A
variable of type char can store any character, that is, a letter (without accent or cedilla), a digit (from
0 to 9), or a symbol (/, +, ;, $, etc.). A string is a data type that stores a sequence of characters, that
is, text. Finally, the bool type can only take the logical values true or false, where true corresponds to
the value 1 and false corresponds to the value 0. Boolean values are not stored as true and false, but
rather as integers with the aforementioned correspondence.

All the variable types presented are primitive data types, except for the string type. The code below
shows examples of variables of the different types mentioned above.

#include <iostream>
using namespace std;

int main(){

int age = 18; // Integer variable named age with value 18
double weight = 56.8; // Decimal variable named weight

string name = "Pedro"; // Variable that stores a set of characters
char ¢ =)7; // Variable that stores a character named c
bool logic = true; // Boolean variable named logic

double height; // Uninitialized variable named height
return O;

Six variables are declared in the code above, and the first five are also initialized. Note that characters
(type char) are defined using single quotes, while text (type string) is defined using double quotes. Recall
that it is not mandatory to initialize variables when they are declared, but it is good practice to do
so because, if variables are declared without being initialized, they may assume arbitrary values, called
garbage values. In the first line of the program, we have the instruction #include <iostream>, which is
necessary when using variables of type string. In the second line, there is the instruction using namespace
std;, which we will discuss later. As we have already seen, the instruction int age = 18 creates a variable
named “age” to store the integer number 18. Very informally, this process can be seen as creating a
boz and placing the number 18 inside it (see Figure . The logic is the same for the remaining data
types, except for strings, since they are not primitive data types.

age weight c

15 56.8)

The variables usually take different values during the execution of a program, but at each moment
of the execution, they only store one value. It is important to remember that a variable is like a box
that can only contain a single value inside it.

int main(){

int x = 10; //Variable initialized with the value 10

x = 20; //The value of the variable is changed to 20
//. ..

x = 30; //The value of the variable is changed to 30
return O;

In the above code, the variable z is initialized with the value 10. Its value is then changed to 20 and
later to 30, which will be its final value.

1.2 Writing Variables — Output

In the programs we build, it is often necessary to display information to the user, which is usually
done on the screen. This is what we call printing. To print something, we use the cout command, which
stands for console output, together with the operator <<.

#include <iostream>
using namespace std;

int main(){

int age = 15;

string name = "Pedro";
cout << "Qutput: \n";
cout << name;

cout << endl;

cout << age;

cout << "\n";

return O;

To use the cout command, it is necessary to include the zostream package and write the second line
of the program, i.e., using namespace std;. The instruction “\n” is a control command used to make
a line break on the information displayed on the screen, that is, to make a paragraph. The instruction
endl means end of line and can be used alternatively to “\n”. When executed, this program first
declares and initializes the variables age and name. After that, it encounters the first cout and writes
the message “Output:” on the screen. On that same line, it finds the controller \n, which introduces
a line break in the output. In the next line of code, the program accesses the variable (or box) named
name and writes what is stored inside it, which in this case is “Pedro”. Upon reaching the next line
of code, it simply introduces a line break because it found the endl controller. After that, the program
accesses the variable named age and writes what is stored there. The last cout only introduces one
more line break. In practice, the five previous cout commands can (and should) be written with a single
instruction, which simplifies the writing, as follows:

cout << "Qutput: \n" << name << endl << age << "\n";

which leads to the same output.

1.3 Assigning Values to Variables — Input

To assign values to a variable, we can simply use the assignment operator =. For example, z =
5. The function of the = operator is to assign the value on the right-hand side to the variable on the
left-hand side. For instance, the instruction z = 5 corresponds to z <— 5, that is, it assigns the value
5 to the variable x. The operator = is used to assign values to variables when we know the value to be
assigned at the moment the code is written. However, in many situations, the value of the variables is
not known beforehand; it is only defined by the user later on. For these cases, we should use the cin
command, which stands for console input, together with the operator >>, to read information provided
by the user.

#include <iostream>
using namespace std;

int main(){
int age;
cout << "Enter age: ";
cin >> age;

cout << "The age is: " << age << "\n";

return O;

To use the cin command, it is also necessary to include the iostream package and write the second
line of the program. This program begins by declaring a variable of type int with the name age. Then,
it writes the text “Enter age: 7 on the screen. Next, the program moves to the next line and will wait
until the user enters an integer. When the user provides the number, it is stored in the variable age.
Finally, the program writes to the screen “The age is: 7, retrieves the value stored in the variable age,
prints it on the screen, and ends with a line break.

Although it is good practice to initialize variables, it is not necessary to do so in cases where their
value is requested from the user (almost) immediately after declaration, as in the previous example. The
first three code lines inside the main function of the previous example are always used when we want
to request the value of a variable from the user. Those three lines exemplify the process called reading
a variable.

The operators >> and << used, respectively, in the instructions cin and cout indicate movement.
More precisely, when we write cin >> z, we are sending what was typed on the screen (left side) to the
variable z on the right side. On the other hand, when we write cout << z, we are sending what is on
the right side (the value of the variable z) to be displayed on the screen (left side).

1.4 Constant Variables

As we have seen earlier, the value of a variable can be successively changed during the execution of a
program. However, in some situations, it may be useful to use variables with values that we do not want
to change. These types of variables are called constants and are defined using the reserved word const.
A good example is the case of 7w, which can be defined as const double pi = 3.141592. This not only
allows us to always use the variable pi throughout the program instead of writing the value 3.141592,
but it also prevents the value of the variable pi from being changed. That is, it will not be possible to
make a new assignment to it, such as pt = 3.14. This example is illustrated in the next code excerpt,
which does not compile because it attempts to change the value of a variable defined as a constant.

int main(){
const double pi = 3.141592;
pi = 3.14; //ERROR!
return O;

1.5 Operators

C++ contains operators of different types, namely simple arithmetic operators, compound arithmetic
operators, relational operators, and logical operators.

1.5.1 Arithmetic operators

The simple arithmetic operators are those we already know from mathematics and are shown in the
table below, where the values presented in the “Result” column correspond to the case in which a=13%
and b=5.

Table 1.2: Simple arithmetic operators.

Operator | Name Example | Result
+ Sum a+b 18
- Subtraction a-b 8
Multiplication a*b 65

Integer or decimal division a/b 2 or 2.6
% Remainder of integer division (Modulo) a%b 3

The result of the “/” operator is the integer division whenever both operands are of an integer data
type. If one of the operands is of a decimal type, the result of the “/” operator is decimal division. To
obtain decimal division between two integer-type variables, it is first necessary to convert one of them to
a decimal data type before performing the division. This process is called cast, and one way to do it is
to write the desired data type in parentheses before the variable to be converted. That is, if ¢ and b are
variables of type int, decimal division can be obtained with the instruction (double) a/b. This means
that the program first converts the variable a to type double and then performs the division between a
double and an int, producing a decimal result.

10

The arithmetic operators presented in the previous table are used between operands of numeric
types. However, the “+” operator can also be used with strings, functioning as a concatenation (joining)
operator.

#include <iostream>
using namespace std;

int main(){

string a = "I am ";
int ¢ = 18;
string b = " years old.";

string sentence = a + to_string(c) + b + " I am young!";
cout << sentence;

return O;

In the above example, the variable sentence of type string, which results from the concatenation of
several strings and one integer, is printed on the screen. Variables of type string can be concatenated
directly; however, in the case of numeric data types, it is necessary to use the to_string function. The
purpose of the to_string function is to convert a numeric value into a string, which can then be directly
concatenated with other strings. In the above example, the output printed on the screen, which is the
value of the variable sentence, is “I am 18 years old. I am young!”.

Compound arithmetic operators allow us to simplify the writing of instructions. For example, writing
a = a + & is the same as writing a += &. To use these operators, it is necessary to have a good
understanding of the meaning and functioning of the = operator explained earlier. Recall that this
operator assigns the value on its right-hand side to the variable on its left-hand side. Therefore, when
we write @ = a + &, we are not saying that the right side is equal to the left side; such an interpretation
would make no sense mathematically. The meaning of the expression ¢« = a + 3 is a < (a + 3).
Suppose the value of a is 6. When the program reaches the instruction a = a + 3, it first evaluates the
right-hand side expression a + 3, which equals 9. Then, it assigns the value 9 to the variable a. From
that point on, the value of a is 9. The table below presents the arithmetic assignment operators and
the resulting value of the variable a at the end of the operations, considering the initial values a = 6

and b = 2.

Table 1.3: Compound arithmetic operators (considering a=6 and b=2).

Operator | Name Example | Meaning | Value of a
+= Addition/assignment a+=b a=a+b 8
-= Subtraction/assignment a-=b a=a-b 4
*= Multiplication /assignment ax=b a=a*b 12
/= Division/assignment a/=b a=a/b 3
b= Modulus/assignment a%=b a=a2%b 0
++ Increment a++ a=a+1 7
-- Decrement a—- a=a-1 5

11

These operators are applied to numeric data types; however, the += operator can also be applied to
strings. In this case, it functions as a concatenation plus assignment operator, concatenating the value
on the right-hand side to the value on the left-hand side. In the example below, the final value of the
variable b is not changed; it remains “BB”. The value of the variable a (printed on the screen) will be
“AABB”. That is, since a += b is equivalent to a = a + b, the value of b is concatenated to the initial
value of a, and the result is stored in the variable a.

#include <iostream>
using namespace std;

int main(){
string a = "AA";
string b "BB";
a+=>b
cout << a;

return O;

The increment operator a++ is equivalent to writing a+=1, which is also equivalent to ¢ = a + 1.
Increment and decrement operators have the particularity of being used either as a prefix (++a) or as a
suffix (a++). When used in isolation, their meaning is exactly the same. However, in operations where
the result of the increment or decrement is evaluated within another expression, the results can differ.
In the case of the prefix increment operator (++a), the value of the variable is incremented first and then
returned. That is, the variable is incremented before the expression is evaluated, which means that the
evaluation of the expression will be done by considering the incremented value. In the case of the suffix
increment operator (a++), the value of the variable is returned first and then incremented. That is, the
variable is incremented only after the expression is evaluated. Consider the example below:

Table 1.4: Difference between prefix and suffix increment operators (a=3 and b=3).

Example | Final value of a | Final value of b
a=++b 4 4
a=b++ 3 4

When used in isolation, we should prefer the prefix increment operator (++a) because, as we will see
later, it is more efficient than the postfix increment operator (a++).

1.5.2 Relational Operators

Relational operators are used to compare two expressions. The result of this comparison is a value
of type bool, which can be true (if the comparison is true) or false (otherwise).

These operators are fundamental for the next section. For now, it is important to highlight the
operator ==, which is completely different from the assignment operator = used earlier. The operator ==
checks whether the value on its right-hand side is equal to the value on its left-hand side, returning true
or false. For example, the result of the comparison 5==8/2 is false because 5 is not equal to 8/2 (=4).
The operator =, on the other hand, is used to assign the value on the right-hand side to the variable on
the left-hand side and is not used for comparisons.

12

Table 1.5: Relational operators.

Operator | Meaning
< lower than
> greater than
<= lower than or equal to
>= greater than or equal to
== equal to
= different from

1.5.3 Logical Operators

Logical operators are used to negate and combine expressions. Therefore, the result of operations
with logical operators is also true or false.

Table 1.6: Logical operators.

Operator Meaning
&& or and | conjunction (and)
|| or or | disjunction (or)
! logical not

The ! operator placed to the left of an expression inverts its logical value. That is, if the expression
is true, it becomes false, and vice versa. For example, consider three integer variables a=5, b=3, and
c¢=2. Then, we have:

b>a — false
(b > a) — true
I(b>a) && c==a—b || ¢>b — true
(l(b>a) or c==a—0b) and c¢>b — false
b>a || c==a—-b && b>c — true
Note that the last expression is equivalent to b > a || (¢ ==a—-0 && b > ¢) because the

conjunction (read “and”) has higher precedence than the disjunction (read “or”).

1.5.4 Ternary Operator (Supplementary Information)

The ternary or conditional operator evaluates an expression and returns different values depending
on the result of that evaluation. This operator will not be taught in class and is included here only as
supplementary information. The syntax of this operator is as follows:

(<condition> 7 <resultl> : <result2>)

If the <condition> is true, the operator will return <result1>. Otherwise, it returns <result2>. For
example, when we write

x = (7==5 74 : 3);

variable z will have value 3 because the condition 7==5 is false.

13

Chapter 2

Control Structures

Control structures are essential in any programming language and are divided into conditional and
loop structures. Conditional control structures are primarily used to execute specific instructions de-
pending on whether certain conditions are met. In other words, they allow the program to follow different
paths. In contrast, loop control structures are associated with the repetition of instructions/processes.

Conditional control structures are presented in Section Section details the importance of
using brackets and indentation. Finally, loop control structures are presented in Section [2.3]

2.1 Conditional Control Structures

Three different conditional structures will be presented, namely the if structure, the if else structure,
and nested conditional structures.

2.1.1 The if Structure

The simplest conditional control structure in programming is the if structure. Its general syntax is:

if (Condition) {
Instruction block

An if is characterized by a condition and a block of instructions. Instruction blocks are defined
using brackets and contain several instructions. The condition evaluates to true or false, and it can
therefore be a boolean variable or a logical expression that, in most cases, involves the relational and
logical operators presented in the previous chapter. The instruction block of the if structure will only
be executed if the condition is true.

The following example contains a snippet of code where the if structure is used.

14

#include <iostream>
using namespace std;

int main(){
int a = 1;
int b;
cout << "Enter the value of b: ";
cin >> b;

if (b>10& b % 3==0) {
++a;
}

)
return O;

In this example, the program begins by declaring two variables, a and b, and initializing the first
with value 1. Then, the user is prompted to insert the value of b. When reaching the if statement, the
program evaluates the logical value of the condition b>10 && b%3==0. If the result of this evaluation
is true, the program will enter the if block (which in this case contains only one instruction) and will
increment the value of the variable a by one.

Suppose the user inserts 20 for b. Although 20 is greater than 10, the remainder of 20 divided by 3
is not zero, so the logical result of the if condition is false. In this case, the program will not execute
the instructions associated with the if and will immediately proceed to the final return, and thus the
final value of the variable a is 1. Now, suppose the user inserts 15. In this case, since 15 > 10 and
the remainder of 15 divided by 3 is zero, the if condition is true, and so the program will execute the
instructions in the if block. As such, the value of the variable a at the end of the program will be 2.

In this example, two aspects are particularly important. First, the use of the equality operator ==,
which is justified by the fact that a comparison (not an assignment) is being made. Second, the meaning
of the second part of the logical expression, i.e., b%3==0. Checking whether the remainder of dividing b
by 3 is zero is equivalent to checking whether b is a multiple of 3, which is the standard way of defining
conditions like “is a multiple of”.

2.1.2 The if else Structure

The if else structure has two instruction blocks, allowing us to define actions in case the if condition
evaluates to false. Thus, Instruction Block 1 will be executed if the if condition is true, while Instruction
Block 2 will be executed otherwise, that is, if the condition is false. The general syntax of an if else is:

if (Condition) {
Instruction Block 1

} elsef

Instruction Block 2

Note that else does not require a condition because it implicitly represents the negation of the
condition written in the if. Consider the following example:

15

1. int main(){

2 inta=1, b =19, ¢ = 3;
3

4 if (b%3==0o0rb¥%2==0){
5. a = 10;

6 c += a;

7 telse{

8 a = 20;

9. c -= a;

10. }

11. return O;

12.}

The condition associated with the if can be read as “b is a multiple of 3 or 2”. Since b=19, the
condition is false, and so the program jumps immediately from line 4 to line 7 — the else line — and
then executes all instructions within that block. As a result, the program sets the value of a to 20 and
then updates the value of ¢ to 3-20, which equals -17. At the end of the program, we have a=20, b=19,
and c=—17. In this example, the condition implicitly associated with the else is “b is not a multiple of
3mnor 2’ ie,b % 3 !'=0and b % 2 != 0.

As a final remark, it is important to note that whenever we use an else, it must be associated with
an if . However, the reverse is not required, i.e., we can have an if without any associated else, as we
saw in the previous section.

2.1.3 Nested Conditional Structures

The if else structure allows the program to follow two distinct paths depending on the evaluation of
a condition. However, there are situations where more than two paths are possible. In such cases, we
can use nested conditional structures.

The general syntax of the compact form of nested conditional structures is shown on the right. On
the left, we have the expanded version of the same structure, using multiple if else structures:

if (Condition 1) {
Instruction Block 1

} else { if (Condition 1) {
if (Condition 2){ Instruction Block 1
Instruction Block 2 } else if (Condition 2){
} else { Instruction Block 2
if (Condition 3){ } else if (Condition 3){
Instruction Block 3 Instruction Block 3
} else { } else {
Instruction Block 4 Instruction Block 4

} }
}

Consider the compact form of nested conditional structures. If Condition 1 is true, Instruction
Block 1 is executed. If Condition 2 is true and Condition 1 is false, then Instruction Block 2 is executed.

16

Instruction Block 3 is only executed if Condition 3 is true and both Conditions 1 and 2 are false.
Instruction Block 4 is executed only if all Conditions 1, 2, and 3 are false. It is important to emphasize
that in this structure, one and only one instruction block is executed, even if more than one condition
is true. If two or more conditions are true, the only instruction block that is executed is the first one
encountered. For example, if both Condition 2 and Condition 3 are true, the instruction block that is
executed is Instruction Block 2.

To clarify the differences between the conditional control structures presented so far, consider the
following example. Suppose that the unit price of a given product depends on the quantity purchased,
and we want to write a program that, given the number of units to purchase, calculates the final price
to be paid. If the unit price of the product is determined according to the table below:

Quantity <50 [50, 99[| [100, 150[| > 150
Price 5 4 3.5 3.3

then the following code, although it does not use nested conditional structures, achieves the desired
result.

#include <iostream>
using namespace std;

int main(){
int qt, price;
cout << "Quantity: ";
cin >> gt;

if (gt <50) {
price = 5 * qt;
}

if (qt >= 50 and qt < 99) {
price = 4 x qt;
}

if (gt >= 100 and qt < 150) {
price = 3.5 * qt;
1

if (qt >= 150) {
price = 3.3 * qt;
}

cout << "Final price: " << price;
return O;

The code above is composed of four independent if structures. The same code can be written using
nested conditional structures, as shown below.

17

O© 0 NO O W N -

=
= O -

NNV NNNRE R PR PR B e
D WONEFE, O O 00N O W

25.

. #include <iostream>
. using namespace std;

int main(){

}

int qt, price;
cout << "Quantity: ";
cin >> qt;

if (qt <50) {
price = 5 * qt;
telse{
if (gt <99) {
price = 4 * qt;
}else{
if (qt < 150) {
price = 3.5 * qt;
}else{

price = 3.3 * qt;
}

}

cout<<"Final price: "<<price;
return O;

©O© 0 N O O b W N+~

I I e e e
= O O 00 NO O d WN -~ O -

#include <iostream>

. using namespace std;

int main(){

.

int qt, price;
cout << "Quantity: ";
cin >> qt;

if (qt <50) {
price = 5 * qt;
telse if(qt < 99) {
price = 4 * qt;
telse if (qt < 150)
price = 3.5 * gt;
}else{

price = 3.3 * qt;
}

cout<<"Final price: "<<price;
return O;

In the first implementation, there is a main control structure that starts at line 9 and ends at line
21. The else of this structure (line 11) contains in its instruction block a new if that starts at line 12
and ends at line 20. This new if, in turn, also includes another if within the instruction block of its
else, which begins at line 15 and ends at line 19. However, it is important to highlight that each if can
have at most one associated else. The conditions of the ifs shown here may seem incomplete compared
to those in the previous code, but they are in fact correct. We will analyze different cases to better

understand how nested conditional structures work. Consider the code on the left.

enter the associated else (lines 11-20).

1. Suppose the quantity ¢t entered by the user at line 7 is 30. When the program reaches line 9, it
checks whether qt<50, which is indeed true. Therefore, the program will enter the first if, execute
the instruction at line 10, and then immediately jump to line 21 (end of the first if). In the end,
we will have price=150. Note that since the condition of the first if is true, the program does not

Suppose the quantity gt entered by the user is 60. When the program reaches the first if (line
9), it verifies that the condition gt<50 is false, so it proceeds immediately to the associated else
block (line 11). Within that block, the program first evaluates the condition of the if at line 12,
i.e., it checks whether ¢t<99. Since the condition is true, the program enters that if and executes
the instruction at line 13. It then proceeds to line 20 and then to line 21. Note that since the

program entered the if at line 12, it does not enter the else at line 14.

3. Suppose the quantity ¢t entered by the user is 200. As in the previous case, the program will enter
the else at line 11 and execute the instructions in that block. The condition in the if at line 12 is
false, so the program enters the else at line 14. When it reaches line 15, the program evaluates the
condition ¢t< 150, which is false, so it enters the else at line 17 and then executes the instruction
at line 18. It proceeds to line 19, then to line 20, and finally to line 21, without performing any
further actions.

Based on this example, we can understand, for example, why we can simply write qt<150 at line
15 instead of qt<150 and qt>=100. This works because if the program reaches line 15, it must have
already entered the else at line 11 (i.e., ¢t>50) and the else at line 14 (i.e., qt>100).

The second code snippet presented above uses the compact form of nested conditional structures.
Recall that when using a structure of this type, it is important to keep in mind that the program will enter
only one instruction block: either the block associated with the if, one of the blocks associated with the
else if , or the block associated with the else. Once the program enters one of these blocks—whichever
it may be—it executes the instructions in that block and then immediately jumps to the end of the
control structure (line 17 in this example).

When using nested control structures, it is essential to always keep in mind how the if else structure
works—specifically, that the program either executes the instructions in the block associated with the
if or those in the block associated with the else, but never both.

2.2 Use of Brackets and Indentation

The correct use of brackets and code indentation are two very important aspects of programming.
On one hand, brackets are used to delimit blocks of instructions, as we saw in the previous section, and
incorrect placement can lead to syntax errors or runtime errors. On the other hand, code indentation is
completely ignored by the compiler and therefore does not affect the program’s behavior. Indenting the
code serves only to greatly improve its readability, making it clear which instructions belong to which
blocks. Below, the same code is presented in an indented form (left side) and in a non-indented form
(right side). This example clearly illustrates the importance of indentation, as in the first case, we can
easily see where each instruction block begins and ends.

19

1. #include <iostream> 1. #include <iostream>
2. using namespace std; 2. using namespace std;
3. 3.

4. int main(){ 4. int main(){

5. int qt, price; 5. int qt, price;

6. cout << "Quantity: "; 6. cout << "Quantity: ";
7. cin >> qt; 7. cin >> qt;

8. 8.

9. if (gt <50) { 9. if (qt <50) {
10. price = 5 * qt; 10. price = 5 * qt;

11. }else{ 11, }else{

12. if (gt <99) { 12. if (qt <99) {
13. price = 4 * qt; 13. price = 4 * qt;

14. telse{ 14. }else{

15. if (gt <150) { 15. if (qt < 150) {
16. price = 3.5 * qt; 16. price = 3.5 * gt;
17. telse{ 17. Yelse{

18. price = 3.3 * qt; 18. price = 3.3 * qt;
19. } 19. }

20. } 20. }

21. } 21. }

22. 22.

23. cout<<"Final price: "<<price; 23. cout<<"Final price: "<<price;
24 . return O; 24. return 0;

25. } 25. }

In Qt Creator, we can automatically indent the code we write by pressing Control + A (to select
everything) followed by Control + I (to indent). This automatic indentation helps us understand how
the compiler interprets the code we have written and allows us to verify whether that interpretation
aligns with our intentions.

The use of brackets is essential for delimiting instruction blocks. However, when an instruction block
contains only a single instruction, the brackets may be omitted. In the example below, there is only
one instruction associated with the if on line 4, so the bracket on line 4 and the first bracket on line
6 can be omitted. The brackets associated with the if on line 7 cannot be removed because the block
contains more than one instruction (two, in this case). However, the second bracket on line 10 and the
bracket on line 12 can be removed since the block they delimit contains only one instruction.

The brackets we mentioned can be removed from the code in order to make it more compact.
However, the second bracket on line 6 and the bracket on line 13 can also be removed. This is because
the first else block also contains, in fact, only a single instruction inside it—an if else instruction which,
although spread over several lines, is considered a single instruction. This kind of situation can cause
some confusion in the early stages of programming, so it is recommended to keep the brackets in such
cases. Once again, it is important to remember that in Qt Creator, we can automatically indent our
code, making it easier to spot bracket placement/omission errors as well as clearly identifying which
instructions belong to which blocks.

20

1. int main({ 1. int main(){

2 inta=1, b =19, ¢ = 3; 2. inta=1, b =19, ¢ = 3;
3 3.

4. if (b% 3 ==) { 4. if (b%3==0)
5. c += a; 5. c += a;

6 }else{ 6. else

7 if (e>2){ 7. if (e>2){

8 a = 20; 8. a = 20;
9. c —-= a; 9. c —= a;
10. telse{ 10. }else

11. a = 20; 11. a = 20;
12. } 12.

13. } 13.

14. return O; 14. return O;

18. } 18. }

The next example reinforces the importance of using brackets and indentation and illustrates a
property of the if else structure that has not yet been shown.

1. int main(){ 1. int main(){

2. int a=1, b =19, ¢ = 3; 2. int a=1, b =19, ¢c = 3;
3. if (b % 3 == 0) 3. it (b%3==0) {
4. if (c>2) 4. it (e>2){

5. a = 30; 5. a = 30;

6. else 6. }

7. a = 20; 7. telse{

8. return O; 8. a = 20;

9. } 9. }

10. 10. return O;

11. 11. }

The first code excerpt contains no brackets and is not indented. Additionally, it includes two ifs
and only one else, which makes it difficult to determine to which if the else is associated with, creating
ambiguity. In such ambiguous cases, the else is paired with the last ¢f within the same instruction block,
that is, the if on line 4. The second code excerpt includes brackets and is indented, making it clear that
in this case the else is associated with the first if, which begins on line 3, and that the second if (line
4) is contained within its instruction block.

2.3 Loop Control Structures

Loop structures allow the execution of a set of instructions repeatedly while a given condition is
satisfied. The C++ programming language offers three loop control structures: while, do-while, and for.
As mentioned before, a C++ program always begins by executing the main function and then proceeds

21

sequentially line by line from top to bottom, unless there are instructions that alter this flow. Loop
instructions are the first type of instructions we study that change the normal execution sequence of a
program.

2.3.1 The while Structure

The while structure is the simplest of the three cyclic structures available in C++ and has a structure
similar to that of the if statement. The general syntax of a while loop is:

while (Condition){
Instruction Block

When a while structure is executed, the program first checks whether the Condition is true. If it
is, the Instruction Block is executed. Unlike the if structure, after executing the Instruction Block, the
program returns to the top of the while structure and evaluates the Condition again. If the Condition is
still evaluated as true, the Instruction Block is executed again. This process repeats until the Condition
is evaluated as false. When that happens, the program exits the loop and continues its execution with
the line of code immediately following the while structure. Thus, a while loop can be read as: “While
the condition is true, execute the instruction block”.

Consider the following example where a while structure is used to print the numbers from 1 to 10
on the computer screen:

1. #include <iostream>
2. using namespace std;
3.

4. int main(){

5. int i = 1;

6. while(1 <= 10){
7. cout << i << " "y
8. ++1i;

9. }

10.

11. return O;

12. }

We will now analyze in detail what the program is doing. First, the variable i is declared and
initialized to 1, since that is the first number we want to print. Then, because the condition i = 1 <=
10 is true, the instruction block of the while loop (lines 7-8) is executed. The first instruction in the
block prints the value 1 (the current value of the variable i) and a space to the screen. The second
instruction increments the value of the variable i to 2. Now, the program returns to line 6, and the
condition is evaluated again. Since 2 <= 10 is true, the instruction block is executed again, and the
value 2 followed by a space is printed to the screen. The loop continues to execute until the variable i
has the value 11, at which point the condition 11 <= 10 is false, and the instruction block of the while
is not executed. The program then proceeds to line 10.

In the previous example, to implement a while loop, we needed:

22

1. to define and initialize a loop control variable (variable i);
2. to have a condition or stopping criterion (i <= 10);
3. to update the loop control variable (++i) .

These three components are always, in some way, present in a while loop, and failing to include them
can result in coding errors.

Failing to initialize the loop control variable with an appropriate value may result in the instruction
block associated with the while loop never being executed. For example, if in the previous example we
had int i = 15; on line 5, the while condition would be evaluated as false, and the program would
jump directly to line 10. The loop control variable should be declared and initialized outside the while
structure. Variables declared inside instruction blocks, particularly inside the while block, do not exist
outside those blocks. This is called the scope of the variable, that is, the region of the program where
the variable is recognized.

When the loop control variable is not updated, we may encounter an infinite loop in which the while
condition always remains true. This means the program will execute the instruction block indefinitely,
never exiting the loop, and possibly ending with a system crash. If, in the previous example, we had
omitted the instruction on line 8 (++1;), the variable i would always remain at the value 1, making the
condition i <= 10 perpetually true. We would thus have an infinite loop.

2.3.2 The do-while Structure

The general syntax of do-while is:

do{
Instruction Block
}while (Condition);

A do-while loop can be interpreted as: “Do what is in the instruction block while the given condi-
tion is true”. When the program encounters a do-while loop, it begins by immediately executing the
instruction block inside it without checking any condition (unlike the while structure). After executing
the Instruction Block, the program evaluates the logical value of the Condition. If the condition eval-
uates to true, the program re-executes all instructions within the loop’s instruction block and evaluates
the Condition again. This process repeats as long as the while condition remains true, allowing for
multiple iterations. As soon as the condition evaluates to false, the program immediately exits the loop
and proceeds to the line of code immediately below it.

The main difference between the do-while structure and the while structure is that, in the first
iteration of the do-while loop, the instruction block is always executed since the condition is only
evaluated afterward. Therefore, the instruction block of the do-while structure is always executed at
least once, whereas the instruction block of the while structure may never be executed.

Consider the following two examples.

23

1. #include <iostream>
2. ' td;
1. #include <iostream> 3 using namespace std;
2. using namespace std; 4: int main(){
) . int n;
4. int main(){ 5 }n o
) 6. int count = 0;
5. int n = 3;
6 7.
7. int i = 1; 8 dof
9. cout << "Value: ";
8. do{ .
9 cout << i << " "y 10. cin 2> m;
i : ’ 11. if (n>0)
10. T 12 ++count;
. hil | <= ;) ’
1; jubile(1 <=mn); 13. luhile(n > 0);
' 14.
13. return O; " ;
14 } 15. cout << "Total: << count;
- 16. return 0;
17. }

When executed, the first program (left) begins by declaring and initializing the integer variable n
with the value 3. Upon reaching line 7, the program declares and initializes a new variable i with the
value 1. This variable is used in the condition of the do-while loop, and it is based on its value that the
loop will either continue executing or be interrupted. Therefore, the variable i in this program is the
loop control variable.

After line 7, the program proceeds to line 8 and then to line 9, where it prints the value of the
variable i (which is 1) and a space to the screen. Next, it moves to line 10 where it increments the value
of 1 by one, i.e., i = 2. The program then goes to line 11 and checks whether the condition associated
with the while, that is, i <= n, is satisfied. Since it is, the program returns to line 8 to execute all
instructions within the do-while block again. When it reaches line 9, the program prints the new value
of the variable i (which is now 2) and a space, then increments the value of the variable i again in line
10. The condition associated with the while is evaluated once more, and the result is still true because
i =3 <3 =mn. As a result, the program once again executes the instruction block of the do-while,
meaning it goes back to line 8 and immediately to line 9 to print the value 3 on the screen. Then, in
line 10, it increments the value of the variable ¢ by one, making it 4.

Next, the while condition is evaluated, and since it is now false (because i = 4), the program exits
the loop and proceeds to line 12 and then to line 13, where the program ends. Since all of the previously
mentioned instructions are executed very quickly, the user will only see the final result displayed on the
screen, which in this case is: “1 2 3 7. Through this analysis, we understand that the goal of the first
program is, in fact, to print the first n natural numbers.

To reinforce the importance of the ++i instruction on line 9, let us try running the program without
it. The variable i is initialized with the value 1 on line 7. If line 10 does not exist in the program, the
value of the variable i will never change. This means that the condition i <= n will always be true
and therefore the program will indefinitely execute the instruction block of the do-while, continuously
printing the value of 7 (which is 1) to the screen, thus entering an infinite loop.

Now, consider the second program. The objective of this program is to repeatedly ask the user to
enter positive integers until a non-positive integer is entered. At the end of the program, a message is
displayed with the total number of positive numbers entered by the user. In each iteration of the loop,

24

the program asks the user to input a value (lines 9 and 10). If the entered value is positive (line 11),
the program increments the variable count by one (line 12). This variable is used to count the number
of positive values entered.

After executing the instruction block, the program evaluates the while condition, that is, it checks
whether the last number entered by the user is positive. If so, the program executes all instructions in
the instruction block again. Otherwise, the program exits the loop, proceeds to line 15, and displays
the final message.

There are a few important points to highlight in this program. First, the required initialization of
the variable count on line 6. Since on line 12 the variable count is being incremented - meaning it
assumes its previous value plus one — it is essential that this variable has a well-defined initial value.
In this case, that value is zero because initially (when the program reaches line 6), no positive numbers
have been entered yet.

The second point is the use of the if on line 11. Is this if really necessary? Since the goal of the
program is to count how many positive numbers the user has entered, using this if is fundamental. If
it didn’t exist, then when the user entered a negative or zero value to stop the loop, that value would
also be counted by the count variable, because the increment would happen before the while condition
is evaluated.

A final observation is that the variable count must be declared outside the loop, meaning its scope
is the main function. If the variable were declared inside the loop, not only would the program fail to
produce the intended result, but it would also be impossible to access it on line 15 to print its value.

2.3.3 The for Structure

The last control structure we will present is the for structure. Any for loop can be rewritten as a
while (or do-while) loop, and vice versa. The general syntax of a for loop is:

for (Initialization; Condition; Increment){
Instruction Block

The for loop combines the declaration and initialization of the control variable, the loop’s execution
condition, and the increment of the control variable in a single place.

Consider the following example, which shows a program that prints the numbers from 1 to 10 on the
screen using both a while loop and a for loop:

1. #include <iostream> 1. #include <iostream>

2. using namespace std; 2. using namespace std;

3. 3.

4. int main(){ 4. int main(){

5. int i = 1; 5. for(int i = 1; i <= 10; ++i){
6. while(i <= 10){ 6. cout << i << " M
7. cout << 1 << " ", 7. }

8. ++1; 8.

9. } 9. return O;

10. 10. }

11. return O;

12. }

25

As can be seen in this example, lines 5, 6, and 8 of the first program are, in a way, combined into a
single line (line 5) in the second program. Consider now the flow diagram followed by a for loop.

N

(Initialization|; [Condition| |Increment) {

Instruction Block__——

False

When encountering a for loop, the program begins by initializing the loop control variable and
then evaluates the logical expression that defines the condition. As long as that condition is satisfied,
the program, in this order, executes the instruction block of the for loop, increments the loop control
variable, and re-evaluates the condition. This process is repeated until the condition is evaluated as
false.

Three different loop structures have been presented, all of which can be converted into one another.
However, in certain situations, the use of one type of loop is more appropriate than the others. The
while and do-while loops are generally used when the number of iterations is not known in advance. For
example, in a program that repeatedly asks the user for positive values, it is not known in advance how
many values will be entered, so in this case, it makes more sense to use a while or do-while loop. In
situations where the number of iterations is known in advance, it is preferable to use the for loop, since
all the loop-related information (initialization of control variable, condition, and increment) is presented
in its first line. For instance, if the goal is to sum the first 30 natural numbers, it is already known that
30 iterations will be required, making the for loop the recommended choice.

2.3.4 Nested Loops

Often, using a single loop is not sufficient to implement certain algorithms, and it becomes necessary
to use nested loops. That is, loops that contain other loops within their instruction block. Consider the
following example:

26

j =2
Writes on the screen "(1,2) "
j=3
1. #include <iostream> Writes on the screem "(1,3) "
2. using namespace std; j=4
3 Writes on the screem "(1,4) "
4. int main(){ j = 5 (End of 2nd loop)
5. int n = 5; i=2
6 j=3
7 for(int i = 1; i < n; ++i) Writes on the screem "(2,3) "
8 for(int j =1 + 1; j < mn; ++j) j=4
9. COut<<! (1<<i<< << <L) 1 Writes on the screen "(2,4) "
10. j = 5 (End of 2nd loop)
11. return O; 1= ?
12. } j=4
Writes on the screen "(3,4) "
j = 5 (End of 2nd loop)
i=4
j = 5 (End of 2nd loop)
i = 5 (End of 1st loop)

This program includes an outer for loop (which starts on line 7 and ends on line 11) that contains
within its instruction block an inner for loop (which starts on line 8 and ends on line 10). The control
variable of the outer loop is the variable i, and the control variable of the inner loop is the variable j.
The program’s execution process is then as presented on the right-hand side.

Upon reaching line 7, the program declares and initializes the variable i with the value 1. Then, it
checks whether the condition i<n is satisfied, which in this case is since 1 < 5. Therefore, the program
enters the instruction block of the outer for loop, which is the inner for loop, and executes it. In the
inner loop, the program declares and initializes the variable j with the value i+1, which in this case is 2.
Then, the condition j<n is evaluated, and it is true. As a result, the program executes the instruction
block of the inner for loop, that is, it prints to the screen “(1,2) 7. The next step is the increment
of the variable j, that is, ++j, so the variable has value 3. Since 3 is still less than n, the program
executes the instruction block of the inner for loop again, printing “(1,3) 7. After that, the variable j is
incremented again, becoming 4, which is still less than n. This means the instruction block of the inner
for is executed again, and the program prints “(1,4) ”. The value of j is incremented again, becoming
5. Since 5 is no longer less than n, the inner loop ends and the program returns to the outer loop.
Therefore, the variable i is incremented, now having the value 2. Since 2 is less than n, the program
executes the second for again, initializing the variable j with the value i+1, which is 3. The process
continues until the condition of the outer for is no longer satisfied. The final output of the program is:
“1,2) (1,3) (1,4) (2,3) (2,4) (3,4)".

From this example, we can understand that in the case of nested loops, the inner loop will be
executed each time an iteration of the outer loop is performed. It is also important to mention that the
initialization of the control variable of the second loop depends on the control variable of the first loop.
However, the reverse would not be possible since the scope of the variable j is between lines 8 and 10.

27

2.3.5 The break and continue Statements

Regardless of the structure used to implement a loop (do-while, while, or for), that loop will only
terminate when its condition is no longer satisfied. However, in some situations, it may be useful to
exit a loop before that happens. For this purpose, we can use the break statement inside the loop’s
instruction block. Upon encountering this statement, the program immediately exits the loop.

However, in nested loops, the break statement only exits the loop in which it is placed (depending
on its location) and not all loops. Consider the following example:

i=1
1. #include <iostream> j=2
2. using namespace std; Writes on the screen "(1,2)
3. break (since 2%1==0)
4. int main(){ i=9
5. int n = 5; j=3
6. Writes on the screen "(2,3)
7. for(int i = 1; i < n; ++i) { j=4
8. for(int j =i + 1; j < mn; ++j) { Writes on the screen "(2,4)
9. cout<<" ("<<ik<!, "< M) break (since 4%2==0)
10. if (jhi==0) i=3
11. break; j=4
12. } Writes on the screen "(3,4)
13. } j =5 (End of 2nd loop)
14. i=4
15. return O; j = 5 (End of 2nd loop)
16. } i = 5 (End of 1st loop)

This program differs from the previous one in that it contains the break statement, which only affects
the inner loop (the loop of j). The use of this statement in the program means that the inner loop
can terminate for two reasons: (i) when j > n; or (ii) when j is a multiple of i. The execution of the
program is shown on the right-hand side.

The continue statement allows skipping an iteration of a loop (while, do-while, or for) without
terminating it. More precisely, it causes the program to “jump” from the line where the continue
statement appears to the end of the loop in which it is inserted. Consider the following example:

1. #include <iostream>
2. using namespace std;
3 1
4. int main(){ 5
5. for(int 1 = 1; 1 <= 9; ++1i) { 3
6 if(i%h4==0) { 5
7 continue;

6
8 } ;
9. cout << i << endl;

9
10. }
11. return O;
12. }

28

n

n

n

n

The program shown on the left prints all numbers from 1 to 9 that are not divisible by 4. Thus, the
for loop iterates through all numbers from 1 to 9, and when a number is divisible by 4, it “jumps” to
the end of the for loop, skipping the instruction that prints the numbers to the screen (line 9). Assume
that the variable ¢ has the value 3. In this case, the condition of the if is evaluated as false, and the
program does not enter the if block. Therefore, the next instruction to be executed is on line 9, and the
value 3 is printed on the screen. Next, the loop control variable 7 is incremented to 4, and the condition
of the if is evaluated as true, executing the continue statement, which causes the program to “jump”
from line 7 to line 10, ending the current iteration of the for loop without printing the value 4 to the
screen. The output of the program is shown on the right.

One must be careful when using the continue statement in while and do-while loops since, in these
loops, the value of the loop control variable is updated within the body of the loop. Because the use of
the continue statement causes the program to “jump” over instructions, the loop control variable may
not be updated, resulting in an infinite loop. Consider the following program:

1. #include <iostream>
2. using namespace std;
3.

4. int main(){

5. int 1 = 1;

6. while(i <= 9) {
7. if(i == 5) {
8. continue;
9. }

10. cout << i << endl;
11. ++i;

12. }

13.

14. return O;

15. }

The previous program was supposed to print the integers from 1 to 9 on the screen; however, it
only prints the numbers from 1 to 4 and then enters an infinite loop. When the loop control variable
¢ takes the value 5, the condition of the if statement on line 7 is evaluated as true, and the continue
statement on line 8 is executed, causing the program to “jump” to line 12. This means that the loop
control variable i is never incremented again, thus resulting in an infinite loop.

29

Chapter 3

Indexed Variables — Vectors

A wvector is a non-primitive data type that allows storing a sequence of variables of the same type,
for example, several variables of type int. Each variable is an element of the vector and is identified by
a non-negative integer called an indez. The index of the first element is zero, so a vector with last index
n will have n + 1 elements. The figure below shows an integer vector v with six elements (indices from
0 to 5).

v0] v[1] v[2] v[3] v[4] v[5]

Vi| 5 7 8 -2 1 9

The elements of a vector do not have names and are identified by their index. For example, the
variable that contains the value 5, and occupies the first position of the vector v, is identified as v[0],
while the variable that contains the value -2 is identified as v[3].

3.1 Vector Declaration

The use of vectors in C++ requires including the package vectorl} thus, it is necessary to write the
instruction: #include<vector> whenever we want to use vectors. There are two different ways to
declare a vector, depending on whether we know its size in advance.

3.1.1 Vector Declaration with a Known Size

This form of declaration is used when we know exactly how many elements the vector will have. It
can be done in one of the following ways:

vector<Data_type> Vetor_name(n);
or
vector<Data_type> Vetor_name(n, Xx);

Both statements create a vector named Vector name with n positions (from 0 to n-1) to store
elements of type Data_Type. The difference between them is that the first initializes all vector elements
with the default value of the vector’s Data_Type, while the second initializes all vector elements with

!See https://cplusplus.com/reference/vector/vector/| for more information about the vector package.

30

https://cplusplus.com/reference/vector/vector/

the value x. Considering that the Data_Type is int and the Vector_name is u, i.e., vector<int> u(n),
the following figure represents what the first statement does.

u[0] u[l] . u[n-2] u[n-1]

w | 0]0 00

As mentioned above, the vector u has n elements, but each element will have the default value of
type int, which is 0. To construct the vector presented earlier, v = (5,7,8,—2,1,9), it is necessary to
assign specific values to each element of the vector, which is done in the following code example:

1. #include <vector>

2. using namespace std;

3.

4. int main(){

5. vector<int> v(6); //Declaration
6.

7. v[0] = 5; //or v.at(0) = 5;
8. v[i] = 7; //or v.at(1l) = 7;
9. v[2] = 8; //or v.at(2) = 8;
10. v[3] = -2; //or v.at(3) = -2;
11. v[4] = 1; //or v.at(4) = 1;
12. v[5] = 9; //or v.at(5) = 9;
13.

14. return O;

15. }

3.1.2 Vector Declaration with an Unknown Size

C++ also allows the creation of vectors without specifying their size at the time of creation. For this
purpose, the following statement can be used:

vector<Data Type> Vector_name;

However, it should be noted that this statement alone is useless because it only declares the vector,
that is, it creates a vector with no positions. Therefore, if we want to store elements in the vector, we
must first create the necessary positions to store them. These positions can be created all at once by
resizing the vector using the resize statement, or they can be created one by one using the push_back
statement, as shown below.

31

1. #include <vector> 1. #include <vector>
2. using namespace std; 2. using namespace std;
3. 3.
4. int main(){ 4. int main(){
5. vector<int> v; //Declaration 5. vector<int> v;
6. v.resize(6); //Resizing 6.
7. 7. //Add new element/position to vector
8. v[0] = 5; //Filling 8. v.push_back(5) ;
9. v[1] = 7; 9. v.push back(7);
10. v[2] = 8; 10. v.push_back(8);
11. v[3] = -2; 11. v.push_back(-2) ;
12. v[4] = 1; 12. v.push_back(1);
13. v[5] = 9; 13 v.push_back(9);
14. 14.
15. return O; 15. return O;
17. } 17. }
¥ ¥
(Line 5) \"H \"H
(Line 6) v:| 0 0of|o 0of|oO 0
(Line 8) vi[5 0 0 0 0 0 Vi 5
(Line 9) vi| b 7 0 0 0 0 v 5 7
(Line 10) vi[b 7 8 0 0 0 vi| b 7 8
(Lne1l) vl 5| 7|8|-2|0]0 vi|5|7|8]-2
(Line 12) Vil s 7 8 |-211 0 v 5 7 8 |-2]1
(Linet3) vil 517 18|-2|1]9 Vils |78]|-2|1]09

In the program on the left, a vector without elements is initially created (line 5) and then immediately
resized (line 6) to have six positions. During resizing, the default value of the vector’s data type (zero
in the case of numeric types) is automatically assigned to all elements of the vector. Once the positions
are created, they are filled in lines 8-13. In the program on the right, the vector is also declared without
elements. However, each time an element is to be added to the vector, a position for that element is
first created and then filled with the designated element. All of this is done internally by the push_back
instruction.

In terms of computational efficiency, the first code, where the resize instruction is used, is more
efficient than the second, where the push_back instruction is used. Therefore, between these two in-
structions, we should choose the first one whenever possible.

The size of a vector can be changed multiple times during the execution of a program using the
resize method. This method has the following behavior: (i) if the new size of the vector is greater than
the previous one, all existing elements of the vector are preserved and the extra positions are created,

32

with the elements in these positions taking the default value of the vector’s data type (0 in the case of
numeric types); and (ii) if the new size of the vector is smaller than the current size, the vector is simply
truncated, and the last positions are removed. It is also worth noting that the resize method can be
called with two arguments, that is,

v.resize(n,x);

In this case, n will be the new size of the vector, and x will be the value assigned to all elements in the
newly created positions. For example, if we have v = (1,2, 3), the instruction v.resize(5,10) changes
the vector to v = (1,2, 3,10, 10).

Similar to other data types, it is also possible to initialize a vector at the moment of its declaration.
However, such initialization must be done using a list of elements. Considering v = (5,7,8,—2,1,9), it
would be enough to write:

. #include <vector>
. using namespace std;

vector<int> v = {5, 7, 8, -2, 1, 9};

1

2

3.

4. int main(){
5

6 return O;
7

This would be the simplest way to create the desired vector; however, this type of initialization is
not always possible because the values to be placed in the vector (as well as the vector’s size) are often
not known at the time the vector is declared.

3.2 Method .at() vs Operator |]

To access or fill a position in a vector, both the [] operator and the .at () method can be used. The
main difference between them is that the .at() method validates the vector position being accessed,
that is, it checks if that position exists in the vector. Consider the following example:

1. #include <vector>
2. using namespace std;

3.

4. int main({

5 vector<int> v(2);

6. v[0] = 5; //or v.at(0) = 5;

7. v[1] =7; //or v.at(1) = 7;

8 v[2] = 8; //ERROR (The program may not be interrupted)

9. v.at(2) = 8; //ERROR (The program is immediately interrupted)
10. //. ..

11. return O;

12. }

33

The vector v declared on line 5 has only two positions (position 0 and position 1). Therefore,
the access to these positions can be done using either the [| operator or the .at() method (lines 6
and 7). When we try to access a position in the vector that does not exist (position 2, for example)
using the [| operator, the program does not inform us that such a position is invalid and instead
accesses some arbitrary memory location, returning whatever garbage value is stored there. Depending
on the context, the program may terminate immediately without displaying any error message, or it
may continue executing with the error “hidden”. In the latter case, the error can propagate through
the program without being noticed. By using the .at() method to attempt access to a non-existent
position, the program will terminate immediately and display an out_of_range error message.

But then, why not always use the .at() method since it is safer?” The main reason is efficiency.
Because the .at() method always validates the position being accessed; its computational effort is
greater, which can have a significant impact on the program’s performance. In addition, the | | operator
is simpler to write. Hence, each option has its advantages and disadvantages, and both approaches can
be used in this course.

3.3 Vector Manipulation

A vector v can be seen as a sequence of indexed variables v[i], where i represents the position of
the variable within the vector. This means that each of these variables can be manipulated using the
operators or methods defined for its type, such as cin, cout, +, and == among others. However, it is
important to keep in mind that these operators are not defined for vectors as a whole. That is, if v and
u are two objects of type vector, it is not possible to perform operations such as v+u. This means that,
for now, a vector must always be manipulated element by element, and not as a whole, as explained
below.

3.3.1 Filling Vectors

We have already seen how to fill a vector with values known in advance. Suppose now that we want
to create an integer vector v of size 3, with values provided by the user. We already know that the cin
instruction allows us to request values from the user, but this instruction is not defined for vectors, so it
is not possible to do something like “cin >> v”. However, it is possible to write “cin >> v[0]”, “cin
>> v[1]7, and “cin >> v[2]” because each element v[-] is a variable of type int. If we do that, we
will repeat the procedure of requesting values from the user several times; thus, we can use a loop control
structure to fill the vector. In addition, since we know exactly how many values will be requested, we
should use the for loop.

The program below shows the creation and filling of vector v with user-provided values, with and
without using a for loop.

34

1. #include <iostream> 1. #include <iostream>

2. #include <vector> 2. #include <vector>

3. using namespace std; 3. using namespace std;

4. 4.

5. int main(){ 5. int main(){

6. vector<int> v(3); 6. vector<int> v(3);

7. 7.

8. //cin >> v; //ERROR 8. for(int i = 0; 1 < v.size(); ++i){
9. cin >> v[0]; //or cin>>v.at(0); 9. cin >> v[i]; //or cin>>v.at(i);
10. cin >> v[1]; 10. }

11. cin >> v[2]; 11.

12. 12.

13. return O; 13. return O;

14. } 14. }

The code on the right fills the vector automatically, because the program successively goes to each
position (from 0 to 2) and assigns it a value read from the user. The size() method returns the size
of the vector (in this case, 3). Vector manipulation often requires the use of a for loop - such as the
one shown on line 8 of the code on the right - to go through all the positions of the vector (from 0 to
size()-1).

When the size of the vector is not known in advance, it is recommended to use a while loop to fill
it. Suppose that we want to repeatedly ask the user for numerical values until a non-numeric value is
entered. In this case, we do not know beforehand how many numerical values the user will provide, so
we should define a vector without specifying its size and use the push_back instruction to create a new
position in the vector each time a numerical value is inserted. This procedure is exemplified in the code
below.

1. #include <iostream>
2. #include <vector>

3. using namespace std;
4.

5. int main(){

6. vector<double> v;
7.

8. double x;

9. while(cin >> x){ //while numeric values are read
10. v.push_back(x) ;
11. }

12.

13. return O;

14. }

Each time the while loop iterates, the instruction cin >> x attempts to assign to the variable x
(which is of type double) the value entered by the user. If that value is numeric, the assignment
succeeds, and therefore the program enters the while loop, creates a new position in the vector, and
stores the value of the variable x there. If the user enters a non-numeric value, that value cannot be

35

assigned to the variable x, and the instruction cin >> x returns false, making the while loop terminate
immediately. Additionally, cin enters the with error state and cannot be used until its state is cleared
(see Section 10.3 for more information).

3.3.2 Printing Vectors

A vector must also be printed element by element, because the cout method is not defined for vectors.
Hence, since the vector we want to print has a known size (because it has already been created), the
most common way to print it is by using a for loop, as shown in the code below.

1. #include <iostream>

2. #include <vector>

3. using namespace std;

4.

5. int main(){

6. vector<int> v = {5, 7, 8, -2, 1, 9};

7.

8. cout << "(";

9. for(int 1 = 0; 1 < v.size(); ++i){

10. if(i1 < v.size() - 1)

11. cout << v[i] << ", "; //For all elements excepting the last
12. else

13. cout << v[i] << ")"; //For the last element
14, }

15. return O;

16. }

It should be noted that the for loop has exactly the same structure as the one used to fill the vector,
since it is necessary to iterate through all the positions of the vector. The if statement inside the for
loop aims to distinguish the printing of the last element from that of the others. This is because, after
printing the last element of the vector, a parenthesis should be written instead of a comma, as is done
for the other elements. The program output will then be:

(5,7, 8 -2, 1, 9).

3.3.3 Vector Sorting

Sorting vectors is essential to simplify tasks that we commonly perform with vectors, such as searching
for elements or obtaining descriptive statistics. There are several sorting algorithms, such as Bubble Sort,
Insertion Sort, and Sequential Sort. C++ already provides a sorting method, sort, which we will use in
this course whenever we need to sort vectors. This method belongs to the algorithm package, so its use
requires including the instruction #include<algorithm> in the preamble. The code below demonstrates
the sorting process of a vector in ascending and descending order.

36

1. #include <vector>

2. #include <algorithm>

3. using namespace std;

4.

5. int main(){

6. vector<int> v = {5, 7, 8, -2, 1, 9};
8.

9. //Sorting v by ascending order

10. sort(v.begin(), v.end());

11.

12. //Sorting v by descending order

13. sort(v.begin(), v.end(), greater <>());
14.

15. return O;

16. }

In line 6, for example, we have v[0] = 5. In line 10, the vector v is sorted in ascending order, so
v[0] = -2. In line 13, the vector is sorted in descending order, so v[0] = 9.

3.4 Vectors of Vectors - Matrices

As we saw at the beginning of this chapter, an object of type vector stores variables of a given
type. In particular, it can also store variables of type vector, which results in a vector of vectors. This
data structure is the most natural way to represent a matrix in C++. Schematically, a matrix can be
represented as follows:

(e
mol0]=5 miOJ[Ll=2 moJ[2] =1
LT 0 e m{lol=8 m{1]{1]=0 m(1]i2] =6
L N~[7T273 ‘ m20]=7 m2)[1]=2 m[2][2]=3
N T mEI0l=1 mB3)M=3 mB)R=1
A

The vector m is composed of four elements, and each of them is a new vector of size three. The vector
m can then be seen as a 4x3 matrix, that is, a matrix with four rows and three columns. Each element
of the matrix is identified by m[i] [j], where i is the index of the main vector m (row) and j is the index
of the secondary vector m[i] (column). Since a matrix is a vector of vectors, it is necessary to define
the size of all the vectors involved before filling the matrix. The creation of the matrix in the example
above can be done as follows:

37

1. #include <vector>

2. using namespace std;

3. int main(){

4. //0ption 1: Declare and fill the matrix

5. vector<vector<int>> m = { {5, 2, 1}, {8, 0, 6}, {7, 2, 3}, {1, 3, 1} };
6

7

8

9

//0ption 2: Create the matrix without dimension and then resize it
vector<vector<int>> m; //or vector<vector<int>> m(4); and remove line code 9
m.resize(4); //Define the number of lines (dimension of the main vector)

11. //Define the number of columns (dimension of each inner vector)
12. for(int i = 0; i < m.size(); ++i)
13. m[i] .resize(3);

14.

15. //Fill the matrix

16. m[0] [0] = 5;

17. //. ..

18. m[3][2] = 1;

19.

20. return O;

21. }

The first option to create the matrix is clearly the simplest one. However, this option is only possible
when both the dimensions and the elements of the matrix are known at the time of its creation, which
is not often the case. When the dimensions of the matrix and its elements are not known beforehand —
for example, if this information is requested from the user during the program execution — the second
option must be used. It is important to emphasize that we cannot write vector<vector<int>> m(4,3)
to create a 4 x 3 matrix. The type vector<vector<int>> expects its second constructor argument to
be a vector<int>, not an int. To create a 4 x 3 matrix (4 rows and 3 columns) initialized with zeros,
we can write

vector<vector<int>> m(4, vector<int>(3, 0));

This constructs an outer vector with four entries, where each entry is an inner vector<int> of length
3, with every element equal to 0.

In the example presented above, the vector of vectors was used to represent a matrix; thus, all the
inner vectors must have the same size. However, it would also be possible to define a vector of vectors
where the inner vectors have different sizes.

As in the case of simple vectors, matrices are also manipulated element by element, and not as a
whole. This means that to manipulate a matrix, it is necessary to iterate through all its elements, that
is, through all its rows and columns. The simplest way to do this is by using two nested for loops,
where the first loop iterates through the “rows” of the matrix and the second through the “columns”.
The code below shows how to print a matrix in C++.

38

. #include <iostream>
. #include <vector>
. using namespace std;

int main(){
vector<vector<int>> m = { {5, 2, 1}, {8, 0, 6}, {7, 2, 3}, {1, 3, 1} };

for(int i = 0; i < m.size(); ++i){ //Row i
for(int j = 0; j < m[i].size(); ++j){ //Column j

©O© 00 NO O b W N -

10. cout << m[i] [j] << " ",

11. }

12. cout << endl; //Write a line break before going to the next line i
13. }

14.

15. return O;

16. }

Note that we use the cout method applied to each element of the matrix, and not to the matrix as a
whole. Doing something like “cout << m” is not possible because the cout command is not defined for
objects of type vector<vector<int>>. The process of filling a matrix is similar to the writing process,
that is, it requires the use of two for loops; thus, it will not be shown here.

39

Chapter 4

Functions

The term function intuitively brings us to the field of mathematics, where a function is characterized
by a domain, a codomain, and an analytical expression. For example, function f

f. ZxZ — R

(z,y) — f(z,y) ‘

y?+1
takes two integer arguments (x and y) and returns a real value, which is the result of ﬁ

In programming, it is important to distinguish between three concepts associated with a function:
declaration, definition, and call. The declaration of a function consists of specifying its name, the type
of its arguments (the data types it receives — domain), and the return type (the data type it returns
— codomain). The definition of a function consists of specifying what the function does (analytical
expression). Finally, the call of the function consists of executing the function for specific values of its
arguments. In this example, we have:

f: ZxZ — R (declaration)
x
N _ itializati
(x,y) f(z,y) i (initialization)
f(2,3), f(5* -8) ... (call)
In C++, for this same example, we would have:
//declaration
double f(int, int);
//declaration and definition
double f(int x, int y){
return x / (y * y + 1);
}
//call
cout << £(2,3); //call 1

double z1 =5 % £(1,7); //call 2
int a =6, b=1;
double z2 = f(a,b); //call 3

40

In the first code block, only the function declaration is made. That is, it indicates that the function
f takes two arguments of type int and returns a result of type double. In the second code block, both
the declaration and the definition of the function are made. The definition of the function corresponds
to the block of code that appears inside the brackets {...}. Finally, in the last code block, three calls to
the function are made. Note that in these cases, just like in mathematics, we only need to provide the
values as arguments to the function without specifying their types, since that was already made explicit
in the function’s declaration/definition.

In this case, the function f returns a real value that can either be printed directly to the screen (call
1) or used to assign a value to a variable (calls 2 and 3). In the first function call, the first argument x
will take the value 2 and the second argument y the value 3. In the third function call, x will take the
value of variable a (which is 6), y the value of variable b (which is 1), and the value returned by the
function will be stored in the variable z2.

It is important to note that the names of a function’s arguments are used only internally within the
function and are therefore independent of the variable names used in the function call. Moreover, since
this function was declared with two arguments of type int, it must always be called with two arguments
of type int. Thus, for example, f(1), f(1,8,5), f(‘j’,5), and f are not valid calls for this function.

4.1 General Syntax of a Function

The general structure for declaring and defining a function in C++ is as follows:

Return_type function_name(Type_al name_al, ..., Type_an name_an){
/1. ..
return ... ; //If "Return_type" different from "void"

}

in this declaration and definition:

function name is the name given to the function;

Return_type is the data type returned by the function. If the function does not return any result,
the return type will be void;

- name_v1, ..., name_an are the names of the function’s arguments;

Type_al, ..., Type_an are the data types of the function’s arguments.

When the return statement is executed, the program immediately exits the function, and the return
value is passed back (via a copy) to the part of the program where the function was called. Therefore,
this statement does not need to be used in functions of type void, since these do not return any value.
Void functions are often used to print something to the screen, thus returning no result to be used by
the program that called them, unlike the function f presented earlier.

Below is an example showing the declaration and definition of two functions: one with return type
int, and the other with return type void. However, it is important to point out that functions do not
necessarily need to have arguments, as is the case with the main function that we have always used.

Example 1

Suppose we want to implement a function that returns the maximum of two integers and another
that prints two integers in ascending order. Both functions receive the same arguments: two integers

41

that will be referred to as n1 and n2 within the function. Since the first function (lines 4-9) aims to
calculate the maximum of two integers, its return type is also an integer. However, as the second function
(lines 11-16) only prints the two received integers in ascending order, it does not return any result when
called. As such, this function is of type void, and for that reason, there is no return statement inside it.

1. #include <iostream>

2. using namespace std;

3.

4. int maximum(int nl, int n2){

5. int max = nl;

6. if(max < n2)

7. max = n2;

8. return max;

9. }

10.

11. void order(int nl, int n2){

12. if(nl < n2)

13. cout << nl << " <= " << n2;
14. else

15. cout << n2 << " <= " << ni;
16. }

17.

18. int main(){

19. int a;

20. int b;

21. cout << "Insert a and b: ";
22. cin >> a >> b;

23.

24, //Function calls

25. int x = maximum(5,7);

26. int y = maximum(a,b) - 6;

27. cout << "The maximum between 2 and 8 is " << maximum(2,8) << endl;
28. int z = maximum(maximum(7,8) , maximum(1,6));
29

30. cout << "QOrder: ";

31. order(7,5);

32. cout << "\n Order: ";

33. order (maximum(1,8) , 3);

34. return O;

35.)

Since a C++ program always begins execution with the main function, all other functions must be
declared before it. That is why the functions maximum and order are declared/defined in lines 4-16.

As previously mentioned, when calling a function, it is mandatory to write its name and all of its
arguments (without specifying their types). When calling the maximum function in line 25, we indicate
that the values of its arguments n1 and n2 (line 4) are 5 and 7, respectively. Therefore, when the program
reaches line 25, it jumps to line 4 and executes the instructions of the maximum function considering

42

n1=5 and n2=7. Upon reaching line 8, the program returns the value of the variable max (which will be
7) to the place where the function was called, i.e., to line 25 in the main function, and thus the value of
the variable x will be 7.

When calling the maximum function in line 26, the values of the variables a and b (previously requested
from the user) are passed as arguments to the function, defining the values of n1 and n2. The function
maximum ends its execution by returning the maximum between a and b in line 26. From this maximum,
the value 6 is subtracted, and the final result is stored in variable y.

The value returned by a function does not necessarily have to be stored in a variable as in lines 25
and 26. Since the maximum function returns an int, it can be printed directly to the screen, as done in
line 27.

A function can also be called with arguments that are themselves functions, provided that the return
types of the “inner” functions match the argument types expected by the “outer” function, as in line 28.
The calls to maximum(7,8) and maximum(1,6) yield the values 8 and 6, respectively, both of type int
since that is the return type of maximum. These values become the arguments of the “outer” function,
so line 28 is equivalent to int z = maximum(8,6) ;. Therefore, the value of the variable z will be 8.

Unlike the maximum function, the order function does not return anything when called in the the
main function; it only prints information to the screen and is thus a void function. As such, this function
must be called as a standalone statement (lines 31 and 33), and it cannot be used to define variable
values or be placed inside a cout.

The order function takes two int-type arguments, so it can be called as in line 33, since the function
call maximum(1,8) returns an int value that will be used as the first argument of the order function.

In the code below, several examples of incorrect calls to functions maximum and order are presented.

int maximum(int ni, int n2){...}
void order(int nl, int n2){...}

//Incorrect function calls

int w = maximum; //Arguments missing

int a =9, b = 4;

int r = maximum(int a , int b); //Argument types inserted

int s = maximum(c, d); //Variables c¢ and d not declared
int t = maximum("A", 3); //First argument is not of type int
int y = maximum(nl, n2); //Undefined arguments

int u = maximum(5); //Arguments missing

cout << "The maximum is " << maximum; //Arguments missing

int h = order(2,8); //Function order does not return an int
cout << "Order: " << order(7,5); //Function order return nothing

order; //Arguments missing
cout << maximum(order(1,6), 5); //Function order does not return an int

Example 2

A function can have arguments of any data type, in particular, it can take arguments of type vector.
In the program below (on the left), a print function is declared and defined, which takes a vector of
integers as an argument and returns that vector written as a string.

43

1. #include <iostream> 1. #include <iostream>
2. #include <vector> 2. #include <vector>
3. using namespace std; 3. using namespace std;
4. 4.
5. string print(vector<int> x){ 5. int main(){
6. string s = "("; 6. vector<int> v = {2, 3, 1, 7};
7. for(int i = 0; i<x.size(); ++i){ 7. vector<int> u = {3, 5, 1, 1};
8. if(1 < x.size() - 1) 8. vector<int> w(4);
9. s+=to_string(x[i]) + ", "; 9.
10. else 10. for(int 1 = 0; i<v.size(); ++i)
11. s+=to_string(x[i]) + ")"; 11. wli] = v[i] + uli];
12.) 12.
13. return s; 13. string s1 = "(";
14. } 14. for(int i = 0; i<v.size(); ++i){
15. 15. if(i1 < v.size() - 1)
16. int main(){ 16. si+=to_string(v[i]) + ", ";
17. vector<int> v = {2, 3, 1, 7}; 17. else
18. vector<int> u = {3, 5, 1, 1}; 18. sl+=to_string(v[i]) + ")";
19. vector<int> w(4); 19. }
20. 20.
21. for(int i = 0; i<v.size(); ++i) 21. string s2 = "(";
22. wli] = v[i] + ulil; 22. for(int i = 0; i<u.size(); ++i){
23. 23. if(i < u.size() - 1)
24 . cout << print(v) << "+"; 24. s2+=to_string(uli]) + ", ";
25. cout << print(u); 25. else
26. cout << "=" << print(w); 26. s2+=to_string(uli]) + ")";
27. 27. }
28. return O; 28.
29. } 29. string s3 = "(";
30. for(int i = 0; i<w.size(); ++i){
31. if(i1 < w.size() - 1)
32. s3+=to_string(w[i]) + ", ";
33. else
34. s3+=to_string(w[i]) + ")";
35. }
36.
37. cout<< g1 << "+" << 82 << "=" <L §3;
38. return O;
39. }

In the print function, the received vector is always referred to as x. This means that each time the
print function is called with a given vector (u, v, or w, as in lines 24, 25, and 26), a copy of that vector
(named x) will be created and used as the function’s argument.

This example aims to demonstrate two major benefits of using functions: avoiding code repetition
and simplifying the program where the function is called (the main function). Both code excerpts above

44

produce the same output, namely:
(2,3,1,7)+(3,5,1,1) = (5,8,2,8).

However, the code on the right does not use functions, and therefore, each time a vector needs to
be printed, lines 13-19 must be replicated for the respective vector. Note that the process carried out
in lines 21-27 and 29-35 is the “same” as in lines 13-19, only applied to different vectors. In addition
to resulting in longer code, repeating code snippets also increases the likelihood of errors. Defining a
function to print a vector x, as done in the code on the left, allows that whenever an integer vector
needs to be printed (regardless of its size), it is only necessary to call the function for that vector, as
shown in lines 24, 25, and 26 of the code on the right. Note that the main function on the left is much
easier to read than the one on the right.

4.2 Advantages of Functions

Functions are extremely useful in programming. As illustrated in the previous example, functions
help avoid code repetition since they are implemented in a very generic way and can then be called
multiple times with different arguments.

Another major advantage of functions is that they allow for code modularity. That is, with functions,
it is possible to break the code into smaller pieces that are easier to organize, test, and use. This
way, functions facilitate task division in programs involving multiple people, as they are completely
independent structures.

Once defined, functions can be used by many people in various programs. From the user’s point
of view, it is only necessary to know how a function was declared — not how it was defined. In other
words, one only needs to know the function’s name, arguments, and return type. Note that, perhaps
without realizing it, we have already used several functions without knowing how they were defined.
Some examples of such functions include size, resize, and at for vector objects, as well as the function
that converts numeric values to string (to_string).

4.3 Pass-by-Value, Pass-by-Reference, and Pass-by-Constant-
Reference

The arguments of a function can be passed by value, by reference, or by constant reference, and the
way to do so is as follows:

Type name(ArgumentType argument){...} // Pass-by-value
Type name(ArgumentType& argument){...} // Pass-by-reference

Type name(const ArgumentType& argument){...} // Pass-by-constant-reference

In pass-by-value, a copy of the argument used in the function call is passed to the function. This
means that all changes made inside the function are applied to that copy and not to the original variable
passed as an argument.

45

In pass-by-reference, what is passed to the function is not a copy of the variable’s value, but rather
the memory address where the variable is stored. Therefore, the function can “see” and “modify” the
value of the original variable. This means that any change made inside the function will affect the
original variable passed in the function call.

Pass-by-constant-reference is similar to pass-by-reference in that is the memory address of the variable
that is passed as an argument. However, by using a constant reference, the function can only “see” the
variable and cannot make any changes to it.

Consider the following example:

1. #include <iostream>

2. using namespace std;

3.

4. void f(int a, int& b, const int& c){

5. a += 10 + c;

6. b += 10 + c;

7. //c += 10; ERROR!

8. cout << a << " " <K b K< " " < ¢; [//a=12, b=12, c=1
9. }

10.

11. int main(){

12. int x = 1;

13. int y = 1;

14. int z = 1;

15. f(x, y, 2);

16. cout << x << "MKy << oz //x=1, y=12, z=1
17.

18. return O;

19. }

The function f is called on line 15 with the arguments x, y, and z. This function receives three
arguments: the first is passed by value, the second by reference, and the third by constant reference.
Therefore, in the function call on line 15, the value of the variable x (which is 1) is passed as an argument,
along with the memory address of variable y and the memory address of variable z. This means that
a=1, b is exactly the variable y, and c is exactly the variable z. Therefore:

- changing the variable a inside the function does not change the variable x, since a is a copy of x
and not the variable x itself. Note that at the end of the function execution, we have a=12 and
x=1.

- changing the variable b is the same as changing the variable y, and therefore, at the end of the
function execution, we have b=y=12.

- ¢ is a constant reference to the variable z, so the value of ¢ cannot be changed by the function
(line 7), and therefore we have c=z=1.

Which Passing Type Should Be Used?

The appropriate type of passing an argument to a function depends primarily on whether the function
modifies that argument permanently. Permanently modifying an argument means that if it is changed

46

inside the function, it will remain changed outside the function as well. For this to happen, the function
must receive the argument by reference, regardless of the argument’s data type.

When a function does not permanently modify its argument, the passing type depends on the data
type of that argument. Primitive data types such as int, double, char, and bool are considered “small”
objects, whereas non-primitive types such as vectors, strings, and classes (which we will see later) are
considered “large” objects. The time and computational effort required to create copies of primitive
type objects is negligible, so these types of objects are generally passed by wvalue to functions. The
same does not apply to non-primitive objects, where creating copies can be time-consuming due to their
potentially large size. Therefore, non-primitive objects that are not modified by the function should be
passed by constant reference.

The diagram below illustrates how the appropriate argument passing method should be chosen.

Yes Does the function modify the No
object passed as argument?

v

Primitive What is the type of the Not Primitive
argument?

Suppose we want to implement a function that receives a vector and prints it. This function only
needs to access the elements of the vector (without modifying them), and since vectors are non-primitive
data types, the function should receive a constant reference to a vector. Using constant references also
provides an added layer of safety for the programmer, as it guarantees that a given object will not be
modified within the function.

As we already know, a function can return only one object. However, non-constant references can be
used as an “artificial” way to return more than one objects. Note that in the example from the previous
section, even though the function f is of type void and does not return any value, the new value of the
variable b (which is 12) is “returned” to the main function because a non-constant reference was used.

47

Chapter 5

Error handling

To be robust, a program should be able to handle the errors that may occur during execution in a safe
and predictable way. There are several ways to handle errors, and the most appropriate choice depends
on the type of error encountered. Errors can disrupt normal execution, so they must be detected and
handled. A program should include mechanisms to recover when possible—such as correcting the input,
retrying an operation, using a default value, or reporting the problem and continuing. If an error is not
handled, the program may terminate immediately or continue in an invalid state, leading to additional
failures that compromise its execution.

One of the most common mechanisms for handling errors is the use of exceptions. Exceptions are
abnormal situations that occur during the execution of a program. Therefore, a program must be
prepared to signal all exceptions that may occur. Signaling an exception means identifying a problem
that might arise during program execution and informing the system of its existence — this is called
throwing an exception. To throw an exception, we use the throw statement. Throwing an exception
causes the program to terminate immediately, unless a mechanism is used to catch (and possibly handle)
the thrown exception.

To catch an exception thrown to the system, we use a try...catch block. The try statement looks for
exceptions that might be thrown by the code block associated with it. The catch statement defines the
actions to handle the thrown exception and thus allows the program to continue its execution. These
actions may be merely informative — that is, they may simply inform the user of the occurrence of
the error without correcting it — or they may actually correct the existing error. The flowchart below
summarizes what happens to the program depending on the mechanisms used to catch or handle an
exception.

Occurrence of -
an error Not handll_ng the The error is not corrected
exception l
Catch exception
(try...catch) The program
Handlmgthe — | continues after the
Throw exception exception try..catch block
(throw)
Not catch the The program terminates
. -_— . .
exception immediately

48

The general syntax of the throw and try...catch structures is as follows:

//Instruction_block_1 try{
if (error_condition) //Instruction_block_1
throw Exception_to_throw;
if (error_condition)
//Instruction_block_2 throw Exception_to_throw;
//Instruction_block_3 //Instruction_block_2
}catch(Exception_to_catch){

//Handling the exception
}

//Instruction_block_3

The throwing of exceptions is generally performed within conditional instructions because it only
occurs if a specific error condition is met. In the code on the left, the program starts by executing
Instruction_block_1. If the error_condition is verified, an exception is thrown and the program
terminates immediately. Otherwise, the program will execute the two subsequent instruction blocks.

For an exception to be caught by a catch block, it must be thrown within the try block associ-
ated with that catch. Inside the catch block, the programmer specifies what should be done if the
Exception_to_catch has been thrown within the corresponding ¢ry block. In the code on the right, the
program enters the try block directly and begins by executing Instruction block 1. Next, it checks
whether the error_condition is true, and if so, an exception is thrown. After throwing the exception,
the program skips Instruction_block_2 and jumps immediately to the catch block. Upon reaching the
catch block, the program checks whether the thrown exception is of the type Exception_to_catch. If not,
the program terminates immediately. Otherwise, the instructions inside the block catch are executed to
handle the exception, and the program continues its execution by proceeding to Instruction block 3.

If, after entering the try block and executing Instruction block_1 in the code on the right, the
error_condition is not verified — meaning that no error has occurred — the program will execute
Instruction block 2 and then Instruction block 3, ignoring the blockcatch.

A try statement can be associated with multiple catch blocks, one for each exception that needs to be
handled. If an exception is thrown inside the ¢ry block and the corresponding catch block is not prepared
to handle it, the exception will not be caught, and the program terminates immediately. To prevent this,
the last catch block associated with the try statement should be a general block capable of catching all
exceptions that were not handled by the previous catch blocks. To catch any type of exception, ellipses
(...) must be used as the argument of the catch statement. The example below presents a try block
with three associated catch blocks — the first and second handle two specific exceptions (Exception 1
and Exception_2), while the last is a general block that catches any other exception not covered by the
previous ones. It should be noted that when the throw statement is executed inside the try block, the
program immediately jumps to the corresponding catch block. Since only one exception is thrown, only
one of the catch blocks (Exception_1, Exception 2, or ...) will be executed.

49

try{

//. ..

}catch(Exception_1){
//Handling_Exception_1
}catch(Exception_2){
//Handling_ Exception_2
}catch(...){
//Handling the_remaining Exception
}

Exceptions are objects of a certain type (int, string, among others). However, to clearly identify
the exceptions that are thrown and to handle them differently, we will define a separate class for each
exception. Classes will only be introduced in detail in Chapter 7. For now, it is enough to understand
that a class is a user-defined, non-primitive data type. Next, we will explain how we can use classes
defined by the programmer to throw an exception and classes already available in the standard library
for the same purpose.

5.1 Empty Classes

Using empty classes as exception types is especially useful when a program can raise different kinds
of errors and you want to handle each one separately. With this approach, you first declare an “empty
class” for each type of exception that may occur. These declarations must appear before any function
that may throw those exceptions. In the following example, the class declarations are placed before the
main function, which is the function that throws the exceptions. In this example, two empty classes are
defined, each representing a different error condition. The try block has two corresponding catch blocks,
each handling a different exception type. Also note the use of constant references in the arguments of
the catch instruction, which is justified by the fact that we are dealing with objects of non-primitive
data types (classes). T

20

//Preamble
class Name_for_exception_1{};
class Name_for_exception_2{};

int main{
//. ..

try{
if (error_condition_1)

throw Name_for_exception_1();

/7. ..

if (error_condition_2)
throw Name_for_exception_2();

//. ..

}catch(const Name_for_exception_1&){
//Handle exception_1

}catch(const Name_for_exception_2&){
//Handle exception_2

Yeatch(...){
//Handle other exceptions

}

/7. ..

return O;

In the example below, the user is required to introduce the values of the variables n and m, and a
new variable result is created to store the value of the integer division of n by m. If any of the values
of n or m are not read correctly — for example, if a non-numeric value is entered — an exception of
type Wrong Read is thrown, and the division between n and m is not performed because the program
immediately jumps to the first catch block. In that block, the exception is handled by assigning the value
1 to the variable result, and the program continues executing, moving on to the final cout statement
where the value 2 is printed on the screen. Note that the verification of the success of the input read
process for a given variable is done through the statement if (!cin), which means “if the correct data
type was not read in the previous cin”. The cin instruction evaluates to false when the input operation
fails.

If the reading of the values of n and m is successful but the value of m is zero, an exception of type
Null Value is thrown, and the program does not perform the division between n and m. In this case,
the program immediately jumps to the last catch block, where only an error message is displayed. This
is therefore an example in which we handle the exception (by displaying an error message) but do not
actually solve it — that is, the program continues executing and the error is ignored. In this situation,

o1

the variable result will keep its initial value (zero), and the final cout statement will print the value 1
on the screen.

It should be noted that when we handled the Wrong Read exception, we assigned the value 1 to the
variable result, which is an arbitrary choice. The question that arises is: what value should we assign
to the integer division when one of the operands is a non-numeric value? The answer to this question
is unclear, so this is the main reason why we usually do not handle exceptions by assigning values, but
rather only deal with them by displaying an error message.

//Preamble
class Null_Value{};
class Wrong_Read{};

int main(){
int n, m, result = 0;

try{
cout << "Value for n: ";

cin >> n;
if(lcin)
throw Wrong_Read();

cout << "Value for m: ";
cin >> m;
if(lcin)

throw Wrong_Read();

if(m == 0)
throw Null_Value();

result = n/m;

}catch(const Wrong_Read&){
result = 1;
}catch(const Null_Value&){
cout << "Attention! the value of m is zero...";
cout << "... but the program carries on executing!";

}

cout << result + 1;
return O;

52

5.2 Classes from the Standard Library

In C++ there are several predefined classes for error handlind’] Among them, we highlight the
runtime_error and the out_of _range classes, which we will explore next.

5.2.1 Class runtime_error

The runtime error class from the standard library is one of the most commonly used for error
handling. This class takes as an argument an object of type string, where an appropriate error message
can be provided. Therefore, this is the simplest option for error handling when the goal is merely to
display specific error messages for each type of error.

Any exception of type runtime error that is thrown but not caught causes the immediate termi-
nation of the program, just as previously explained for the throw statement. Therefore, if we want to
handle the exception, a try...catch block must be used. The general structure of a try...catch block for
handling exceptions of type runtime_error is as follows:

try{
//...

if (error_condition_1)
throw runtime_error("Error_message_1");
//...
if (error_condition_2)
throw runtime_error("Error_message_2");
/] ..
}catch(const runtime_error& e){
cout << e.what();
}

Depending on the type of error, a specific message is passed as an argument to the runtime error
class. When an exception of type runtime error is thrown, it is then caught by the catch block. The
catch block uses the .what() method to return the message that was passed as an argument when the
exception was thrown. That message is then displayed on the screen. The .what() method must be asso-
ciated with an object of type runtime _error. In this case, that object was stored in the variable named
e, although any other name could be used. The code below illustrates the use of the runtime _error
class for handling errors in the program presented in the previous section.

!More information about these classes can be found at https://cplusplus.com /reference/exception/exception/.

23

int n, m, result = 0;

try{
cout << "Value for n: ";

cin >> n;
if(lcin)
throw runtime_error("Incorrect reading of n");

cout << "Value of m: ";
cin >> m;
if(lcin)
throw runtime_error("Incorrect reading of m");

if(m == 0)
throw runtime_error("The value of m is zero");

result = n/m;

}catch(const runtime_error& x){
cout << x.what();

Since this example is very similar to the previous one, we will just examine the main differences.
Start by noting the error messages defined in the various runtime_error instances. If the value of n
is non-numeric, the error message is “Incorrect reading of n”. Note that here, unlike in the previous
example, the error message makes it possible to identify which of the entered values is non-numeric.
Finally, if the value of m is 0, the error message is “The value of m is zero.” There is only one catch
block, the exception is stored in the variable x, and the error message is displayed on the screen using
the .what() method.

5.2.2 Class out _of range

The out_of range class is used to handle errors related to accessing non-existent positions. Among
the data types we have studied, the only ones that have associated positions are the string and vector
types.

As we have seen earlier, we can use either the [| operator or the .at() method to access vector
elements, and the main difference between them is that the .at() method performs validation of the
position we are trying to access. When attempting to access a position in the vector that does not exist
using the .at() method, an exception of type out_of range is thrown, which may or may not be caught
using a try...catch block.

Consider the following example:

o4

vector<int> v(2);

try{
v.at(0)

v.at (1)
v.at(2)

75
2;
5; // An exception is thrown

tcatch(const out_of_range& e){
cout << "Error: Inexistent position";
// ou cout << e.what();

In this example, a vector of size two (with positions 0 and 1) is created. When attempting to access
position 2, which does not exist, an exception of type out_of _range is thrown and caught by the catch
block. To handle the exception, a custom error message can be printed (as in the first case), or the
.what() method can be used, which provides information about the size of the vector and the position
that was attempted to be accessed. Finally, it is important to note that there is no need to check the
error condition using an if statement, since this validation is already performed in the implementation
of the .at() method.

95

Chapter 6

Splitting a Project into Files

As a program grows, it becomes useful to split the code into different files, each containing inde-
pendent components, to make the code more modular. The files created can be compiled individually,
which allows new functionalities to be added to the program without needing to recompile the entire
project. As a result, any new errors that may arise will be more easily detected, since they will likely
be related to the newly added features and, therefore, confined to a single file.

One of the key advantages of modularity is that each of the different files created can be reused in
multiple programs, avoiding the need to reimplement processes. For example, the packages from the
standard library are implemented in a single module, which we cannot modify but can consult. Thus,
whenever we want to use an existing feature from the standard library, we simply include it in the
preamble of our program and directly call the available methods. As it will be explained later, we can
also define our own modules, which can be shared across multiple programs.

To separate a project into files, we should start by creating a project and adding two files: a header
file (also called .h) and a source file (or .cpp). To add the header file, right-click on the created project,
select Add new, then choose C/C++ Header File, and finally define the module name. To add the
source file, repeat the same process, select C/C++ Source File and assign the same name used for the
header file. This process is illustrated in Figure 6.1}

E8 main.cpp @ ProjectPL - Qt Creator @@ New File - Qt Creato
File Edit View Build Debug Analyze Tools Window Help

Projects Y. @ B & - Choose a template: All Templates ~

1 Files and Classes
C++ Class Creates a header file that you can

add to a C/C++ project

hicep
v %@ Sourtt Runqmake Modeling N e s
++ Source File)
Emai peploy Lua o | ! Supported Platforms:

at .
Desktop
» Run GLSL

Rebuild General
Java

& Projec Build C/Cs+

C/C++ Header File

Clean
Python
Add New.. Test Case

Add Existing Files.
Add Existing Directory...

Close All Files in Project "ProjectPL™
Add Library...

Close Project “ProjectPL™

Choose... Cancel

Figure 6.1: How to add a header file and a source file to a project.

After creating the header file and the source file, the structure of the project will be as shown in Figure
6.2] In this case, the created module is named VectorsPL. The header file has the structure shown in the
figure, and our code should be written in the location indicated in the image. The directives #ifndef

26

VECTORSPL_H and #define VECTORSPL H are used to define the content of the header file if it has not
already been defined. If it has already been defined (via the instruction #include "VectorsPL.h"), the
content of this file is ignored. The source file is created empty.

Projects
v ‘& ProjectPL
'@ ProjectPLpro

0L

Welcome

v~ n Headers
1 VectorsPLh
~ ' Sources
% [main.cpp
lc VectorsPLcpp

Debug
N
Projects

o0
O+

Extensions

VectorsPLh*

1 #ifndef VECTORSPL_H

2 #define VECTORSPL_H

5 J/Write code here

8 #endif [/ VECTORSPL_H
9

Figure 6.2: Project structure with header and source files.

The header file should contain only the method declarations, which is justified by two main reasons:
reducing compilation time and allowing the user to easily identify the components of the module. Thus,
the header file can be seen as a “table of contents” of a book. The “content” of the book, which in our
case corresponds to the methods’ definitions, is found in the source file. Consider the following example.

Header File

#ifndef VECTORSPL_H
#define VECTORSPL_H

#include <iostream>
#include <vector>
using namespace std;

void print(const vector<int>&);

#endif // VECTORSPL_H

Source File

#include "VectorsPL.h"

void print(const vector<int>& v){
for(int i = 0; i<v.size(); ++i){

if (i == 0)

cout << "(" << v[il;
else if(i == v.size() - 1)

cout << ", " << v[i] << M),
else

cout << " " << v[i];

o7

Main Program

#include "VectorsPL.h"

int main(){
vector<int> u = {1, 2, 3};
print(u);
return O;

In this example, a module (VectorsPL) is created that contains, in the header file, the declaration
of a function print with return type void that receives a constant reference to a vector as an argument.
The definition of this function is written in the source file. The #include "VectorsPL.h" directive is
required at the top of this file to establish the link between the header and source files.

Once the module is defined, it can be used in any program by simply including it using the instruction
#include "VectorsPL.h". Note that it is not necessary to include in the main program the packages
that are already included in the header file, because by including the header file, we are automatically
including all the packages it contains.

After including the module, all the methods it contains can be called directly, as demonstrated with
the instruction print(u). Modularization makes the main program much more compact and readable,
as illustrated in this example.

6.1 Namespaces

More complex programs often require the inclusion of multiple modules, which may be created
independently by different people. This can lead to elements being declared with the same name in
different modules — for example, two functions with the same name. When including multiple header
files in the main program, there is the risk of having repeated declarations, which is not allowed by the
compiler due to a naming conflict. One way to avoid this problem is by using namespaces.

A namespace is a named scope where various elements can be declared. When using namespaces,
access to their elements is done by explicitly indicating which namespace they belong to. This way, even
if there are two elements with the same name in different modules, access to each one is done differently,
thereby avoiding naming conflicts.

Consider the following modules M1 and M2, where a print function is declared. The first function
belongs to namespace X, and the second to namespace Y. Therefore, to define these functions in their
respective source files, it is necessary to specify which namespace they belong to by using the X:: and
Y:: prefixes before their names.

o8

Header File M1

#ifndef M1_H
#define M1_H

#include <iostream>
#include <vector>
using namespace std;
namespace X{

void print(const vector<int>&);

#endif // M1_H

Source File M1

#include "M1.h"

void X::print(const vector<int>& v){

/] ...
}

Header File M2

#ifndef M2_H
#define M2_H

#include <iostream>
#include <vector>
using namespace std;
namespace Y{

void print(const vector<int>&);

#endif // M2_H

Source File M2

#include "M2.h"

void Y::print(const vector<int>& v){

/] ...
}

Main Program

#include "M1.h"
#include "M2.h"

int main(){
vector<int> u = {1, 2, 3};
print(u); // ERROR
X::print(u); // CORRECT
Y::print(u); // CORRECT
return O;

In the main program, where both header files are included, we can then call both functions by
specifying the namespace to which they belong. This way, the function we want to use is clearly
identified.

Always specifying the namespace an element belongs to makes the program more verbose and harder

29

to read, but it is essential when there are elements with the same name in different namespaces. However,
when this is not the case, we can simplify the syntax with the using directive. Adding the statement
using namespace X; to the preamble allows direct access to the elements of the namespace X without
needing to use X:: for each of them, since we have already indicated that we are using elements from
namespace X. Note that this is exactly what we have been doing with the elements from the namespace
std when we use the instruction using namespace std;. This namespace includes elements such as
cout, cin, string, and vector. Therefore, to write something like

vector<string> v;

/] ...
cout << v[0];

Without using the using namespace std; instruction, we would have to write

std: :vector<std::string> v;

// ...
std::cout << v[0];

which clearly makes the program harder to read. Using the std:: instruction only has the advantage
of clearly identifying which namespace the elements belong to.

In the same header file, we can define multiple namespaces. Furthermore, we can also define names-
paces inside other namespaces, as illustrated in the example below.

Header File M1 Main Program
#ifndef M1_H
#define M1_H #include "M1.h"
#include <iostream> int main(){
#include <vector> vector<int> u = {1, 2, 3};
using namespace std; X::printi(u);
X::Z::print2(u);
namespace X{ W::print3(u);
void printl(const vector<int>&); return O;

namespace Z{
void print2(const vector<int>&);

}

namespace W{
void print3(const vector<int>&);

#endif // M1_H

60

Note that the functions printl, print2, and print3 could have the same name since they are
associated with different namespaces. Furthermore, all these functions could be defined in the same
source file, with each one being identified in a similar way as in the main program, that is, using the
directives X::, X::Z::, and W: :.

6.2 Redefinition of Data Types - Type aliases

In C++, the using keyword allows you to define an alternative name (an alias), usually simpler, for
a given data type. This alias can then be used throughout the code instead of the original data type.
The general syntax of the using keyword to define aliases is:

using alternative_name = data_type;

In the example below, we present a header file that contains the declaration of two functions for
handling matrices. The first (of type void) prints a matrix, while the second returns a matrix that is
the sum of the two matrices received as arguments. In the first code snippet, an alias was not used,
S0 vector<vector<int>> must be written every time that data type is referenced. In the second code
snippet, an alias named matrix matrix is defined for the type vector<vector<int>>. This makes the
code shorter and easier to read than the first snippet, which is the main benefit of using type aliases.

Header File M1 - Without type aliases

#ifndef M1_H
#define M1_H

#include <iostream>
#include <vector>

using namespace std;

void print(const vector<vector<int>>&);
vector<vector<int>> add(const vector<vector<int>>&, const vector<vector<int>>&);

#endif // M1_H

Header File M1 - With type aliases

#ifndef M1_H
#define M1_H

#include <iostream>

#include <vector>

using namespace std;

using matrix = vector<vector<int>>; //Defines "matrix" as "vector<vector<int>>"

void print(const matrix&);
matrix add(const matrix&; const matrix&);

#endif // M1_H

61

Chapter 7

Classes

As we know, C++ provides several primitive data types such as int, double, char, etc. Due to their
simplicity, these data types do not allow us to represent objects that we frequently encounter, such
as vectors, fractions, complex numbers, cars, books, and so on. These objects have: (i) attributes
(for example, license plate, color, and number of doors in the case of a car); and (ii) functionalities
(start, brake, etc.), which can be represented in C++ through classes. A class is a new user-defined
data type used to represent and manipulate objects that cannot be represented or manipulated using
primitive data types. Classes make clearer which object we are applying a certain functionality to, and
are therefore the foundation of any object-oriented programming language. Classes do not replace what
we have learned so far; rather, they provide us with an additional tool to deal with code complexity,
allowing code to be written in a more modular way.

An example of a class that we already know well is the vector class. This class was created to
represent vectors and therefore contains methods to access their properties, such as the size() method,
as well as functionalities to manipulate them, such as the push_back() method.

Suppose we want to write a program that deals with complex numbers. Although the C++ standard
library already provides a type for complex numbersE], we will define our own class, Complex, to represent
and manipulate complex numbers. This class will serve as a running example throughout this chapter.

A class should be declared in a header file and defined in a source file so that it can be easily reused.
To create a class, we right-click on the project and then select Add New, as illustrated in Figure [6.1
shown in the previous chapter. After that, we select the C++ Class option (see Figure and give
the class a name. The code below illustrates the structure of the header and source files created for the
Complex class.

!For more information, see https://en.cppreference.com/w/cpp/numeric/complex.html.

62

Header File Source File

I¥

10. #endif // COMPLEX_H

1. #ifndef COMPLEX_H 1. #include "complex.h"
2. #define COMPLEX_H 2.

3. 3. Complex::Complex(){
4. class Complex({ 4

5. 5. }

6. public:

7. Complex();

8.

9

@, ”

Note that the class declaration ends with a “;” (see line 8 of the header file) and that when creating
a C++ Class, the source file begins with the include of the header file.

Any new data type created by the user is based on other data types. A complex number has the form
a+0bi, where a is the real part and b is the imaginary part. Thus, a complex number can be represented
by two variables of type double corresponding to these real and imaginary parts. In a class, the variables
used to represent an object are the class attributes, which can be of any type, including other classes.

A class can also have several methods that allow manipulating the object of the class. Moreover, a
class always has at least one constructor, which initializes its attributes when a new object is created.
The constructor has the same name as the class and may or may not have arguments. Thus, a constructor
can be seen as a function without a return type. The attributes, constructor(s), and methods of a class
are referred to as the class members.

A class can have public and private members. Public members can be accessed both inside and
outside the class, while private members can only be accessed within the class, that is, inside its methods.
The declaration of a class member as public or private depends on its purpose. However, since the
attributes are the structural elements of the class, they should be private to prevent them from being
modified directly by the user. To access and modify (get and set) private attributes, it is therefore
necessary to create public methods, as illustrated in the code below.

63

Header File Source File
#ifndef COMPLEX_H #include "complex.h"
#define COMPLEX_H

// Default constructor

//Write all necessary includes Complex: :Complex(D{
Real = 0;
class Complex Im = 0O;
{ }
private:
//Attributes // Other constructor
double Real; Complex: :Complex(double a, double b){
double Im; Real = a;
Im = b;
public: }
//Constructors
Complex(); //Methods
Complex(double , double); void Complex::SetReal(double x){
Real = x;
//Methods }
void SetReal(double);
void SetIm(double); void Complex::SetIm(double x){
double GetReal() const; Im = x;
double GetIm() const; }
b double Complex::GetReal() const{

return Real;
#endif // COMPLEX_H }

double Complex::GetIm() const{
return Im;

The Complex class contains two variables of type double as private attributes, one named Real and
the other named Im, which store the real and imaginary parts of the complex number, respectively. Note
that class attributes appear in red in QT Creator. Since the attributes are private, the class provides
two public methods that allow modifying each of these attributes: the SetReal and SetIm methods.
There are also two other public methods (GetReal and GetIm) that allow accessing the values of the
class attributes. It is important to mention that these two methods, as well as all methods that do not
modify the class attributes, should be defined as constant. To define a method as constant, we write
the keyword const after its arguments.

This class contains two constructors: the default constructor, which takes no arguments, and another
constructor that takes two arguments of type double. The first constructor receives no arguments and is
therefore defined to initialize the class attributes with their default value, zero. The second constructor
takes two arguments and uses them to initialize the class attributes. The two constructors mentioned
can alternatively be implemented by listing the class attributes as follows:

64

Source File
// Default constructor
Complex: :Complex(): Real(0), Im(0){ }

// Other constructor
Complex: :Complex(double a, double b): Real(a), Im(b){ }

where the meaning of, for example, Real(a) is similar to Real = a. The purpose of the constructors
is to initialize the attributes of the object the class represents at the time of its creation. As we saw in
the example, a class can have multiple constructors, as long as they have different arguments.

Now we will see how this class can be used in the main program, within the main function.

Main Program

1. #include "complex.h"

2

3. int main(){

4 Complex z1;

5. Complex z2(3, 2);

6

7 z1.Real = 1; //ERROR
8 z1.Im = 5; //ERROR
9. z1.SetReal (7);

10. z1.SetIm(0);

11.

12. //Print z2

13. cout << z2.GetReal() << "+" << z2.GetIm() << "i";
14.

15. return O;

16. }

To use a class in a file where it was not defined, you must include its header file (line 1). On line
4, an object z1 of type Complex is created. At this point, the default constructor is implicitly called,
so the real and imaginary parts of z1 will be initialized to zero. On line 5, a new object z2 of type
Complex is created. However, in this case, since two arguments are provided, the second constructor is
implicitly called, resulting in z2 = 3 + 2i.

To access the public methods of a class, we use a dot (“.”) after the class object name, followed by
the method name, as done in lines 9 and 10. In line 9, the SetReal method is called with the argument
7, which allows changing the real part of the complex number z1 to 7. Since the class attributes are
private, they cannot be accessed outside the class, as illustrated in lines 7 and 8. In line 13, the complex
number z2 is printed on the screen in the form a+bi, so the methods GetReal () and GetIm() are used
to access its attributes.

It is important to emphasize that, when used outside the class, a class’s methods are always associated
with an object of that class and therefore cannot be called without being applied to a class object. For
example, the only way to use the GetReal method is by writing x.GetReal (), where x is an object of
type Complex. Thus, writing something like .GetReal() or GetReal () outside the class is not possible.

65

A class can contain methods to manipulate the type of object it represents. In the case of the
Complex class, it may make sense to have, for example, a public method that allows printing a complex
number in the form a+bi. This class can also include public methods to calculate the modulus of
a complex number, to check whether a complex number is purely imaginary, among others. These
methods can take objects of the class as arguments and return objects of the class. The code below
illustrates the inclusion of four functions (Print, PureIm, Symmetric, and Sum) in the Complex class.

Header File Source File
#ifndef COMPLEX_H #include "complex.h"
#define COMPLEX_H
/...
//Write all the necessary includes // Remaining definitions
/] ...
class Complex{
private: void Complex::Print() const{
//Attributes cout << Real;
double Real; if (Im >= 0)
double Im; cout << "+ " << Im << "i'";
else
public: cout << Im << "i";
//Constructors }
Complex();
Complex(double , double); bool Complex::PureIm() const{
if (Real == 0 and Im != 0)
//Methods return true;
void SetReal(double); else
void SetIm(double); return false;
double GetReal() const; }
double GetIm() const;
void Print() const; Complex Complex::Symmetric() const{
bool PurelyIm() const; Complex z;
Complex Symmetric() const; z.Real = -1*Real;
Complex Sum(const Complex&) const; z.Im = -1%Im;
s //or
Complex z(-1*Real, -1%Im);
return z;
}
Complex Complex::Sum(const Complex& z) const{
Complex zSum(Real + z.Real, Im + z.Im);
return zSum;
#endif // COMPLEX_H }

The Print function, as the name suggests, prints the Complex object in the form “a+bi”. The
PureIm method checks whether the complex number is a pure imaginary number. The Symmetric

66

function returns a new complex that is the symmetric of the class object. Finally, the Sum method
returns a complex number that is the sum of the class object with another Complex.

These functions do not modify the attributes of the class and, therefore, are defined as constant.
The Symmetric function returns an object z of type Complex that is the symmetric of the object it
is associated with. In this function, the Complex z is created using the class constructor and is then
returned. The Sum function takes as an argument a constant reference to an object of type Complex,
because it is a non-primitive data type that is not modified by the function. This function creates a new
object of type Complex, which results from the sum of the class object with the Complex z, and returns
it.

The main program below illustrates the use of the Print, Symmetric, and Sum methods. Initially
the constructor is used to create the Complex object z1, which is printed on the screen as 3+2i. Next, a
new Complex z2 is created, which is the symmetric of Complex z1. This new Complex is then printed
in the form -3-2i. Finally, a new object z3 of type Complex is created, resulting from the sum of z1
with z2, and it is printed on the screen.

Main Program
#include "complex.h"

int main(){
Complex z1(3, 2);
z1.Print();
Complex z2 = zl.Symmetric();
z2.Print();
Complex z3 = zl1.Sum(z2);
z3.Print();
return O;

Since the sum is commutative, we would obtain the same result in the previous program by writing
Complex z3 = z2.Add(z1);. A more intuitive Sum function would take two complex numbers as argu-
ments and return their sum. In that case, it could be called as follows: Complex z3 = Add(zl, z2);.
This is possible by creating global functions, that is, functions declared in the class files but not as class
members.

Header File

#ifndef COMPLEX_H
#define COMPLEX_H

//Write all necessary includes

class Complex{
//Class Complex previous defined without the function Sum

}s
Complex Sum(const Complex&, const Complex&) ;

#endif // COMPLEX_H

67

Source File

#include "complex.h"

/] ...
// Definition of class members

/] ...

Complex Sum(const Complex& zl, const Complex& z2){

Complex zSum(zl.GetReal()+z2.GetReal(), zl1.GetIm()+z2.GetIm());
return zSum;

Since the Sum function is not a class member, its declaration is made outside the class. Therefore, it
is not necessary to include the identifier “Complex::” before its name in the source file. For the same
reason, access to the class attributes (defined as private) must be done using the Get functions. The
call of the Sum function in the main program is made as follows:

Complex z3 = Sum(zl, z2);.
To conclude this chapter, consider a new class that represents a person. This class has as attributes

the person’s name and age. In addition to the default constructor, the Person class has a parameterized
constructor and functions to access its attributes

Header File Source File
#ifndef PERSON_H #include "person.h"
#define PERSON_H

Person::Person(): Name(" "), Age(-1){ }
//Write all necessary includes

Person::Person(const string& name, int a):

class Person{ Name (name), Age(a){ }
private:
string Name; const string& Person::GetName () const{
int Age; return Name;
public:
//Constructors int Person::GetAge() const{
Person(); return Age;
Person(const string&, int); }
//Methods

const string& GetName() const;
int GetAge() const;

s

#endif // PERSON_H

68

In the analysis of this example, we will focus only on the main differences compared to the previous
examples. We start by looking at the definition of the GetName method, more specifically at its return
type. This method returns a constant reference to a string, because the function should return the
Name attribute itself and not a copy of it (which would be the case if the return type were simply string
instead of a constant reference). Thus, attributes of non-primitive types should be returned as constant
references to avoid unnecessary copies. Note that the Age attribute is of type int (a primitive data type)
and therefore it does not need to be returned by reference in the GetAge function.

To summarize, in the context of classes, the reserved word const can appear in three different
situations:

i. in the arguments of the methods, where its purpose is similar to that discussed in Chapter 4;
ii. associated with methods, indicating that the method will not modify the class attributes;

iii. in the return type of methods that return class attributes of a non-primitive data type, to ensure
that these attributes are returned without being modified and without creating unnecessary copies.

69

Chapter 8

Operator Overloading

Most of the operators we saw in Chapter 1 are only defined for primitive data types. In fact, we have
already used the operators “+”, “="_ “==" and “<<” with variables of type int, for example. Since a class
is a new data type created by the user, the usual operators are not defined for objects of those classes.
However, it is possible to define “versions” of the operators that allow them to work when applied to
objects of a particular class. This is called operator overloading.

Consider the Complex class created in the previous chapter as an example, which includes the method

Symmetric. The use of this method outside the class is done with the following instruction:
Complex w = z.Symmetric();

where z is an object of type Complex and w is its symmetric (or additive inverse). Now, the unary minus
operator “-” already exists for numerical data types, but not for the Complex data type, although it can
be overloaded for that purpose. After overloading the operator, it becomes possible to write

Complex w = -z;

making the code more readable and intuitive. The same applies, for example, to the method Print,
which is also part of the Complex class. The direct alternative to this method is the output operator <<
which, once overloaded, allows printing a Complex object using the second notation shown below.

//Using Print method
z.Print();

//Using operator <<
cout << z;

Several operators can be overloaded in C++, some of which are presented in the following table.

Unary Operators Binary Operators
Increment ++ || Binary Arithmetic +, =% /h
Decrement -— || Arithmetic Assignment += -= %= /= =
Unary Minus (or symmetric) - || Relational <, >, <=, >= I= ==
Logical Not I || Output and Input <<, >>
Subscript and Parenthesis [, ()

Unary and binary operators can be overloaded. Unary operators have a single operand, which will
be an object of the class. Binary operators act on two operands, with at least one of them being an
object of the class.

70

We will now see how to overload some of these operators using the Complex class as an example. It
is important to note that, as with functions, operator declarations should be placed in the header file,
and their definitions in the source file. The code below illustrates a possible header file for the Complex
class where several operators are declared.

Header File
//Instructions to define the header file and the necessary includes
class Complex {
private:
double Real;
double Im;

public:
Complex();
Complex(double , double);

void SetReal(double);
void SetIm(double);
double GetReal() const;
double GetIm() const;

//Unary minus operator: to write -z
Complex operator-() const;

//Plus assignment operator: to write zl+=z2
Complex& operator+=(const Complex&);
//(Prefix) Increment operator: to write ++z

Complex& operator++();
//(Postfix) Increment operator: to write z++
Complex operator++(int);
//Parenthesis operator: to write z(a)
double operator() (double a) const;
//Logical Not operator: to write !z
bool operator!() const;

¥

//Binary plus operator: to write z1l+z2

Complex operator+(const Complex& , const Complex&);
//Comparison operator: to write zl==z2

bool operator==(const Complex& , const Complex&);
//0utput operator: to write cout << z

ostream& operator<<(ostream& , const Complex&);
//Input operator: to write cin >> z

istream& operator>>(istream& , Complex&) ;

Note that some operators are members of the class and others are not. There are operators that
can be defined either outside or inside the class, and the way they are declared and defined depends on

71

the chosen approach. However, to avoid making this chapter overly lengthy, we will adopt the following
logic:

e binary arithmetic, relational, output, and input operators will be defined outside the class;

e arithmetic assignment, increment/decrement, unary minus, logical not, subscript, and parentheses
operators will be defined inside the class.

We will now see how to define each of these operators in the class’s implementation file.

Unary Minus (Symmetric) Operator

The addictive inverse (symmetric) of a complex number is also a complex number, so the return type
of this operator is an object of type Complex. This operator is defined inside the class, which is why
we need to use the identifier Complex::. When writing z1 = -z2, where z1 and z2 are objects of type
Complex, we are applying the unary minus operator “-” to z2. The result of -z2 is stored in z1, but
the value of z2 remains unchanged. Therefore, when implementing the unary minus operator, we must
create a new Complex with real and imaginary parts equal to the negatives of the corresponding parts
of the object to which the operator was applied.

Source File
Complex Complex::operator-() const{
Complex new;
new.Real = -1%Real;
new.Im = —-1%Im;

return new,;

//or
Complex new = Complex(-1*Real, -1*Im);
return new,;

//or simply
return Complex(-1*Real, -1xIm);

Plus Assignment Operator

Unlike the unary minus operator, the assignment arithmetic operator for addition/assignment re-
quires two operands, where one is modified and the other remains unchanged. For example, when writing
a += b, we are adding b to a, and thus only the value of a is modified. Therefore, this operator receives
as an argument a constant reference to the object that will not be changed (operand b) and returns a
(non-constant) reference to the object that was modified (object a). The instruction return *this;
means “return a reference to this”, where “this” refers to the object the operator was applied to, that
is, object a.

72

Source File
Complex& Complex::operator+=(const Complex& b){
Real += b.GetReal();
Im += b.GetIm();
return *this;

The declaration and definition of the other assignment arithmetic operators are similar to what was
presented here for the += operator and therefore will be omitted from this lecture notes. It should be
noted, however, that the remainder operator (%) is not valid for complex numbers since their attributes
are of type double, meaning that overloading the %= operator does not make sense for this data type.

Increment Operators

As we saw earlier, there is the prefix increment operator and the postfix increment operator. When
we use the prefix increment operator (++a), the object is first incremented and then returned. When we
use the postfix (a++) increment operator, a copy of the object is made first, and only then is the object
incremented, with the copy of the object (which was not incremented) being returned in the end. As
illustrated in the code below, what distinguishes the declaration of the increment operators is the int
argument in the postfix operator. Note that the int argument serves only to distinguish which operator
we want to overload and not to indicate that the postfix operator requires an int argument.

Unlike with other data types, the meaning of the increment operators for objects of type Complex
is not clear and may not even make sense. However, to explain how these operators should be declared
and defined, we will assume that they increase both the real and imaginary parts of the Complex object
by one unit.

Source File
//Prefix increment operator (++a)
Complex& Complex::operator++(){
++Real;
++Im;
return *this;

}

//Postfix increment operator (at++)
Complex Complex::operator++(int){
Complex aux(Real,Im);
++Real;
++Im;
return aux;

The implementation of the decrement operators is similar and will therefore be omitted.

73

Arithmetic Binary Operators

Arithmetic operators perform an arithmetic operation between two objects of the class, which they
receive as arguments, and return a new object of the class. Since these operators do not modify the
objects passed as arguments, such objects should be passed by constant reference. It is also important to
note that, as these operators are defined outside the class, the Complex:: identifier is no longer needed.

In the code below, the addition operator is defined, and the definition of the other arithmetic oper-
ators (minus, multiplication, division) is similar.

Source File
Complex operator+(const Complex& zl, const Complex& z2){
double new_real = z1.GetReal() + z2.GetReal();
double new_im = z1.GetIm() + z2.GetIm();
Complex aux(new real, new im);
return aux;

// or simply...
return Complex(z1.GetReal()+z2.GetReal(), zl.GetIm()+z2.GetIm());

Relational Operators

Relational operators allow comparison between two objects of the class and return a result of type
bool. Just like the arithmetic operators, relational operators also do not modify the objects they operate
on. Thus, these objects should be passed by constant reference. In the code below, the == operator is
defined for objects of type Complex. The definition of the remaining relational operators would follow a
similar structure. However, it is important to mention that the operators <, >, <=, and >= do not have
a clear meaning for objects of type Complex.

Source File
bool operator==(const Complex& zl, const Complex& z2){
if (zl.GetReal()==z2.GetReal() && zl.GetIm()==2z2.GetIm())
return true;
else

return false;

To evaluate whether two Complex objects are different, we cannot use the statement z1 !'= z2, since
we have not overloaded the !'= operator. However, since the result of this operator is the negation of
the == operator, we could use == to perform this check as follows: !(z1 == z2).

Output Operator

The output operator (<<) is a binary operator that takes two arguments, namely a reference to an
ostream object and a constant reference to an object of the class, and returns a reference to an ostream
object. The class ostream is from the standard library and stands for output stream. This class enables

74

writing and formatting character sequences. Note that the definition of the output operator is quite
similar to the definition of the Print function, with the only difference being the use of an ostream
object instead of the traditional cout.

Source File
ostream& operator<<(ostream& output, const Complex& z){
if (z.GetIm() >= 0)
output << z.GetReal() << "+" << z.GetIm() << "i";

else
output << z.GetReal() << z.GetIm() << "i'";

return output,;

Given what we have learned about functions, a question arises: why is the << operator not of type
void if it takes an argument by reference? The answer is simple: the << operator returns a reference
so that we can chain instructions. That is, we can do something like cout << z << endl;, where z is
an object of type Complex. If the return type of the operator was void, we would end up with void
<< endl;, which the computer cannot interpret. By returning the ostream reference, we get cout <<
endl;, which the computer does recognize.

Input Operator

The input operator (>>) is also a binary operator that receives two arguments, namely a reference
to an istream object and a reference to an object of the class, and returns a reference to an istream
object. The class istream is from the standard library and stands for input stream. This class allows
reading sequences of characters. In the code below, the input operator is defined for objects of type
Complex, assuming that these objects are entered by the user in the form a &+ bi. According to that
format, the user should first input the real part of the complex number, which is stored in variable a.
Then, a character is entered, expected to be either the + or - sign, and it is stored in c1. Finally, the
imaginary part of the complex number is entered (stored in variable b) along with a character, expected
to be ‘i, stored in c2.

75

Source File
istream& operator>>(istream& input, Complex& z){
char cl1, c2;

double a, b;
input >> a >> cl >> b >> c2;
if(cl == =)
b = -b;
if(tinput || (cl!=‘-’> && cil!=‘+") || c2!=1")

//throw exception

z.SetReal(a);
z.SetIm(b);
return input;

The declaration of the input operator >> is very similar to that of the output operator <<. The only
differences are the use of the istream class instead of ostream, and the Complex object being passed-
by-reference instead of constant reference. This happens because the input operator will modify the
Complex object, as it changes the values of its real and imaginary parts to those entered by the user.

Parenthesis Operator

The parenthesis operator () can take any number of arguments and return any data type. This
flexibility allows it to be used in many situations, two of which are illustrated in the example below for
the previously defined Complex class.

Source File
double Complex::operator()(double a) const{
return Real*a + Im;

Complex Complex::operator()(double a, double b) const{
return Complex(Real*a , Imxb);
}

In the first example, which corresponds to the one declared in the header file, the () operator takes
only one argument of type double and returns the result obtained by multiplying the real part by the
received value and adding the imaginary part of the Complex object. Therefore, the return type is
double.

In the second case, the () operator is used to compute a new Complex object with real and imaginary
parts equal to the original object’s parts multiplied by real constants. Thus, it takes two double values,
which are multiplied by the real and imaginary parts of the original Complex, resulting in a new Complex
object.

76

Logical Not Operator

The logical not operator ! does not take any arguments and its return type is bool. In the example

below, the negation operator is defined for the Complex class.

Source File

bool Complex::operator!() const{
if (Real == 0 and Im == 0)

return true;

else

return false;

In the example shown, the negation operator is used to check whether a Complex object is zero,

meaning that both its real and imaginary parts are zero.

After overloading the previous operators, they can be used as illustrated below.

Main Program

#include "complex.h"

int main(){
Complex z1(3,2), z2;
cout << "z2: ";
cin >> z2;

Complex z3 = zl + z2;

cout < z1 <K " + " KK zZ2 <K' ="K z3;

++z1;
Complex z4
z4 += z2;

-z1;

if(zl == z2)
cout << "They are equal';
else

cout << "They are different";

double a = z1(2);
Complex z5 = z2(2, 3);

if (1z1)

cout << "Zero complex";
else

cout << "Non-zero complex";

return O;

//Input operator

//Plus operator

//0utput operator
//Increment operator
//Unary minus operator
//Plus-assignment operator

//Equality operator

//Parenthesis operator example 1
//Parenthesis operator example 2

//Logical not operator

Subscript Operator

Usually, we use the subscript operator [] to access elements of vectors, so overloading this operator
is particularly useful when the class contains an attribute of type vector. To illustrate the overloading of
the [] operator, consider a fictional class VectorPL that has a private vector of strings as an attribute,
with the header file shown below.

Header File

#ifndef VECTORPL_H
#define VECTORPL_H
//Include necessary headers

class VectorPL {
private:
vector<string> V;

public:
//Constructor and other public members

//Subscript operator - non-constant version
string& operator[](int);

//Subscript operator - constant version
const string& operator[](int) const;

I¥

#endif // VECTORPL_H

As previously mentioned, the overloading of the [] operator is done inside the class. Typically, two
versions are implemented: a constant version and a non-constant version. We begin by analyzing the
non-constant version. This version takes an integer argument that corresponds to a position in the vector
and returns a reference to the vector element at that position. Thus, this version allows modification of
the vector elements and is implemented as shown below.

//non-constant version

string& VectorPL::operator[](int i){
return V[i];

}

It is important to emphasize that the use of a reference in the return type of this version is not
related to the fact that we are returning a string (a non-primitive type), but rather to the fact that we
want the returned object to be modifiable. Therefore, this version of the [] operator always returns a
reference, even if the return type is a primitive data type.

The [] operator, once overloaded, is often used in the definition of other methods/operators. Some of
those methods receive constant objects as arguments, i.e., constant references to class objects. Constant
objects can only be handled by methods/operators that are also constant, and so they cannot be

78

manipulated by the non-constant version of the [] operator. To overcome this situation, a constant
version of the [] operator must be implemented. This version — shown below — returns a constant
reference to an element of the vector and therefore does not allow modification of that element.

//constant version
const string& VectorPL::operator[]J(int i) const{
return V[i];

Finally, it is important to note that no validation of the argument i is required in the implementation
of either version of the [] operator, since this operator does not perform such validation, as we have
seen in the case of standard vectors. Keep in mind that when overloading an operator, we should always
preserve its original properties.

Subscript Operator for Matrices

As we have seen, a matrix is a vector of vectors, that is, a vector where each of its elements is itself
a vector. For example, the matrix

— ~J 00 Ot
SN O N
— W O =

can be defined in C++ as:

vector<vector<int>> m = { {5, 2, 1}, {8, 0, 6}, {7, 2, 3}, {1, 0, 1} }

This means that m is actually the “principal” vector with four elements (m[0] = {5, 2, 1}, m[1] =
{8, 0, 6},m[2] = {7, 2, 3}, andm[3] = {1, 0, 1}), each of which is a “secondary” vector of size
three. The overload of the [] operator for an object of a class that has a matrix as an attribute only
allows access to the principal vector of that matrix, so the return type of the operator will be a vector
of elements with the same type as the secondary vector, as illustrated in the next example.

In the header and source files of the example, a class XPTO is created that contains a matrix of doubles
as an attribute, and the [] operator is defined in both its constant and non-constant versions. This
operator allows direct access to the Matrix attribute of an object of type XPTO, as shown in the definition
of the output operator. Note that x is an object of type XPTO and not a vector or matrix, so without
overloading the [] operator, it would not be possible to write something like x[i]. However, once the
[1 operator is defined, it becomes possible to write x[i], and consequently, x[i] [j]1. When writing
x[1] [j], the [] operator defined in the class is first called, which returns a vector of doubles, i.e., it
returns x[i]. Since x[i] is a vector of doubles, access to its elements can be done directly using the
standard library’s built-in [] subscript operator for vectors, which then allows retrieval of the element
at position j of the vector x[i], that is, x[i] [j]. Thus, there is no need to implement the subscript
operator for the secondary vector.

79

Header File

#ifndef XPTO_H
#define XPTO_H
//Include necessary headers

class XPTO {
private:
vector<vector<double>> Matrix;

public:
//Constructor and other public members

//Subscript operator - non-constant version
vector<double>& operator[](int);

//Subscript operator - constant version
const vector<double>& operator[](int) const;

ostream& operator<<(ostream& , const XPT0&);

#endif // XPTO_H

Source File
//Subscript operator - non-constant version
vector<double>& XPTO::operator[](int i){
return Matrix[i];
}

//Subscript operator - constant version
const vector<double>& XPTO::operator[](int i) const{
return Matrix[i];

//0utput operator
ostream& operator<<(ostream& output, const XPTO& x){
for(int 1 = 0; 1 < x.N_rows(); ++i){ //Method N_rows() must be defined
for(int j = 0; j < x[i]l.size(); ++j){
output << x[i][j] << " "}
}

output << endl;

}

return output;

80

Chapter 9

Inheritance and Polymorphism

Inheritance is the ability to create new classes (called derived or child classes) from existing ones
(called base or parent classes), with the members of the parent classes being inherited by the derived
classes. In a parent class, we can have public, private, or protected members. Protected members cannot
be accessed outside the class they were defined, similarly to private members. The difference between
private and protected members only exists in the context of inheritance: derived classes have access to
the protected members of the parent class, but not to its private members.

The indication that a class (derived class) inherits from another class (parent class) is done as follows:

Header File
#ifndef DERIVED_CLASS_H
#tdefine DERIVED_CLASS_H

class Derived Class: access type Parent Class {

//. ..
+s

#endif // DERIVED_CLASS_H

The access_type defines the type of access to the members of the parent class and can be public,
private, or protected. Private members of the parent class can never be accessed by derived classes,
regardless of the access type used. Therefore, the difference between the three access types only concerns
the public and protected members of the parent class:

i) private: the derived class inherits all public and protected members of the parent class, but these
members are defined as private in the derived class.

ii) protected: the derived class inherits all public and protected members of the parent class, but
these members are defined as protected in the derived class.

iii) public: the derived class inherits all public and protected members of the parent class, and their
access type is not changed. That is, public members of the parent class remain public in the
derived class, and protected members of the parent class remain protected in the derived class.

Consider as an example a Polygon class to represent and manipulate a polygon. Since there are
characteristics common to all polygons, we can implement a parent class representing those character-
istics. For instance, all polygons can be defined through a vector containing the length of each of their

81

sides; thus, this vector can be the only attribute of the Polygon class. The calculation of a polygon’s
perimeter corresponds to the sum of all its sides, which is also independent of the specific polygon. The
same does not apply to the area, since its calculation depends on the type of polygon.

The parent class Polygon could then be implemented as shown below.

Header File Source File
#ifndef POLYGON_H #include "polygon.h"
#define POLYGON_H
//Include necessary headers Polygon: :Polygon(const vector<double>& v){
Sides = v;
class Polygon{ }
protected: double Polygon::Perimeter() const{
//attributes double p = 0;
vector<double> Sides; for(int i = 0; i<Sides.size(); ++i){
p += Sides[i];
public: }
//Constructor return p;
Polygon(const vector<double>&); }
//Methods double Polygon::Area() const{
double Perimeter() const; throw runtime_error ("ERROR!");
double Area() const; }

¥

#endif // POLYGON_H

Suppose we want to create two new classes to represent triangles and squares. Both the triangle
and the square are polygons and, therefore, share the characteristics of the Polygon class. These
characteristics can be inherited from the parent class Polygon instead of being redefined in the Triangle
and Square classes, thus avoiding code repetition. In addition to the members inherited from the parent
class, the derived classes can also include other specific members.

Consider now the declaration and definition of these two classes. To simplify, we present only the
header file of the classes, where we include the definitions (which should normally be placed in the source
file). Note that the calculation of the area is well-defined for any square or triangle, so the respective
classes include a method to perform this calculation.

82

Header File

#ifndef SQUARE_H
#define SQUARE_H
//Include necessary headers

class Square: public Polygon{
public:

//Constructor
Square(double x): Polygon(vector<double>(4,x)){ }

//Methods
double Area() const{ return Sides[0]*Sides[0]; }

}s

#endif // SQUARE_H

Header File

#ifndef TRIANGLE_H
#define TRIANGLE_H
//Include necessary headers

class Triangle: public Polygon{

private:
double Base;
double Height;

public:
//Constructor
Triangle(double a, double b, double c): Polygon({a,b,c}){
Base = a;
double s = (at+b+c)/2; //Heron’s formula
Height = 2*sqrt(s*(s-a)*(s-b)*(s-c))/Base;

}

//Methods
double Area() const{ return Base*Height/2; }

s

#endif // TRIANGLE_H

Both classes publicly inherit from the Polygon class and each defines a specific method to calculate
the area. The Square class presented does not include any additional attributes. In this class, there is
a constructor that takes the length of the square’s side as an argument. The constructor of a derived

83

class is always defined through the constructor of the parent class. In this case, since the parent class
constructor receives a vector as an argument, it is necessary to create a vector with four elements, each of
them having the value equal to the side of the square (x). The Triangle class has two specific attributes
in addition to the general ones inherited from the Polygon class. Thus, any object of type Triangle
will have three attributes: the base and height defined in the Triangle class, and the vector containing
the side lengths inherited from the Polygon class. The constructor of the Triangle class receives the
three side lengths of the triangle and uses them to initialize its specific attributes (base and height) as
well as the vector Sides through the constructor of the Polygon class.

Although the Perimeter method is not explicitly declared in these two classes, it is inherited from
the Polygon class and can therefore be used by objects of type Square and Triangle, as illustrated in
the example below.

//Include necessary headers

int main(){
Polygon P({3, 1, 3, 5, 7});
cout << "PerimeterP: " << P.Perimeter();

Square Q(3);
cout << "\nPerimeterQ: " << Q.Perimeter();

cout << "\nAreaQ: " << Q.Area();

Triangle T(3, 4, 5);

cout << "\nPerimeterT: " << T.Perimeter();
cout << "\nAreaT: " << T.Area();
return O;

leading to the expected output

PerimeterP: 19
PerimeterQ: 12

AreaQ: 9
PerimeterT: 12
AreaT: 6

Let us now consider the program below. In this program, a global function f is created, which takes
as an argument a constant reference to a Polygon. Since Square and Triangle are classes derived
from the Polygon class, they are also of type Polygon and can therefore be passed as arguments to
the function f. The call to the Perimeter method in function f does not raise any problem when the
function receives a Polygon, a Square, or a Triangle because it is defined in the Polygon class for
any polygon. However, the same does not happen with the method Area. Although the Square and
Triangle classes have their own Area methods, when an object of one of these types is passed to the
function f, the Area method that is called will always be the one from the Polygon class, which, in this
case, throws an exception.

84

//Include necessary headers

void f(const Polygon& P){
cout << "\nPerimeter: " << P.Perimeter();
cout << "\nArea: " << P.Area();

}

int main(){
Square Q(3);
£(Q);
Triangle T(3, 4, 5);
£(T);

This is not what is desirable here, because the Area method called for objects of type Square and
Triangle should be the one defined in their respective classes. To achieve this, the Area method in the
Polygon class must be declared as a wvirtual or pure virtual method. That is, like a method that will
be redefined in the derived classes. When a virtual method is called for an object of a derived class,
the method of the derived class (if it exists) is used instead of that of the base class. The virtual or
pure virtual Area method can be declared and defined in the header file of the Polygon class, as shown
below, with no changes needed in the derived classes.

// Declaration as a virtual method
virtual double Area() const;

// Declaration as a pure virtual method
virtual double Area() const = 0;

The main difference between virtual and pure virtual methods is the possibility of creating objects
of the class in which they are defined. If the Area method is declared as a pure virtual method, it is no
longer possible to create objects of the parent class Polygon; only objects of the derived classes can be
created. That is, if the Area function is pure virtual, we have:

Polygon P({1, 4, 7, 3}) //ERROR!
Square Q(3) //0K
Triangle T(3, 4, 5) //0K

The same does not apply to a virtual method. In this case, creating objects of type Polygon is also
possible. Furthermore, a pure virtual method must be implemented in all derived classes, whereas a
virtual method does not have this requirement.

Defining the Area as a virtual or pure virtual method allows the previous function f to work correctly;
that is, the Polygon received as an argument is treated as a Square when the function is called with a
Square, and as a Triangle when the function is called with a Triangle. This ability of an object to
behave as if it were of another type is called polymorphism.

85

Chapter 10

Writing and Reading Files

The use of files is essential for importing and exporting large amounts of data in a program. The
fstream package from the C++ standard library — which stands for file stream — contains methods for
file manipulation, and must therefore be included in the preamble using the instruction:

#include <fstream>

This package contains the classes of stream and ifstream, which allow, respectively, writing to and
reading from files. Their meanings are output file stream and input file stream, respectively.

10.1 Writing to Files

To write to a file, it is necessary to create an object of the ofstream class, which creates a channel
to send information to a file. To do so, we should use the instruction:

ofstream name(Path, open mode);

or the instructions:

ofstream name;
name.open(Path, open_mode) ;

where name is the name of the ofstream object to be associated with the file, Path is the location
of the file to be written to (including its name), and open mode is the option that indicates what to
do with the file’s existing content (if any). For open_mode, there are two options: ios_base::out and
ios_base: :app. Both options create the file if it does not already exist; however, if the file does exist, the
first option erases its contents, while the second preserves the content and appends the new information
at the end of the file. If the open mode is not specified, the default is ios_base: :out.

The Path is a string that indicates the full pathE] to the file, including its name. When only the file
name is provided in the Path, the default location is assumed, which is the project’s build folder.

After creating the ofstream object name, we should check whether the file was successfully opened.
To do this, we can use the is_open method (name.is_open()) or the logical not operator (!name).

1To access a file’s location in Windows, go to the folder containing the file, right-click the file, and select Properties.
Then simply copy the full path shown there, replacing each backslash (“\”) with a double backslash (“\\”). On Mac, the
forward slash (“/”) is used as a separator instead of double backslashes.

86

Once we have confirmed that the file is open, we can write to it using the name variable. The writing
process is similar to writing to the screen, but instead of using the cout instruction, we use the name
variable. Consider the example below.

#include <iostream>
#include <fstream>
using namespace std;

int main(){
ofstream file("C:\\Users\\A\\New.txt", ios_base::out);

if(1file) //or if(!'file.is_open())
throw runtime_error("ERROR: The file could not be opened.");

file << "Text";

file.close();
return O;

In this example, an ofstream object named file is created to send information to the file named
New.txt, located at ‘C:\ Users\A”. The opening mode is ios_base: :out, so any content that exists in
the file — if it exists — will be erased. Then, we check whether the file was successfully opened, and
if not, an exception is thrown. If the exception is not thrown, which means the file was successfully
opened, the word “Text” is written to the file. Finally, the writing channel to the file is closed using the
close() method.

10.2 Reading from Files

To read a file, an object of the ifstream class must be created, which establishes a communication
channel to read from a file. To do this, we must use the instruction:

ifstream name(Path)

where, as before, name is the name of the ifstream object and Path is the location of the file to be
read (including its name). After creating the ifstream object name, we should also check if the file was
successfully opened, just as we do when writing to files. Reading the file’s content is similar to reading
input from the screen, but instead of using the cin instruction, we use the variable name. Consider the
example below.

87

#include <iostream>
#include <fstream>
using namespace std;

int main(){
ifstream file;
file.open("Data.txt");
//or simply: ifstream file("Data.txt");

if('file) //or if(!file.is_open())
throw runtime_error("ERROR: The file could not be opened.");

string s;
file >> s;

file.close();
return O;

In this example, an ifstream object named file is created to read data from the file named Data.txt,
located in the project’s build folder, since no specific path was provided. Next, we check whether the
file was successfully opened and, if so, the first character sequence in the file is read and stored in the
variable s. Finally, the input channel used to read the file is closed using the close() method.

Note that only the first character sequence in the file is read, because reading a string stops when a
space or a newline character is encountered. For example, if the contents of the file Data.txt are:

Data.txt
Tomorrow it will rain a lot.
Today it is not raining.

only the word Tomorrow is read and stored in the variable s. To read a complete line, that is, to read
until a newline is found, we can use the getline function, which takes either two or three arguments. In
the case where it takes three arguments, its syntax is as follows:

getline(InputStream, storeInformation, delimiter)

where InputStream is an object of type ifstream (e.g., cin) used to indicate the source from which
the information will be read (console, file, etc.). The second argument is the string variable (named
storeInformation) where we want to store the read data. The third argument is the delimiter character
of type char, which indicates up to where the string should be read. If the specified character does not
exist in the line to be read, the reading continues to the following lines until the delimiter character is
found or, in the case of files, until the end of the file is reached. In the two-argument version of the
getline function, the last argument (delimiter character) is omitted, and it is assumed by default to be
a newline character. Consider the example below:

88

int main(){
ifstream file("Data.txt");
if(1file)
throw runtime_error ("ERROR: File could not be opened.");

string si;
getline(file, s1, ‘i’);

string s2;
getline(file, s2);

file.close();

string s3, s4;
getline(cin, s3);
getline(cin, s4, ‘/’);
return O;

The content of the string s1 is read from the file Data.tzt. Thus, the first getline will read the first
line of the file until it encounters the character ‘i’, meaning it reads “Tomorrow ”, which becomes the
content of s1. The second getline will also read from the file Data.txt. The reading of the second getline
starts where the previous read ended, that is, right after the first character ‘i’ in the first line. Since
in this case no delimiter character is specified, the reading will stop at the end of the first line, resulting
in s2 = “t will rain a lot.”.

In the last two getline calls, cin is used, so the content of the strings s3 and s4 will be read from
the screen. The reading of the string s3 ends when a newline character is entered. Then, the reading
of the string s4 begins, and it will store all information entered before the character /.

To read all the information from a file, we can use a while loop similar to the one we use to repeatedly
request values from the user. The statement while(getline(file, s)) can be interpreted as “while
there are lines to read in the file, store them in s”.

//read lines successively //read words successively
int main(){ int main(){
ifstream file("Data.txt"); ifstream file("Data.txt");
string s; string s;
while(getline(file, s)){ while(file >> s){
//... /] ..
} }
file.close(); file.close();
return O; return O;

89

10.3 Imnstructions clear() and ignore()

The clear () and ignore () instructions are used to manipulate input streams and are very important
for ensuring the proper functioning of a program. The cin stream is an input channel from the screen,
from which information is extracted, and it has two possible states: “with error” and “without error”.
One reason that can cause the cin stream to enter an error state is reading a data type that differs from
the type of the variable where the input is to be stored. Once in an error state, the input stream will
not return to the “without error” state unless the program is restarted or the stream is “cleared”, which
would otherwise make it impossible to use the stream during the rest of the program execution.

The instruction cin.clear() serves to “clear” the stream, restoring it to the without error state
and thus allowing it to continue being used in the program. Consider the example below.

int ni; int ni;

int n2; int n2;

string s; string s;

cout << "First number: "; cout << "First number: ";
cin >> nil; cin >> ni;

cin.clear();
cin.ignore(10000, ‘\n’);

cout << "Second number: "; cout << "Second number: ";

cin >> n2; cin >> n2;

cout << "Text: "; cout << "Text: ";

cin >> s; cin >> s;

cout << nl1 << " "< n2 <" " <K s; cout << nl << " " <K<K n2 <K " "KL g;

First, consider the code on the left. Suppose that, when reading the variable n1 (numeric), the user
enters a non-numeric character. In this case, the variable n1 will hold a garbage value, and the input
stream will enter in an error state, which prevents the reading of the second and third variables (which
will also receive garbage values).

In the code on the right, the instructions cin.clear() and cin.ignore(10000, ‘\n’) were added
to the program. We start by analyzing what happens if we only have the instruction cin.clear().
If a non-numeric value, such as ‘g’, is entered when reading n1, the cin stream enters an error state.
Upon reaching the instruction cin.clear (), the program changes the state of the cin input stream to
no error, allowing information to be read from the stream again. However, the content still present in
the stream at this point is the character entered during the failed read of n1 and a newline character
automatically added when the enter key was pressed after entering g in the console — that is, “g\n”.
Since this information still exists in the stream and has not been read into any variable, the user will
not have the opportunity to enter new values. This means the program will attempt to associate the
content already present in the stream with the variable n2, causing the same issue again. Note that
if the reading of the variable s (of type string) were performed before reading n2, there would be no
problem with the input stream, since the existing content would be assigned to variable s, that is, we
would have s=‘ ‘g’ ’, and the user would then be able to enter a new value for n2.

90

We can thus conclude that merely changing the state of the input stream to no error may not be
sufficient to solve reading issues, since the information present in the stream is not removed until it is
stored in a variable. To erase all content currently in the input stream, we should use the instruction
cin.ignore(10000, ‘\n’). This instruction aims to delete all characters (up to a maximum of 10000)
that were entered before a newline character (caused by pressing the enter key) is encountered.

In the code on the right, when the user incorrectly enters a non-numeric character while reading
the variable n1, the cin stream enters in an error state, which is then reset to no error using the
cin.clear() instruction. Next, the instruction cin.ignore(10000, ‘\n’) clears all content from the
input stream. As a result, since the input stream is no longer in an error state and contains no leftover
data, a new value is requested from the user for the variable n2, and then for the variable s, assuming
there was no error when reading n2.

Another situation where the use of cin.ignore() may be necessary is in programs where the in-

structions cin >> and getline(cin, ...) are used together. Consider the following examples:
int nil; int nil;
string s; string s;
cout << "Name: "; cout << "Number: ";
getline(cin, s); cin >> nil;
cout << "Number: "; cin.clear();
cin >> ni; cin.ignore(10000, ‘\n’);
cout << nl << " " K g; cout << "Name: ";

getline(cin, s);

cout << nl << " " KK g;

As we already know, the reading of getline ends when a newline character is found, which, in the
case of this example, is implicitly inserted when the enter key is pressed, and this newline character is
also read but ignored. Therefore, in the code on the left, after reading the string s, the cin stream will
be error-free and empty, allowing the user to enter new information into the stream during the reading
of the variable n1. This means that in this case, the instructions cin.clear() and cin.ignore() are
not necessary.

In the code on the right, the variable n1 is read first, and during this reading, the newline character
"\n" automatically included by pressing the enter key is stored in the stream. When a getline follows
immediately after, the existing information in the stream ("\n") is read by getline, resulting in s="\n".
The use of the instruction cin.ignore (10000, ‘\n’) allows the deletion of all content from the stream,
including the newline character. Therefore, the user will have the opportunity to re-enter information
that will be stored in the variable s. It is important to note that in this example cin.clear () is only
necessary to handle the case in which the user inputs a non-numeric value during the reading of n1, and
thus has no effect if that does not occur.

Finally, it is important to emphasize that the instructions .clear() and .ignore() can be used in
exactly the same way for input streams other than cin. Such streams include, for example, file input
streams or strings streams (which will be introduced in the following section).

91

10.4 String Streams

A stream is a “channel” through which information can be inserted or extracted. As we saw in the
previous sections, an object of type ofstream is a channel for inserting information into a file, whereas
an object of type ifstream is a channel for extracting information from a file. There are also channels for
inserting and extracting information from the screen, namely cout and cin, respectively. In this section,
we will look at how to insert and extract information from strings.

To use a string as an input or output stream, we must use objects of type istringstream and
ostringstream, respectively. Both are available in the sstream package (string stream) from the
standard library. Thus, it is necessary to include this package in the preamble using the instruction

#include <sstream>
To create an input stream for a string, we use an object of type istringstream. After that, it

becomes possible to use the >> operator to extract information from the string. Consider the example
below.

string s = "I have 30 chocolates";
istringstream iss(s);

string sl, s2, s3;
int n;

iss >> sl >> 82 >> n >> s3;

In this example, an object of type istringstream named iss is created, which serves as an input
stream for the string s. Thus, it becomes possible to extract each element from the string s and store
it in a variable of the appropriate type, as illustrated by the variable n of type int. That variable will
store the integer value 30. Note that reading from a string without using getline ends as soon as a space
or newline character is encountered.

An object of type ostringstream creates an output stream for a string to which we can easily
add information using the << operator. The great advantage of using ostringstream objects is that it
becomes possible to easily concatenate objects of different types into a single string. Recall that, until
now, to concatenate a numeric variable into a string, it was necessary to use the to_string function.
After building the information stream for the desired string using the ostringstream object, it is
necessary to extract the created string, which is done using the .str() method. Consider the example
below.

92

string s = "Mary weights ";
double x 60.25;

ostringstream oss;
oss << s << x << "kg and measure " << 1.7 << ‘m’;

string new = oss.strQ);
cout << new;

In this example, an object of type ostringstream named oss is created, which will be used to
concatenate information. This information results from different data types, namely a string variable,
numeric variables, strings, numbers and characters. The content of the created string is then returned
and stored in a new variable of type string (called new) using the str() method, and that variable is
printed to the screen.

93

Bibliography

[1] Stroustrup, B. (2014). Programming: principles and practice using C++. Pearson Education.
[2] Stroustrup, B. (2018). A Tour of C++. Addison-Wesley Professional.
[3] https://www.learncpp.com/

94

https://www.learncpp.com/

	Variables and Operators
	Types of Variables
	Writing Variables – Output
	Assigning Values to Variables – Input
	Constant Variables
	Operators
	Arithmetic operators
	Relational Operators
	Logical Operators
	Ternary Operator (Supplementary Information)

	Control Structures
	Conditional Control Structures
	The black if Structure
	The black if else Structure
	Nested Conditional Structures

	Use of Brackets and Indentation
	Loop Control Structures
	The black while Structure
	The black do-while Structure
	The black for Structure
	Nested Loops
	The break and continue Statements

	Indexed Variables – Vectors
	Vector Declaration
	Vector Declaration with a Known Size
	Vector Declaration with an Unknown Size

	Method .at() black vs Operator []
	Vector Manipulation
	Filling Vectors
	Printing Vectors
	Vector Sorting

	Vectors of Vectors - Matrices

	Functions
	General Syntax of a Function
	Advantages of Functions
	Pass-by-Value, Pass-by-Reference, and Pass-by-Constant-Reference

	Error handling
	Empty Classes
	Classes from the Standard Library
	Class runtime_error
	Class out_of_range

	Splitting a Project into Files
	Namespaces
	Redefinition of Data Types - Type aliases

	Classes
	Operator Overloading
	Inheritance and Polymorphism
	Writing and Reading Files
	Writing to Files
	Reading from Files
	Instructions clear() and ignore()
	String Streams

