LINGUAGENS DE PROGRAMACAO

UMA SEBENTA

EDITADO POR

FiLIPE RODRIGUES
RAQUEL BERNARDINO

INSTITUTO SUPERIOR DE ECONOMIA E GESTAO

Conteudo

[L Variaveis e operadores|
[I.1 Tipos de variaveis|
(1.2 Escrita de variaveis - Output|.
(1.3 Atribuicao de valores a variaveis - Input|o 000
(L4 Variavels constantes e e e e e
(1.5 Operadores| e
[1.5.1 Operadores aritméticos|
[1.5.2 Operadores relacionais|
[1.5.3 Operadores logicos|
[L.5.4 Operador ternario (Informagao complementar)|
2__Estruturas de controlol
2.1 Estruturas de controlo condicionais|
[2.1.1 Estrutura of|
[2.1.2 Estrutura if else|
2.1.3 Estruturas condicionais encadeadaslo
2.2 Uso de chavetas e de indentacao| e
2.3 Estruturas de controlo ciclicasl
|2|;i|1 l]:ill!ll!ll:! i!”l‘h’l!:l -------------------------------------
I2l;il2 ll{ lll]ll]l“! !]Z!z_ !A“Z.“zl
[2.3.3 Estrutura for|
234 Ciclosencadeados
[2.3.5 As instrucoes break e continue|l.
B Variveis ind sV, l
[3.1 Declaracao de vetores|.
[3.1.1 Declaracao de vetor com dimensao|
[3.1.2 Declaracao de vetor sem dimensaol.
(3.2 Método .at() wsoperador [||
[3.3 Manipulacao de vetores|.
I;i';i'l I Ig:g:llg:llilllg:lll !! Slg: &g:l g!If:.:iI -------------------------------
[3.3.2 Impressao de vetores|.
[3.3.3 Ordenacao de vetores|
B.4 Vetores de vetores - Matrized

15
15
15
16
18
21
23
24
25
27
28
30

4 ncoes

[4.1 Sintaxe geral de uma tuncaol

[4.2 Vantagens das funcoes|

[4.3 Passagem por valor, por referencia e por referencia constante|

[5.2.2 Classe out_of range|

[6 Separacao de um projeto em ficheiros|

[6.1 Espacos de nomes| L

[6.2 Redefinicao de tipos de dados - type alias|.

[f__Classes|

[8 Sobrecarga de operadores|

[9 Heranca e polimorfismo|

[10.3 Instrucoes clear() e ignore()| L

(10.4 String streams|

42
43
47
47

50
52
95
55
56

58
60
63

64

73

84

Introducao

Saber programar ¢ essencial no mundo em que vivemos porque a nossa civilizagao depende fortemente
de software. A programacao encontra-se em praticamente todo o lado, desde simples eletrodomésticos
como maquinas de lavar até grandes objetos como navios, avioes, satélites, etc. Para programar é
necessario usar uma linguagem de programacao, isto é, uma linguagem codificada que possa ser entendida
por computadores. Existem varias linguagens de programacao tais como C++, C, C#, java, python, etc.
Nesta cadeira estudaremos a linguagem C++ pois, além de ser uma das linguagens de programacgao
mais utilizadas em todo o mundo e estar disponivel em quase todo o tipo de computadores, incute boas
praticas de programacao que sao essenciais para novos programadores. Com os conhecimentos adquiridos
nesta cadeira poderao depois facilmente aprender outras linguagens de programagao por vocés proprios.

Para escrever os programas em C++ usaremos o QT Creator. Além de permitir escrever e executar
os nossos programas, o QT Creator tem ainda uma série de outras funcionalidades, nomeadamente
aplicagoes graficas, que nao iremos explorar nesta cadeira, mas que poderao aprender sozinhos mais
tarde, se assim o desejarem.

Esta sebenta contém alguma informacao complementar sobre a linguagem de programacao C++ que
nao sera lecionada nem avaliada na unidade curricular de Linguagens de Programacao. As seccoes com
esta informacao estao assinaladas como Informacao Complementar.

O basico

Programar é dizer ao computador o que tem que fazer para atingir um determinado objetivo ou para
resolver um determinado problema. Para isso, é necessario escrever de forma detalhada as instrucoes que
o computador tem que executar numa linguagem que ele consiga entender. Esse conjunto de instrugoes
¢ aquilo a que chamamos programa. Sendo maquinas, os computadores nao tém a capacidade de pensar
e por isso todas as instrucoes devem ser escritas de forma detalhada e explicita. Para validar todas as
instrugoes que foram escritas, o computador usa um compilador. A missao do compilador é verificar
se o computador consegue perceber e executar todas as instrugdes que escrevemos. Isto significa que o
compilador permite apenas identificar erros de escrita (chamados erros de sintaze) no nosso cédigo. O
compilador nao verifica erros de execucao, isto €, nao verifica se as instrugoes que estamos a escrever
correspondem ao que queremos que, de facto, o computador faca. Para que o compilador consiga
identificar o fim de cada uma das instrugoes que escrevemos, estas terminam geralmente com ponto e
virgula “;”, havendo algumas excecoes. No QT Creator, os erros de compilacao aparecem a vermelho
e tém obrigatoriamente que ser corrigidos para que possamos executar o programa. Além disso, o
compilador langa ainda warnings (mostrados a amarelo) que devem também ser corrigidos, mas cuja
nao correcao nao impede a execugao do programa. Como iremos perceber, alguns warnings podem ser
ignorados pois nao afetam o funcionamento do programa, no entanto, existem outros que deturpam
completamente o funcionamento do programa. O compilador analisa todas as instrugoes que escrevemos
exceto as que correspondem a comentdrios do programador e queixar-se-4 sempre que alguma coisa

esteja errada. Os comentdrios sao notas do programador e aparecem apés o simbolo “//” ou entre os
simbolos “/* ... */”. Eles sao completamente ignorados pelo compilador, pelo que podemos escrever
neles tudo o que quisermos. No QT Creator, os comentarios aparecem a cor verde.

Os programas que vamos criar usam muitos comandos que foram previamente definidos por outras
pessoas, tal como, por exemplo, a funcao seno ou a funcao raiz quadrada. A definicao desses comandos
envolve frequentemente muitas linhas de cédigo e por isso encontra-se em pacotes especificos do C++.
Estes comandos predefinidos (seno, raiz quadrada, poténcia, etc.) podem ser usados diretamente nos
programas que fazemos sem que tenhamos que saber como foram implementados originalmente. No
entanto, para isso, teremos que informar primeiro o compilador onde é que esses comandos foram
definidos. Para tal, usamos a instrucao #include seguida do nome do pacote que contém os comandos
que queremos usar. Por exemplo, todas as fun¢oes matematicas estao disponiveis no pacote cmath, pelo
que, se as quisermos usar no nosso programa, teremos que comecar por escrever #include <cmath>.
Aos poucos iremos perceber quais dos muitos pacotes existentes nos interessam. Para ja, ficamos apenas
com a ideia de que todas as fungdes matematicas estao no pacote cmath e que o pacote iostream tem
que ser incluido sempre que queiram ler/escrever informagao do ecra pois contém as definigoes de todos
os comandos basicos de leitura e escrita que vamos usar.

O cabecalho de um programa em C++ é designado por Preambulo e é nessa regiao que é feita a
inclusao de todos os elementos externos que o programa precisa, como por exemplo os pacotes.

//Preambulo

int main(){
//Escreva aqui o seu cédigo

/* Isto também

é um
comentario x/

return O;

Quando um programa em C++ é executado, o ponto de partida é sempre a fungao main pelo que esta
funcao tem sempre que existir no programa. Ao encontrar esta funcao, o programa percorre todas as
linhas do cddigo de forma sequencial de cima para baixo (a nao ser que existam instrugoes que alterem
o fluxo de execugao do programa, como veremos mais adiante). A fungdo main, é delimitada por duas
chavetas “{ }” dentro das quais devemos escrever o nosso cédigo. A ultima instrucao da funcao main é
“return 0,”. Esta instrucao era usada em muitos sistemas operativos para verificar se o programa tinha
conseguido chegar ao fim sem qualquer problema. Assim sendo, o que esta representado no codigo acima
é o esqueleto de um qualquer programa em C++.

A funcao main apresentada acima tem apenas varios comentarios no seu interior que serao comple-
tamente ignorados pelo compilador, pelo que o programa apresentado é na verdade um programa vazio,
pois nao héa qualquer instrucao a ser executada.

Capitulo 1

Variaveis e operadores

As variaveis sao os elementos base de qualquer linguagem de programacao e servem essencialmente
para guardar informacao na meméria do computador.

Na Seccao sao apresentados tipos de varidveis. As Seccgoes e contéem detalhes sobre a
escrita e a leitura de variaveis para o ecra, respetivamente. Na Seccao |1.4| sao apresentadas as variaveis
constantes e, por fim, na Seccao [1.5[sao detalhados os varios tipos de operadores existentes.

1.1 Tipos de variaveis

Um objeto é uma regiao da meméria do computador que pode conter um valor. Uma wvaridvel ¢ um
objeto com nome. Cada varidvel é caracterizada por um nome e por um tipo. Em relacao ao nome,
existem algumas regras que tém de ser respeitadas:

1. Sé pode comegar com letras (pode também comegar com underscore mas devem evitar fazé-lo).

2. Nao pode coincidir com palavras reservadas da linguagem tais como: main, if, else, while, int,
double, try, etc. As palavras reservadas aparecem geralmente escritas a uma cor diferente no
editor.

3. Nao pode conter espagos nem carateres que nao sejam numeros, letras ou o underscore.

Os nomes que usamos nao devem ser muito longos e devem ser o mais sugestivos possivel para
facilitar a leitura do programa. Por exemplo, se pretendemos criar uma variavel para guardar a idade
de uma pessoa, o nome idade é talvez o mais sugestivo para essa variavel. E necessario, no entanto, ter
em conta que no mesmo programa nao podem existir duas variaveis com o mesmo nome. Se precisarmos
de duas variaveis para guardar duas idades, podemos, por exemplo, usar os nomes idade_1 e idade_2
ou simplesmente idade! e idade2. E importante também ter em conta que o C++ faz distin¢do entre
letras maiusculas e minusculas, pelo que, por exemplo, os nomes idade e Idade nao correspondem a
mesma varidavel. Nos programas que escrevemos, devemos ter o cuidado de nao usar variaveis com
nomes parecidos para evitar confusoes.

Todas as varidaveis usadas num programa tém que ser primeiro declaradas para que o computador
crie espaco na memoria para o tipo de dados que se pretende guardar. Para isso, devemos escrever o
tipo da variavel e depois o seu nome, ou seja,

int idade; //Declaragdo de uma variivel chamada idade do tipo int

Ao declarar uma varidvel, é-lhe imediatamente atribuido o valor que se encontra no pedaco de
memoria que lhe estd associado e que é um “valor lixo”. Para que tal nao acontega, devemos, no
momento da criacao das variaveis, atribuir-lhes um valor inicial, o que é chamado de inicializacao e é
exemplificado de seguida:

int idade;
idade = 18; //Inicializagdo da varidvel idade com o valor 18

A declaracao e a inicializacao de uma variavel podem ser feitas na mesma instrucao da seguinte forma:

int idade = 18; //Inicializag&o da varidvel idade com o valor 18

Informalmente, criar varidaveis é criar caixas na memoria do computador onde vao ser colocados
valores do tipo que foi definido. A Figura [I.1] contém uma representacao esquematica do que acontece
na meméria do computador quando a variavel é declarada (Figura [l.1a)) e de quando é inicializada

(Figura|1.1b)).

Memaria do computador Memédria do computador
idade idade
? 18
(a) Declaragao de uma varidvel. (b) Inicializacdo de uma varigvel.

Figura 1.1: Declaragao versus inicializacao de uma variavel.

O tipo de uma variavel indica a natureza dos valores que ela pode assumir. A Tabela contém
exemplos de vérios tipos de dados existentes.

Tabela 1.1: Exemplos de tipos de dados.

Tipos
Numeros inteiros short
mnt
long
long long int
Numeros inteiros positivos size_t
Numeros decimais float
double
Carater char
Texto string
Valor légico bool

Os primeiros quatro tipos de dados sao usados para guardar valores inteiros (positivos ou negativos)
e diferem entre si na gama de valores que podem guardar, isto é, no espaco de meméria que ocupam.
O tipo short permite guardar valores inteiros mais pequenos (poucos digitos) enquanto o tipo long long
int permite guardar valores inteiros maiores (com mais digitos). Nos nossos programas, o tipo int é,
em regra, o mais usado uma vez que permite representar niimeros com uma ordem de grandeza sufici-
entemente elevada. O tipo size_t representa niimeros inteiros nao negativos. Para nimeros decimais,
podemos usar os tipos float ou double. No entanto, como a precisao do tipo double é maior do que
a do float - isto é, o tipo double permite guardar mais casas decimais - sera esse o tipo de dados que
usaremos. Numa varidavel do tipo char podemos guardar um qualquer caréter, isto é, uma letra (sem
acento nem cedilha), um algarismo (de 0 a 9) ou um simbolo (/, +, ;, $, etc.). Uma string é um tipo
de dados que permite guardar uma sequéncia de caracteres, isto é, permite guardar texto. Finalmente,
o tipo bool assume apenas os valores logicos true ou false, sendo que true corresponde ao valor 1 e
false corresponde ao valor 0. Os valores booleanos nao sao guardados como true e false, mas sim como
inteiros com a correspondéncia referida anteriormente.

Todos os tipos apresentados sao tipos de dados fundamentais ou primitivos, a excecao do tipo
string. No codigo abaixo sao apresentados exemplos de variaveis dos diferentes tipos de dados referidos
anteriormente.

#include <iostream>
using namespace std;

int main(){

int idade = 18; //Variavel inteira com o nome <dade e valor 15
double peso = 56.8; //Varidvel decimal com o nome peso

string nomeP = "Pedro"; //Variavel que guarda um conjunto de carateres

char ¢ = “)’; //Varidvel que guarda um carater e tem o nome c
bool logico = true; //Varidvel booleana com o nome logico

double altura; //Variavel com o nome altura ndo inicializada

return O;

Temos seis variaveis declaradas, estando as cinco primeiras também inicializadas. Note-se que os
caracteres (tipo char) sao definidos por plicas enquanto que o texto (tipo string) é definido com aspas.
Relembramos que nao é obrigatorio inicializar as variaveis quando sao declaradas, mas é boa pratica
faze-lo pois, quando as varidveis sao declaradas mas nao sao inicializadas poderao assumir valores dis-
paratados, sendo por isso valores lixo. Na primeira linha do programa temos o #include <iostream>
que é necessario quando utilizamos uma variavel do tipo string. Na segunda linha do programa temos
a instrucao wusing namespace std; da qual falaremos mais adiante. Como ja vimos anteriormente, a
instrucao int idade=18 cria uma variavel com o nome idade para guardar o nimero inteiro 18. Muito
informalmente, este processo corresponde a criar uma caiza com o nome “idade”e dentro dela colocar
o valor 18. A ldgica é a mesma para os restantes tipos de dados, exceto para as strings, por nao se
tratarem de tipos de dados primitivos.

idade peso c

15 56.8)

Ao longo da execucao de um programa, as variaveis tomam normalmente valores distintos, mas em
cada instante apenas tém um valor. E importante relembrar que uma variavel é como uma caixa que sé
pode ter um tnico valor dentro dela.

int main(){

int x = 10; //Variavel inicializada com o valor 10

x = 20; //0 valor da variavel é alterado para 20
/] ..

x = 30; //0 valor da variavel é alterado para 30
return O;

No codigo acima, a variavel x é inicializada com o valor 10. O seu valor é depois alterado para 20 e
mais tarde para 30, sendo esse o seu valor final.

1.2 Escrita de variaveis - Output

Nos programas que construimos é necessario frequentemente mostrar informacao ao utilizador, ou
seja, escrever informagao no ecra. A isto chamamos imprimir. Para imprimir algo, usamos o comando
cout, cujo significado é console output, juntamente com o operador <<.

#include <iostream>
using namespace std;

int main(){

int idade = 15;

string nomeP = "Pedro";
cout << "Qutput: \n";
cout << nomeP;

cout << endl;

cout << idade;

cout << "\n";

return O;

Para usar o comando cout é necessario incluir o pacote iostream e escrever a segunda linha do
programa. A instruc¢ao \n é um comando de controlo que serve para mudar de linha. A instrucao endl,
significa end of line e serve também para mudar de linha. Ao ser executado, este programa comecga por
declarar e inicializar as variaveis idade e nomeP. Depois disso, encontra o primeiro cout e por isso escreve
no ecra a mensagem “Output: ”. Ainda nessa linha, encontra o controlador \n e faz uma mudanga de
linha no que escreve no ecra. Na linha de cédigo seguinte, o programa vai aceder a varidvel (ou caixa)
com o nome nomeP e escrever o que esta 14 dentro, que neste caso é “Pedro”. Ao chegar a linha de
cédigo seguinte, faz apenas uma mudanca de linha porque encontrou o controlador endl. Depois disso,
o programa acede a variavel com o nome idade e escreve o que esta 14 dentro. No tltimo cout é apenas
efetuada mais uma mudanga de linha. Na pratica, os cinco comandos cout anteriores podem (e devem)
ser escritos com uma tnica instrugdo, o que permite simplificar a escrita. Assim sendo, podemos escrever
apenas:

cout << "Qutput: \n" << nomeP << endl << idade << "\n";

sendo o output exatamente o mesmo.

1.3 Atribuicao de valores a variaveis - Input

Para atribuir valores a uma variavel podemos usar simplesmente o operador =, por exemplo, z = 5.
A funcao do operador = é atribuir o valor que esta do lado direito a variavel que esta do lado esquerdo.
Por exemplo, a instrucao x = 5 corresponde a fazer z < 5, ou seja, a atribuir o valor 5 a variavel
x. O operador = é usado para atribuir valores a variaveis quando sabemos qual o valor a atribuir no
momento em que o codigo estd a ser escrito. No entanto, em muitas situagoes, o valor das variaveis
nao é previamente conhecido, sendo apenas definido posteriormente pelo utilizador. Para estes casos
devemos usar o comando cin, cujo significado é console input, juntamente com o operador >>.

#include <iostream>
using namespace std;

int main(){
int idade;
cout << "Introduza a idade: ";
cin >> idade;

cout << "A idade e: " << idade << "\n";

return O;

Para usar o comando cin é também necesséario incluir o pacote iostream e escrever a segunda linha
do programa. Este programa comeca por declarar uma variavel do tipo int com o nome idade. Depois,
escreve no ecra o texto “Introduza idade: 7. De seguida, o programa passa para a linha seguinte e ficara
a espera até que o utilizador introduza um ntmero inteiro. Quando o utilizador insere o ntimero, este é
guardado na variavel idade. Finalmente, o programa escreve para o ecra “A idade e: 7, vai ver qual o
valor que estd na varidvel idade, escreve-o no ecra e termina com uma mudanca de linha.

Embora seja boa pratica inicializar as variaveis, nao é necessario fazé-lo no caso em que o seu valor
é pedido ao utilizador (quase) imediatamente apds a sua declara¢ao, como no exemplo anterior. As trés
primeiras linhas de cédigo dentro da funcao main no exemplo anterior sao usadas sempre que queremos
pedir o valor de uma variavel ao utilizador. A isso chama-se ler a varidvel.

Os operadores >> e << usados, respetivamente, nas instrucoes cin e cout indicam movimento. No
caso do cin, ao escrevermos cin >> x estamos de certa forma a enviar o que foi escrito no ecra (lado
esquerdo) para a varidavel z que estd no lado direito. Por outro lado, ao fazermos cout << z estamos a
enviar o que estd do lado direito (valor da varidvel z) para ser escrito no ecra (lado esquerdo).

1.4 Variaveis constantes

Como vimos anteriormente, o valor de uma variavel pode ser sucessivamente alterado ao longo da
execucao de um programa. No entanto, pode ser 1til em algumas situagoes usar variaveis cujo valor
nao queremos alterar. Este tipo de varidveis sao designadas por constantes e sao definidas através da
palavra reservada const. Um bom exemplo é o caso do w, que pode ser definido como const double pi
= 3.141592. Isto permite nao s6 que ao longo do programa usemos sempre a variavel pi em vez de
escrevermos o valor 3.141592, como também impede que o valor da varidavel p: seja alterado, isto ¢,
nao seria possivel fazer uma nova atribuicao do tipo pi = 3.1/. Este exemplo é retratado no préximo
excerto de codigo, que nao é compilado pelo editor uma vez que se esta a alterar o valor de uma variavel
definida como constante.

int main(){
const double pi = 3.141592;
pi = 3.14; //ERRO!
return O;

10

1.5 Operadores

O C++ contém operadores de diferentes tipos, nomeadamente operadores aritméticos simples, opera-
dores aritméticos compostos, operadores relacionais e operadores 1égicos.

1.5.1 Operadores aritméticos

Os operadores aritméticos simples sao os que ja conhecemos da matematica e encontram-se na tabela
abaixo, sendo os valores apresentados na coluna Resultado correspondentes ao caso em que a=13 e b=5.

Tabela 1.2: Operadores aritméticos simples

Operador | Nome Exemplo | Resultado
+ Soma a+b 18
- Subtracao a-b 8
* Multiplicacao a*b 65
Divisao inteira ou decimal a/b 2 ou 2.6
% Resto da divisao inteira a%?b 3

7

O resultado do operador “/” é o resultado da divisao inteira sempre que os dois operandos forem de
um tipo de dados inteiro. Se um dos operandos for do tipo decimal, o resultado do operador “/” é a
divisao decimal. Para obter a divisao decimal entre duas variaveis do tipo inteiro é necessario primeiro
converter uma delas para um tipo de dados decimal e s6 depois fazer a divisao. Este processo designa-se
por cast e, uma das formas de o fazer, consiste em escrever o tipo de dados que se pretende obter entre
paréntesis antes da variavel a transformar. Isto é, sendo a e b variaveis do tipo int, a divisao decimal
pode ser obtida através da instrugao (double) a/b. Isto significa que o programa comega por converter
a variavel a para uma variavel do tipo double e depois faz a divisao entre um double e um int, sendo
por isso o resultado um valor decimal.

Os operadores aritméticos apresentados na tabela anterior sao usados entre operandos do tipo
numeérico. No entanto, o operador “+” pode também ser usado para strings, funcionando como operador
de concatenagao (jungao).

#include <iostream>
using namespace std;

int main(){

string a = "Eu tenho ";
int ¢ = 18;
string b = " anos.";

string frase = a + to string(c) + b + " Sou Jovem!";
cout << frase;

return O;

11

No exemplo acima, é impressa para o ecra a variavel frase do tipo string que resulta da concatenacao
de varias strings e de um inteiro. Variaveis do tipo string podem ser concatenadas diretamente, no
entanto, no caso de tipos de dados numéricos, é necessaria a utilizacao da funcao to_string. A finalidade
da funcao to_string ¢ converter um valor numérico para uma string, que depois pode ser concatenada
diretamente com outras strings. No exemplo acima, o output impresso no ecra - que € o valor da variavel
frase criada - é “Eu tenho 18 anos. Sou Jovem!”.

Os operadores aritméticos compostos permitem simplificar a escrita de instrucoes. Por exemplo,
escrever a=a+3 é o mesmo que escrever a+=3. Para usar estes operadores, é necessario compreender
bem o uso do operador = ja explicado anteriormente. Recorde-se que este operador tem como funcao
atribuir o valor que esta do seu lado direito a variavel do lado esquerdo. Assim sendo, ao escrever a=a+3
nao estamos a dizer que o lado direito é igual ao lado esquerdo, tal coisa nem faria sentido do ponto de
vista matematico. O significado da expressdao a= a+3 é 0 mesmo que a < (a+3). Suponhamos que o
valor de a é 6. Quando o programa chega a instrucao a=a+3, vai primeiro olhar para o lado direito
e calcular o valor da expressao a+3 que serd 9. Depois disso, ird entao atribuir o valor 9 a variavel a.
A partir dai, o valor da variavel a é 9. Na tabela abaixo apresentam-se os operadores compostos e o
resultado da variavel a no final das operagoes, considerando como valores iniciais a=6 e b=2.

Tabela 1.3: Operadores aritméticos compostos (considerando a=6 e b=2).

Operador | Nome Exemplo | Significado | Valor de a
+= Soma/atribuic¢ao a+=b a=a+b 8
-= Subtragao/atribuigao a-=b a=a-b 4
*= Multiplicac¢ao/atribuicao ax=b a=a*b 12
/= Divisao/atribuigao a/=b a=a/b 3
h= Resto/atribuigao a%=b a=a%b 0
++ Incremento a++ a=a+1 7
- Decremento a-- a=a-1 5

Estes operadores sao aplicados a tipos de dados numéricos, no entanto, o operador += pode também
ser aplicado a strings. Nessa situagao, ele funciona como operador de concatenacao+atribuicao, conca-
tenando o que estiver do lado direito ao que estiver do lado esquerdo. No exemplo abaixo, o valor final
da varidvel b nao ¢ alterado, sendo ele “BB”. O valor da variavel a (escrito no ecra) sera “AABB”. Ou
seja, uma vez que a+=>b ¢é equivalente a a=a+b, o valor da varidvel b vai ser concatenado ao valor inicial
da variavel a, sendo o resultado guardado na variavel a.

#include <iostream>
using namespace std;

int main(){

string a = "AA";
string b = "BB";
a+=b>b

cout << a;
return O;

12

O operador de incremento a++ é equivalente a escrever a+=1 que é ainda equivalente a escrever
a=a-+1. Os operadores de incremento e decremento tém a particularidade de puderem ser usados como
prefixo (++a) ou sufixo (a++). Quando usados de forma isolada, o seu significado é exatamente o mesmo.
No entanto, em operacoes nas quais o resultado da operagao de incremento ou de decremento ¢ avaliado
noutra expressao, os resultados podem ser diferentes. No caso do operador de incremento de prefixo
(++a) o valor da varidvel é incrementado e depois é devolvido. Ou seja, a varidvel é incrementada antes
da expressao ser avaliada e, portanto, é considerado na expressao o valor ja incrementado. No caso
do operador de incremento de sufixo (a++) o valor da varidvel é devolvido e depois é incrementado.
Ou seja, o valor da variavel é incrementado apenas apods a avaliagao da expressao. Vejamos o exemplo
abaixo:

Tabela 1.4: Diferengas entre os operadores incremento de prefixo e de sufixo (a=3 e b=3).

Exemplo | Valor final de a | Valor final de b
a=++b 4 4
a=b++ 3 4

Quando utilizados isoladamente, devemos dar preferéncia a utilizagao ao operador de incremento de
prefixo (4++a) pois, como veremos mais a frente, é mais eficiente que o operador de incremento de sufixo

(a++).

1.5.2 Operadores relacionais

Os operadores relacionais servem para comparar duas expressoes. O resultado dessa comparacao é
um valor do tipo bool que pode ser true (caso o resultado da comparacao seja verdadeiro) ou false (caso
contrario).

Tabela 1.5: Operadores relacionais.

Operador | Significado
< menor
> maior
<= menor ou igual
>= maior ou igual
== igual
= diferente

Estes operadores sao fundamentais para a seccao seguinte. Para ja, é importante realcar o operador
==, que nada tem a ver com o operador de atribuicao = usado anteriormente. O operador == verifica
se 0 que esta do seu lado direito é igual ao que esta do seu lado esquerdo, devolvendo como resultado
true ou false. Por exemplo, o resultado da comparacao 5==8/2 é false pois 5 nao é igual a 8/2 (=/).
O operador = serve para atribuir o valor do lado direito a variavel do lado esquerdo e nao para efetuar
comparagoes.

1.5.3 Operadores légicos

Os operadores logicos servem para negar e combinar expressoes. Assim sendo, o resultado das
operacoes com os operadores légicos é também true ou false.

13

Tabela 1.6: Operadores légicos.

Operador Significado

&& ou and | conjuncao (e)

|| ou or | disjuncao (ou)
! negacao

O operador !, colocado a esquerda de uma expressao, inverte o seu valor légico. Isto é, se a expressao
é verdadeira passa a falsa e vice-versa. Como exemplo, considerem-se trés variaveis inteiras a=95, b=3
e c=2. Temos entao

b>a — false
(b > a) — true
(b>a) && c==a—b || ¢>0 — true
((b>a) or c==a—>b) and c¢>b — false
b>a || c==a—b && b>c — true
Note-se que a tltima expressao é equivalente a b >a || (c==a—b && b > ¢), uma vez que a

conjungao (lida como “e”) tem prioridade em relagao a disjuncao (lida como “ou”).

1.5.4 Operador ternario (Informagao complementar)

O operador ternario ou condicional avalia uma expressao e devolve diferentes valores de acordo
essa avaliagao. Este operador nao sera lecionado nas aulas, estando aqui apenas como informagao
complementar. A sintaxe deste operador é a seguinte:

(<condi¢io> 7 <resultadol> : resultado?2>)

Se a <condi¢ao> ¢é verdadeira entao o operador vai devolver o <resultadol>. Caso contrario devolve o
<resultado2>. Por exemplo, ao escrevermos

int x;

a variavel x vai ficar com o valor 3, uma vez que a condigao 7==>5 ¢ falsa.

14

Capitulo 2

Estruturas de controlo

As estruturas de controlo sao essenciais em qualquer linguagem de programacao e dividem-se em
condicionais e ciclicas. As estruturas de controlo condicionais servem essencialmente para executar
instrucoes especificas em funcao da satisfacao ou nao de determinadas condigoes. Isto é, servem para
permitir ao programa seguir caminhos distintos. Por outro lado, as estruturas de controlo ciclicas estao
associadas a repeticao de instrugoes/processos.

As estruturas de controlo condicionais sdo apresentadas na Secg¢ao Na Seccao ¢é detalhada
a importancia do uso de chavetas e da indentacao. Por fim, as estruturas ciclicas sao apresentadas na
Seccao [2.3]

2.1 Estruturas de controlo condicionais

Serao apresentadas trés estruturas condicionais diferentes, nomeadamente a estrutura if, a estrutura
if else e as estruturas condicionais encadeadas.

2.1.1 Estrutura if

A estrutura de controlo condicional mais simples em programacao é a estrutura if. A sua sintaxe
geral é:

if (Condigdo) {
Bloco de instrugdes
}

Um if carateriza-se por uma condicao e um bloco de instrucoes. Blocos de instrugoes sao definidos
através do uso de chavetas e contém varias instrugoes. A condi¢ao toma o valor true ou false podendo
por isso ser uma variavel booleana ou uma expressao logica que, na maior parte dos casos, envolve
os operadores relacionais e 16gicos apresentados no capitulo anterior. A traducao de if é “se”, por
isso, como o proprio nome indica, o bloco de instrucoes do if serd apenas executado se a condicao for
verdadeira.

O exemplo seguinte contém um excerto de cédigo onde a estrutura if é utilizada.

15

#include <iostream>
using namespace std;

int main(){
int a = 1;
int b;
cout << "Introduza o valor de b: ";
cin >> b;

if (b>10& b % 3==0) {
++a;
}

)
return O;

Neste exemplo, o programa comeca por declarar duas variaveis a e b, inicializando a primeira com o
valor 1. De seguida, o valor da variavel b é pedido ao utilizador. Ao chegar a instrucao if o programa
comeca por avaliar o valor 16gico da condicao b>10 && b%3==0. Se o resultado dessa avaliacao for true,
entao o programa ird entrar no bloco de instrugoes do if (que neste caso contém apenas uma instrugao)
e ira incrementar o valor da varidavel a numa unidade. Suponhamos que o valor de b introduzido pelo
utilizador é 20. Apesar de 20 ser maior que 10, o resto da divisao de 20 por 3 nao é zero e por isso
o resultado logico da condicao do if ¢é false. Neste caso, o programa nao ira executar as instrucoes
associadas ao if, passando de imediato para o return final e, portanto, o valor final da variavel a é 1.
Suponhamos agora que o valor introduzido pelo utilizador é 15. Neste caso, como 15 > 10 e o resto da
divisao de 15 por 3 é zero, a condigao do if é verdadeira e por isso o programa ird executar as instrugoes
do bloco if. Assim sendo, o valor da varidavel a no final do programa sera 2.

Neste exemplo, é importante salientar dois aspetos. Em primeiro lugar, a utilizacao do operador de
igualdade == que se justifica pelo facto de estar a ser feita uma comparacao e nao uma atribuicao e, em
segundo lugar, o significado da segunda parte da expressao logica, isto é, b%3 == 0. Verificar se o resto
da divisao de b por 3 é zero é o mesmo que verificar se b é multiplo de 3, pelo que sera sempre esta a
forma usual de definir condig¢oes do tipo “ser multiplo de”.

2.1.2 Estrutura if else

A estrutura if else tem dois blocos de instrucoes, o que nos permite definir instrugoes caso a condigao
do if seja avaliada como falsa. Assim, o Bloco de instrucoes 1 sera executado caso a condigao do if seja
verdadeira, enquanto o Bloco de instrugoes 2 sera executado no caso contrario, isto é, caso a referida
condicao seja falsa. A sintaxe geral de um if else é:

if (Condigio) {

Bloco de instrugdes 1
} else{

Bloco de instrugdes 2
}

16

Note-se que o else nao necessita de uma condicao pois, implicitamente, a condi¢ao do else é a negacao
da condicao escrita no if. Vejamos o seguinte exemplo:

1. int main({

2. inta=1, b =19, ¢ = 3;
3.

4. if (b%3==0o0rb¥%2==0){
5. a = 10;

6. c += a;

7. telse{

8. a = 20;

9. c -= a;

10. }

11. return O;

12.}

A condicao associada ao if pode ser lida como “b € multiplo de 3 ou de 2”. Como b=19, a condicao
é falsa e por isso o programa salta imediatamente da linha 4 para a linha 7, que é a linha do else,
executando de seguida todas as instrugoes nesse bloco. Assim sendo, o programa redefine o valor de a
como sendo 20 e em seguida atualiza o valor de ¢ para 3-20, ou seja, -17. No final do programa temos
entao a=20, b=19 e c=—17. Neste exemplo, a condicao implicita no else é “b nao é mailtiplo de 3 nem
de 27, istoé,b % 3 '= 0 and b % 2 != 0.

Como comentario final, é importante notar que sempre que temos um else, este tem que estar
associado a um if. Contudo, o inverso nao é obrigatério, isto é, podemos ter um if sem ter qualquer
else associado, como vimos na secgao anterior.

17

2.1.3 Estruturas condicionais encadeadas

A estrutura if else permite ao programa seguir dois caminhos distintos em funcao da avaliagao de
uma condic¢ao. Contudo, existem situac¢oes onde ha mais do que dois caminhos possiveis para o programa
seguir. Para tal, podemos usar estruturas condicionais encadeadas. O termo encadeado significa que
existem estruturas condicionais que estao elas proprias contidas noutras estruturas condicionais.

A sintaxe geral da forma compacta das estruturas condicionais encadeadas é apresentada do lado
direito. Do lado esquerdo é apresentada a versao entendida da mesma estrutura, usando apenas varias
estruturas if else:

if (Condigdo 1) {
Bloco de instrugdes 1

} else { if (Condigdo 1) {
if (Condigdo 2){ Bloco de instrugdes 1
Bloco de instrugdes 2 } else if (Condigdo 2){
} else { Bloco de instrugdes 2
if (Condigdo 3){ } else if (Condigdo 3){
Bloco de instrugdes 3 Bloco de instrugdes 3
} else { } else {
Bloco de instrugdes 4 Bloco de instrugdes 4

} }
}

Considere-se a forma compacta das estruturas condicionais encadeadas. Caso a Condicao 1 seja
verdadeira, é executado o Bloco de instrucoes 1. Caso a Condigao 2 seja verdadeira e a Condicao 1 seja
falsa, é executado o Bloco de instrugoes 2. O Bloco de instrugoes 3 apenas sera executado se a Condi¢ao
3 for verdadeira e se as Condigoes 1 e 2 forem falsas. O Bloco de instrucoes 4 serd apenas executado no
caso de todas as Condigoes 1, 2 e 3 serem falsas. E importante realgar que nesta estrutura, um e apenas
um bloco de instrucoes é executado, mesmo que mais do que uma condicao seja verdadeira. Se duas ou
mais condigoes forem verdadeiras, o tinico bloco de instrugoes executado é o primeira que aparecer. Por
exemplo, se a Condigao 2 e a Condicao 3 forem ambas true o bloco de instrugoes a ser executado é o
Bloco de instrugoes 2.

Para clarificar as diferencas entre as estruturas de controlo condicionais apresentadas até aqui,
considere-se o seguinte exemplo. Suponhamos que o preco unitario de um dado produto depende da
quantidade a comprar e que queremos fazer um programa que, dado o nimero de unidades a comprar,
calcule o prego final a pagar. Se o prego unitario do produto for dado de acordo com a tabela seguinte:

Quantidade <50 (50, 99[| [100, 150[| > 150
Preco 5 4 3,5 3,3

entao o cdédigo abaixo, embora nao use estruturas encadeadas, faz o que se pretende.

18

#include <iostream>
using namespace std;

int main(){
int qt, preco;
cout << "Quantidade: ";
cin >> gt;

if (gt <50) {
preco = 5 ¥ qt;
1

if (gt >= 50 and qt < 99) {
preco = 4 * qt;
}

if (qt >= 100 and gt < 150) {
preco = 3.5 * qt;
}

if (gt >= 150) {
preco = 3.3 * qt;
}

cout << "Preco final: " << preco;
return O;

O cédigo acima é composto por quatro estruturas if independentes. O mesmo cédigo pode ser escrito
usando estruturas condicionais encadeadas tal como apresentado abaixo.

19

1. #include <iostream> 1. #include <iostream>

2. using namespace std; 2. using namespace std;

3. 3.

4. int main(){ 4. int main(){

5. int qt, preco; 5. int qt, preco;

6. cout << "Quantidade: "; 6. cout << "Quantidade: ";
7. cin >> qt; 7. cin >> qt;

8. 8.

9. if (qt <50) { 9. if (qt <50) {
10. preco = 5 * qt; 10. preco = 5 * qt;
11. }else{ 11. telse if(qt < 99) {
12. if (gt <99) { 12. preco = 4 * qt;
13. preco = 4 * qt; 13. telse if (qt < 150)
14. }else{ 14. preco = 3.5 * qt;
15. if (qt < 150) { 15. }else{

16. preco = 3.5 * qt; 16. preco = 3.3 * qt;
17. }else{ 17. }

18. preco = 3.3 * qt; 18.

19. } 19. cout<<"Preco final: "<<preco;
20 } 20. return O;

21. } 21. }

22.

23. cout<<"Preco final: "<<preco;

24 . return O;

25. }

Na primeira implementacao, existe uma estrutura de controlo principal que comega na linha 9 e
termina na linha 21. O else desta estrutura (linha 11) contém no seu bloco de instrugdes um novo
if que comega na linha 12 e termina na linha 20. Este novo if, por sua vez, inclui também um
novo if no bloco de instrugoes associado ao seu else que comeca na linha 15 e termina na 19. No
entanto, é importante realgar que cada if s6 poderd ter no méximo um else associado (podendo esse
else ter outros ifs, e consequentemente outros elses, dentro dele). As condigoes dos if s aqui apresentados
podem parecer incompletas quando comparadas com as apresentadas no cédigo anterior, mas na verdade
estao corretas. Vamos analisar diferentes casos para perceber melhor como as estruturas encadeadas
funcionam. Consideremos o cédigo do lado esquerdo.

1. Suponhamos que a quantidade ¢t introduzida pelo utilizador na linha 7 é 30. Quando o programa
chega a linha 9, vai verificar se qt<50, o que é de facto verdade. Assim sendo, o programa entrara
no primeiro if, fard a instrugdo da linha 10 e passard imediatamente para a linha 21 (final do
primeiro if). No final, teremos preco=150. Note-se que, uma vez que a condi¢ao do primeiro if é
verdadeira, o programa nao entra no else a ele associado (linhas 11-20).

2. Suponhamos que a quantidade ¢t introduzida pelo utilizador é 60. Ao chegar ao primeiro if (linha
9) o programa verifica que a condigdo ¢t<50 é falsa e por isso passa imediatamente para o bloco
else associado (linha 11). Dentro desse bloco, o programa comega por avaliar a condigao do if da
linha 12, ou seja, verifica se ¢t<99. Como a condicao é verdadeira, o programa entra nesse if,
fazendo a instrucao da linha 13. De seguida, o programa passa para a linha 20 e consequentemente

20

para a linha 21. Note-se que o programa entrou no if da linha 12 pelo que nao vai entrar no else
da linha 14.

3. Suponhamos que a quantidade ¢t introduzida pelo utilizador é 200. Tal como no caso anterior, o
programa vai entrar no else da linha 11 fazendo as instrucoes desse bloco. A condicao do if da
linha 12 é falsa e por isso o programa entra no else da linha 14. Ao chegar a linha 15, o programa
analisa a condicao ¢t<150 cujo valor légico é falso, e por isso o programa entra no else da linha
17, fazendo depois a instrucao da linha 18. De seguida, o programa passa para a linha 19, depois
para a linha 20 e finalmente para a linha 21, nao realizando qualquer acao nestas fases.

Com base neste exemplo conseguimos perceber, por exemplo, porque é que podemos escrever sim-
plesmente ¢t< 150 na linha 15 em vez de ¢t<150 and qt>=100. Isto acontece pois se o programa chegar
a linha 15 é porque entrou primeiro no else da linha 11 (ou seja, é porque ¢t>50) e no else da linha 14,
(ou seja, é porque qt>100).

O segundo excerto de cédigo apresentado acima usa a forma compacta das estruturas condicionais
encadeadas. Relembramos que quando usamos uma estrutura deste tipo é preciso ter em conta que o
programa apenas entra num bloco de instrugoes: ou entra no bloco associado ao if, ou entra num dos
blocos associados ao else if, ou entra no bloco do else. Quando o programa entrar num dos blocos -
seja ele qual for - executa as instrucoes presentes nesse bloco e depois passa imediatamente para o final
da estrutura de controlo (linha 17 neste exemplo).

Ao usar estruturas de controlo encadeadas, é importante ter sempre em mente o funcionamento da
estrutura if else, isto é, ter em conta que o programa ou executa as instrugoes do bloco associado ao if
ou executa as instrugoes do bloco associado ao else e nunca ambas simultaneamente.

2.2 Uso de chavetas e de indentacao

A utilizacao correta de chavetas e a indentacao do cédigo sao dois aspetos muito importantes em
programagao. Por um lado, as chavetas servem para delimitar blocos de instrucoes, tal como vimos na
sec¢ao anterior, e a sua errada colocagao pode levar a erros de sintaxe ou de execugao. Por outro lado, a
indentacao do codigo é completamente ignorada pelo compilador e por isso nao afeta o funcionamento do
programa. Indentar o c6digo serve apenas para facilitar (e muito) a sua leitura de modo a tornar claro
que instrugoes estao dentro de quais. Abaixo é apresentado o mesmo cédigo indentado (lado esquerdo) e
nao indentado (lado direito). Através deste exemplo facilmente se percebe a importancia da indentagao
uma vez que no primeiro caso conseguimos ver claramente onde é que comeca e termina cada bloco de
instrucoes.

21

1. #include <iostream> 1. #include <iostream>
2. using namespace std; 2. using namespace std;
3. 3.

4. int main(){ 4. int main(){

5. int qt, preco; 5. int qt, preco;

6. cout << "Quantidade: "; 6. cout << "Quantidade: ";
7. cin >> qt; 7. cin >> qt;

8. 8.

9. if (gt <50) { 9. if (qt <50) {
10. preco = 5 * qt; 10. preco = 5 * gt;

11. }else{ 11, }else{

12. if (gt <99) { 12. if (qt <99) {
13. preco = 4 * qt; 13. preco = 4 *x qt;

14. telse{ 14. }else{

15. if (gt <150) { 15. if (qt < 150) {
16. preco = 3.5 * qt; 16. preco = 3.5 * gt;
17. telse{ 17. Yelse{

18. preco = 3.3 * qt; 18. preco = 3.3 * qt;
19. } 19. }

20. } 20. }

21. } 21. }

22. 22.

23. cout<<"Preco final: "<<preco; 23. cout<<"Preco final: "<<preco;
24 . return O; 24. return 0;

25. } 25. }

No Qt Creator podemos indentar automaticamente o cédigo que escrevemos carregando nas teclas
Control + A (para selecionar tudo) e em seguida em Control + I (para indentar). Esta indentagao
automatica permite perceber de que forma o compilador 1é o cédigo que escrevemos e verificar se tal
coincide com a forma que de facto queremos que ele o leia.

O uso de chavetas é essencial para delimitar blocos de instrucoes. No entanto, quando um bloco de
instrugoes é composto apenas por uma instrucao, as chavetas podem ser omitidas. No exemplo abaixo,
existe apenas uma instrucao associada ao if da linha 4 pelo que a chaveta da linha 4 e a primeira chaveta
da linha 6 podem ser omitidas. As chavetas associadas ao if da linha 7 nao podem ser removidas porque
temos mais do que uma instrugdo (duas neste caso) dentro do respetivo bloco. No entanto, a segunda
chaveta da linha 10 e a chaveta da linha 12 podem ser removidas, pois no bloco por elas delimitado
apenas existe uma instrucgao.

As chavetas que mencionamos podem ser trivialmente removidas do cédigo para torna-lo mais com-
pacto. No entanto, também a segunda chaveta da linha 6 e a chaveta da linha 13 podem ser removidas.
Isto acontece porque, o primeiro bloco else também tem, na verdade, apenas uma instrucao dentro dele,
isto é, uma instrucao if else que, apesar de ocupar varias linhas, é vista como uma tnica instrugao. Este
tipo de situagoes pode causar alguma confusao numa fase inicial da programacao, pelo que se recomenda
que se mantenham as chavetas nestes casos. Mais uma vez é importante relembrar que no QT Creator
podemos indentar automaticamente o nosso codigo e assim verificar facilmente erros relacionados com
colocagoes/omissoes de chavetas bem como verificar quais as instrugoes que estao dentro de quais.

22

1. int main({ 1. int main(){

2 inta=1, b =19, ¢ = 3; 2. inta=1, b =19, ¢ = 3;
3 3.

4. if (b% 3 ==) { 4. if (b%3==0)
5. c += a; 5. c += a;

6 }else{ 6. else

7 if (e>2){ 7. if (e>2){

8 a = 20; 8. a = 20;
9. c —-= a; 9. c —= a;
10. telse{ 10. }else

11. a = 20; 11. a = 20;
12. } 12.

13. } 13.

14. return O; 14. return O;

18. } 18. }

O préximo exemplo reforga a importancia da utilizagao de chavetas e da indentagao e ilustra uma
propriedade da estrutura if else que ainda nao foi mostrada anteriormente.

1. int main(){ 1. int main(){

2. int a=1, b =19, ¢ = 3; 2. int a=1, b =19, ¢c = 3;
3. if (b % 3 == 0) 3. it (b%3==0) {
4. if (c>2) 4. it (e>2){

5. a = 30; 5. a = 30;

6. else 6. }

7. a = 20; 7. telse{

8. return O; 8. a = 20;

9. } 9. }

10. 10. return O;

11. 11. }

O primeiro excerto de codigo nao contém chavetas nem estd indentado. Além disso, contém dois ifs
e apenas um else, sendo por isso dificil perceber a qual if este estd associado, originando ambiguidade.
Nestes casos ambiguos, o else é emparelhado com o tltimo if que se encontra no mesmo bloco de
instrucoes, isto é, o if da linha 4. O segundo excerto de cddigo ja contém chavetas e estd indentado,
tornando-se assim claro que neste caso o else estd associado ao primeiro if, que comeca na linha 3,
estando o segundo if (linha 4) contido no seu bloco de instrugoes.

2.3 Estruturas de controlo ciclicas

As estruturas ciclicas permitem a execugao de um conjunto de instrucoes de forma repetitiva enquanto
uma determinada condigao for satisfeita. A linguagem de programacao C++ dispoe de trés estruturas
de controlo ciclicas: while, do-while e for. Como referido anteriormente, um programa em C++ comeca

23

sempre por executar a funcao main, percorrendo depois cada linha sequencialmente de cima para baixo,
a nao ser que existam instrucoes em contrario. As instrugoes ciclicas sao as primeiras instrugoes que
estudamos que alteram a sequéncia de execugao de um programa.

2.3.1 Estrutura while

A estrutura while (que em portugués significa “enquanto”) é a mais simples das trés estruturas
ciclicas disponiveis em C++ e tem uma estrutura semelhante a da estrutura if. A sintaxe geral de um
ciclo while é:

while (Condig&o){
Bloco de instrugdes

Quando uma estrutura while é executada, o programa comega por verificar se a Condig&o é verda-
deira. Em caso afirmativo, o Bloco de instrugoes é executado. Ao contrario do que acontece na estrutura
if, ser executado o Bloco de instrugoes, o programa volta ao topo da estrutura while e avalia novamente
a Condicdo. Caso a Condigdo continue a ser avaliada como true, o Bloco de instrucoes é executado
novamente. Este processo é repetido até a Condigdo ser avaliada como false. Quando isto acontece, o
programa abandona o ciclo, prosseguindo a sua execucao para a linha de cédigo imediatamente abaixo da
estrutura while. Assim sendo, um ciclo while pode ser lido como: “Enquanto a condigao for verdadeira,
executa o bloco de instrugoes”.

Considere-se o seguinte exemplo onde é utilizada uma estrutura while para imprimir no ecra os
numeros de 1 a 10:

#include <iostream>
using namespace std;

1

2

3

4. int main(){

5. int i = 1;

6 while(1 <= 10){

7 cout << i << " "y
8

9

I

++1i;
: ¥
10.
11. return O;
12. }

Vejamos agora ver em detalhe o que o programa esta a fazer. Primeiramente, a variavel i € inicializada
a 1, pois esse é o primeiro nimero que vamos imprimir. De seguida, como a condi¢ao i = 1 <= 10 ¢é
verdadeira, o bloco de instrugdes do while (linhas 7-8) é executado. A primeira instrugao do bloco
imprime para o ecra o valor 1, que é o valor da varidavel i neste momento, e um espaco. A segunda
instrucao incrementa o valor da variavel i para 2. Agora, o programa volta a linha 6 e a condigao
é avaliada outra vez. Como 2 <= 10 é verdade, o bloco de instrugoes é executado novamente sendo
impressos no ecra o valor 2 e um espago. O ciclo é executado repetidamente até a variavel i ter valor 11
e nesta altura a condi¢ao 11 <= 10 serd falsa e o bloco de instrucoes associado ao while nao é executado,
passando o programa para a linha 10.

24

No exemplo anterior, para implementarmos um ciclo while precisamos de:
1. definir e inicializar uma varidvel de controlo de ciclo (varidvel ©);

2. ter uma condigao ou critério de paragem (i <= 10);

3. atualizar a varidvel de controlo de ciclo (++1).

Estes trés componentes estao sempre, de alguma forma, presentes num ciclo while e a sua nao inclusao
pode originar erros de codigo.

A nao inicializacao da variavel de controlo de ciclo com um valor apropriado pode fazer com que o
bloco de instrugoes associado ao ciclo while nunca seja executado. Se no exemplo anterior na linha 5
tivéssemos, por exemplo, int i = 15; a condicao do while era avaliada como falsa e o programa saltava
diretamente para a linha 10. A variavel de controlo de ciclo deve ser declarada e inicializada fora da
estrutura while. As variaveis que sao declaradas dentro de blocos de instrucoes, em particular do bloco
while, nao existem fora desses blocos. A isto se chama o ambito da variavel, isto é, o local do programa
onde a variavel é reconhecida pelo programa.

Quando a varidavel de controlo de ciclo nao é atualizada, podemos ter um ciclo infinito em que a
condicao do while permanece sempre verdadeira. Significa isto que o programa executard indefinida-
mente as instrucoes do bloco de instrugoes, nunca conseguindo sair do ciclo e terminando, eventualmente,
com um crash do sistema. Se no exemplo anterior nao tivéssemos a instrucao da linha 8 (++i;), a varidvel
i teria sempre o valor 1, pelo que a condi¢ao i<=10 era sempre avaliada como verdadeira. Estariamos
por isso na presenca de um ciclo infinito.

2.3.2 Estrutura do-while

A sintaxe geral do-while é:

do{
Bloco de instrugdes
}while (Condigo);

O termo do significa “faz”e o termo while significa “enquanto”. Assim sendo, um ciclo do-while pode
ser interpretado como: “Fazer o que estd no bloco de instrugoes enquanto a condicao considerada for
verdadeira”. Ao encontrar um ciclo do-while, o programa comeca por executar imediatamente o bloco de
instrugoes nele contido sem verificar qualquer condigao (contrariamente ao que acontece com a estrutura
while). Apés executar o Bloco de instrugoes, o programa avalia o valor légico da Condig&do. Caso a
condicao tenha valor l6gico verdadeiro, o programa volta a executar novamente todas as instrucoes do
bloco de instrugoes do ciclo e a avaliar a Condigdo. Este processo é repetido enquanto a condicao do
while permanecer verdadeira, pelo que poderao ser efetuadas varias iteragoes até que tal aconteca. Assim
que no momento da avaliacao da condi¢ao do while esta seja falsa, o programa abandona imediatamente
o ciclo prosseguindo para a linha de cédigo imediatamente abaixo dele.

A principal diferenca entre a estrutura do-while e a estrutura while é que na primeira iteragao do ciclo
do-while o bloco de instrucoes é sempre executado dado que a condicao apenas é avaliada a seguir. Assim
sendo, o bloco de instrugoes da estrutura do-while é sempre executado pelo menos uma vez enquanto
que o bloco de instrugoes da estrutura while pode nunca ser executado.

Vejamos os seguintes dois exemplos.

25

1. #include <iostream>
2. ' td;
1. #include <iostream> 3 using namespace std;
g using namespace std; 4: int main(){
. int n;
4. int main(){ 5 }n o
) 6. int conta = 0;
5. int n = 3;
6 7.
7 int i = 1; 8. dof
9. cout << "Valor: ";
8 do{ .
9 cout << i << " "y 10. cin 2> m;
i : ’ 11. if (n>0)
10. T 12 ++conta;
. hil | <= ;) ’
1; jubile(1 <=mn); 13. luhile(n > 0);
' 14.
13. return O; " ;
14 } 15. cout << "Total: << conta;
- 16. return 0;
17. }

Ao ser executado, o primeiro programa comegca por declarar e inicializar a varidvel inteira n com o
valor 3. Ao chegar a linha 7, o programa declara e inicializa uma nova variavel i com o valor 1. Esta
variavel é usada na condicao do ciclo do-while e serd em funcao do seu valor que o ciclo ird continuar a
ser executado ou sera interrompido. Assim sendo, a varidvel i neste programa é a variavel de controlo
do ciclo. Apds a linha 7, o programa passa para a linha 8 e de seguida para a linha 9 onde vai escrever
no ecra o valor da varidvel i (que é 1) e um espago em branco. De seguida, passa para a linha 10 onde
vai aumentar o valor de i numa unidade, isto é, i=2. O programa passa depois para a linha 11 e verifica
que a condigao associada ao while, isto é, i <= n, é satisfeita. Assim sendo, o programa volta a linha 8
para executar novamente todas as instrugoes do bloco do-while. Ao chegar a linha 9, o programa volta
a escrever o novo valor da varidvel i (que agora é 2) e um espa¢o em branco, incrementando depois
o valor da varidavel i na linha 10. A condigao associada ao while volta novamente a ser avaliada e o
resultado dessa avaliagao continua a ser true pois i = 3 <= 3 = n. Assim sendo, o programa volta
novamente a executar o bloco de instrucoes do do-while, isto é, volta a linha 8 e imediatamente a linha
9 onde vai imprimir para o ecra o valor 3. De seguida, na linha 10, volta a incrementar o valor da
variavel ¢ numa unidade, passando este a ser 4. De seguida, a condicao do while é avaliada e, uma vez
que ela agora é falsa (pois i=4), o programa sai do ciclo, passando para a linha 12 e em seguida para a
linha 13, terminando ai o programa. Como todas as instrucoes referidas anteriormente sao executadas
muito rapidamente, o utilizador apenas verd no ecra o resultado final obtido, que neste caso é: “1 2 3
7. Através desta analise, percebemos que o objetivo do primeiro programa é, na verdade, escrever os n
primeiros nimeros naturais.

Para reforgar a importancia da instrucao ++i presente na linha 9, experimentemos executar o pro-
grama sem ela. A varidvel i é inicializada com o valor 1 na linha 7. Se a linha 10 nao existir no
programa, o valor da variavel i nunca serd alterado. Isto significa que a condicao i<=n sera sempre
verdadeira e por isso o programa executara indefinidamente o bloco de instrucoes do do-while, isto é, o
programa escrevera indefinidamente o valor de ¢ (que é 1) no ecra, entrando por isso num ciclo infinito.

Vejamos agora o segundo programa. O objetivo deste programa é pedir sucessivamente nimeros
inteiros positivos ao utilizador até que este insira um nimero inteiro negativo ou nulo. No final do
programa, é apresentada uma mensagem com o numero total de nimeros positivos introduzidos pelo

26

utilizador. Em cada iteracao do ciclo, o programa pede ao utilizador que insira um valor (linhas 9 e 10).
Caso o valor introduzido seja positivo (linha 11), o programa incrementa a variavel conta numa unidade
(linha 12). Esta varidvel é usada para contar os nimeros positivos introduzidos. Apds executar o bloco
de instrucoes, o programa avalia a condicao do while, isto é, verifica se o ultimo numero introduzido
pelo utilizador é positivo. Em caso afirmativo, o programa volta a executar todas as instrugoes do
bloco de instrugoes. Caso contrario, o programa sai do ciclo, passando imediatamente para a linha 15 e
escrevendo a mensagem final.

Existem neste programa alguns aspetos que ¢ importante realcar. Em primeiro lugar, a inicializacao
obrigatéria da varidvel conta feita na linha 6. Uma vez que na linha 12 a varidvel conta estd a ser
incrementada, isto €, ela passa a assumir o seu valor anterior mais uma unidade, é essencial que esta
variavel tenha de facto um valor inicial bem definido. Neste caso, esse valor é zero, pois inicialmente
(quando o programa estd na linha 6) ainda nao foi inserido qualquer niimero positivo. O segundo aspeto
a realcar é a utilizacao do if na linha 11. Serd esse if mesmo necessario? Uma vez que o objetivo do
programa € contar quantos nimeros positivos foram introduzidos pelo utilizador, a utilizagao deste if é
fundamental. Caso este if nao existisse, quando o utilizador introduzisse um nimero negativo ou nulo
para parar o ciclo, ele seria também contado pela variavel conta, uma vez que o incremento da variavel
conta ¢ feito antes da condicao do while ser avaliada. Uma tultima observacao é o facto da varidvel
conta ter que ser declarada fora do ciclo, sendo por isso o seu ambito a funcao main. Se a varidvel
fosse declarada dentro do ciclo, além do programa nao dar o resultado pretendido, nao seria possivel
aceder-lhe na linha 15 para imprimir o seu valor.

2.3.3 Estrutura for

A dltima estrutura de controlo que vamos apresentar é a estrutura for. Qualquer ciclo for pode ser
convertido num ciclo while (ou do-while) e vice-versa. A sintaxe geral de um for é:

for (Inicializag8o; Condig8o; Incremento){
Bloco de instrucgdes

O ciclo for agrega a declaracao e inicializacao da variavel de controlo do ciclo, a condi¢ao de execucao
do ciclo e o incremento da variavel de controlo num sé lugar.

Vejamos o seguinte exemplo em que é apresentado o programa para imprimir no ecra os nimeros de
1 a 10 utilizando um ciclo while e um ciclo for:

1. #include <iostream>

2. using namespace std; 1. #include <iostream>

3. 2. using namespace std;

4. int main(){ 3.

5. int i = 1; 4. int main(){

6. while(i <= 10){ 5. for(int i = 1; i <= 10; ++i){
7. cout << 1 << " ", 6. cout << 1 << " ",
8. ++1; 7. }

9. } 8.

10. 9. return O;

11 return 0; 10. }

12. }

27

Como se pode ver neste exemplo, as linhas 5, 6 e 8 do primeiro programa foram de certa forma juntas
numa s6 linha (linha 5) no segundo programa. Vejamos entao qual o esquema de fluxo seguido por um
ciclo for.

for ([Inicializacdo] ; [Condicdo]| ;)

[Bloco de instrucgdes | /

Ao encontrar um ciclo for, o programa comeca por inicializar a variavel de controlo do ciclo e, em
seguida, avaliar a expressao légica que define a condicao. Enquanto a referida condicao for satisfeita, o
programa, por esta ordem, executa o bloco de instrucoes do for, incrementa a variavel de controlo do
ciclo e avalia novamente a condicao. Este processo é sucessivamente repetido até que a condicao seja
avaliada como falsa.

Foram apresentadas trés estruturas ciclicas diferentes, que podem ser convertidas umas nas outras.
No entanto, em algumas situagoes, a utilizacao de um ciclo é mais recomendada do que a de outros.
Ciclos while e do-while sao geralmente usados quando nao se sabe a partida quantas iteracoes irao efetuar.
Por exemplo, no programa em que se estd sucessivamente a pedir valores positivos ao utilizador, nao
se sabe a partida quantos valores serao introduzidos, pelo que neste caso faz mais sentido a utilizagao
de um ciclo while ou do-while. Nos casos em que se sabe exatamente quantas iteracoes serao efetuadas,
é preferivel a utilizagao do ciclo for, pois toda a informacao do ciclo (varidvel de controlo, condigao e
incrementagao) estd agregada na sua primeira linha. Por exemplo, se se quiser efetuar a soma dos 30
primeiros nimeros naturais, ja se sabe a partida que sera necessario efetuar 30 iteragoes, sendo por isso
aconselhada a utilizacao de um ciclo for.

2.3.4 Ciclos encadeados

Muitas vezes, a utilizagao de um tnico ciclo é insuficiente para programar determinados algoritmos,
havendo a necessidade de usar ciclos encadeados. Isto é, usar ciclos em que eles proprios tém no seu
bloco de instrugoes outros ciclos. Vejamos o seguinte exemplo:

28

j=2
Escreve no ecrid "(1,2) "
j=3
1. #include <iostream>) Escreve no ecrd "(1,3) "
2. using namespace std; j=4
3 Escreve no ecrid "(1,4) "
4. int mainQ{ j = 5 (Fim do segundo ciclo)
5. int n = 5; i=2
6 j=3
7 for(int i = 1; i < n; ++i) Escreve no ecrid "(2,3) "
8 for(int j =1 + 1; j < mn; ++j) j=4
9. cout<<" ("<<ik<", << <) Escreve no ecrd "(2,4) "
10. j = 5 (Fim do segundo ciclo)
11. return O; 1= 3
12. 1 j=4
Escreve no ecrid "(3,4) "
j = 5 (Fim do segundo ciclo)
i=4
j = 5 (Fim do segundo ciclo)
i = 5 (Fim do primeiro ciclo)

Este programa inclui um ciclo for principal (que comega na linha 7 e termina na linha 11) que inclui
no seu bloco de instrugdes um segundo ciclo for (que comega na linha 8 e termina na linha 10). A
variavel de controlo do primeiro ciclo é a variavel i e a do segundo ciclo é a variavel j. O processo de
execucao do programa ¢é entao o que ¢é apresentado no lado direito.

Ao chegar a linha 7, o programa declara e inicializa a variavel i com o valor 1. De seguida, verifica
se a condicao i<n é satisfeita, o que neste caso é verdade, pois 1 < 5. Assim sendo, o programa entra
no bloco de instrucoes do primeiro for, que é um novo ciclo for, e executa-o até ao fim. Neste segundo
ciclo, o programa declara e inicializa a varidvel j com o valor i+1 que neste caso é 2. De seguida, é
avaliada a condigao j<n que, neste caso, é verdadeira. Desta forma, o programa executa o bloco de
instrugdes do segundo for, isto é escreve no ecra “(1,2) 7. O passo seguinte é o incremento da varidvel
j, isto é, ++j, ficando esta varidvel com o valor 3. Uma vez que 3 ainda é menor que n, o programa volta
a executar o bloco de instrugdes do segundo for, isto é, escreve no ecra “(1,3) 7. Posto isto, a varidvel
j é novamente incrementada, ficando com o valor 4 que é ainda menor que n. Isto significa que o bloco
de instrugoes do segundo for é novamente executado e por isso o programa escreve no ecra “(1,4) 7. O
valor de j é novamente incrementado, passando a ser 5. Uma vez que 5 ja nao é menor que n, o segundo
ciclo termina e o programa volta ao primeiro ciclo. Assim sendo, a variavel i é incrementada passando
a ter valor 2. Uma vez que 2 é menor que n, o programa volta a executar o segundo for inicializando a
variavel j com o valor de i+1 que é 3. O processo continua até que a condigao do primeiro for nao seja
satisfeita. O output final do programa é entao “(1,2) (1,3) (1,4) (2,3) (2,4) (3,4)”.

Através deste exemplo conseguimos perceber que, no caso de ciclos encadeados, o ciclo interior sera
executado cada vez que uma iteracao do ciclo exterior for efetuada. E também importante referir que a
inicializacao da variavel de controlo do segundo ciclo depende da variavel de controlo do primeiro ciclo.
Contudo, o inverso nao seria possivel pois o ambito da varidvel j é entre as linhas 8 e 10.

29

2.3.5 As instrugoes break e continue

Independentemente da estrutura usada para implementar um ciclo (do-while, while ou for) esse ci-
clo terminard apenas quando a respetiva condicao deixar de ser verificada. No entanto, em algumas
situagoes, pode ser 1til terminar um ciclo antes que tal aconteca. Para isso, poderemos usar a instrugao
break dentro do bloco de instrugoes do ciclo. Ao encontrar esta instrugao, o programa abandona ime-
diatamente o ciclo. Contudo, em ciclos encadeados, a instrucao break permite apenas terminar um dos
ciclos (dependendo do local onde esta colocada) e nao todos. Vejamos o seguinte exemplo:

i=1
1. #include <iostream> j=2
2. using namespace std; Escreve no ecrd "(1,2) "
3. break (pois 2%1==0)
4. int main(){ i=9
5. int n = 5; j=3
6. Escreve no ecrid "(2,3) "
7. for(int i = 1; i < n; ++i) { j=4
8. for(int j =i + 1; j < mn; ++j) { Escreve no ecrd "(2,4) "
9. COUt<<"(”<<i<<”,”<<j<<”) u; break (pOiS 4%2::0)
10. if (jhi==0) i=3
11. break; j=4
12. } Escreve no ecrd "(3,4) "
13. } j = 5 (Fim do segundo ciclo)
14. i=4
15. return 0; j = 5 (Fim do segundo ciclo)
16. } i = 5 (Fim do primeiro ciclo)

Este programa difere do anterior pelo facto de conter a instrucao break, que apenas afeta o ciclo
interior (o ciclo do j). O uso desta instrucao neste programa faz com que o segundo ciclo possa terminar
por duas razoes: (i) quando j > n; ou (ii) quando j é multiplo de i. O esquema de execugao do
programa ¢é apresentado do lado direito.

A instrucao continue permite parar uma iteragao de um ciclo (while, do-while ou for) sem terminar
o ciclo por completo. Mais precisamente, a instrucao continue faz com que o programa “salte” da linha
onde essa instrucao estd para o fim do ciclo em que estd inserida. Vejamos o seguinte exemplo:

1. #include <iostream>
2. using namespace std;
3

. . 1
4. int main(){ 5
5. for(int i = 1; i <= 9; ++i) { 3
6 if(i%h4==0) { 5
7 continue;

6

8 })
9. cout << i << endl; 9
10. }
11. return O;
12. }

30

O programa apresentado do lado esquerdo imprime todos os niimeros de 1 a 9 que nao sejam divisiveis
por 4. Assim, o ciclo for percorre todos os nimeros de 1 e 9 e, quando estes forem divisiveis por 4,
“salta” para o fim do ciclo for, ndo executando a instru¢ao que imprime os nimeros no ecra (linha
9). Consideremos que a variavel i tem valor 3. Neste caso, a condi¢ao do if é avaliada como falsa e o
programa nao entra no if. Desta forma, a proxima instrucao a ser executada é a da linha 9, sendo o valor
3 impresso no ecra. De seguida, a varidavel de controlo de ciclo ¢ é incrementada para 4 sendo a condig¢ao
do if avaliada como verdadeira e a instrucao continue executada, o que faz com que o programa “salte”
da linha 7 para a linha 10, onde termina a iteragao do ciclo for, nao imprimindo o valor 4 no ecra. O
resultado da execucao do programa ¢é o apresentado do lado direito.

E preciso ter cuidado ao usar a instrucao continue em ciclos while e do-while uma vez que, nestes
ciclos, o valor da variavel de controlo do ciclo é atualizado dentro do corpo do ciclo e, como o uso da
instrucao continue faz com que o programa “salte” instrucoes, a atualizacao da varidvel de controlo de
ciclo pode nao ser efetuada, resultando num ciclo infinito. Considere-se o seguinte programa:

1. #include <iostream>
2. using namespace std;
3

4. int main(){

5. int 1 = 1;

6 while(i <= 9) {
7 if(i == 5) {
8 continue;
9. }

10. cout << i << endl;
11. ++i;

12. }

13.

14. return O;

15. }

O programa anterior deveria imprimir no ecra os nimeros inteiros de 1 a 9, contudo, apenas imprime
os numeros de 1 a 4 entrando depois num ciclo infinito. Quando a variavel de controlo ¢ toma o valor
5, a condicao do if da linha 7 é avaliada como verdadeira e a instrucao continue da linha 8 é executada
fazendo com que o programa “salte” para a linha 12. Significa isto que a variavel de controlo de ciclo ¢
nunca mais é incrementada, originando assim um ciclo infinito.

31

Capitulo 3

Variaveis indexadas - Vetores

Um wvetor é um tipo de dados nao primitivo que permite armazenar uma sequéncia de variaveis do
mesmo tipo, por exemplo, varias variaveis do tipo int. Cada uma das variaveis é um elemento do vetor e
é identificada por um niimero inteiro nao negativo designado por indice. O indice do primeiro elemento
é zero, pelo que um vetor cujo ultimo indice seja n terd n+1 elementos. A figura abaixo representa um
vetor de inteiros v com 6 elementos (indices de 0 a 5).

v0] v[1] v[2] v[3] v[4] v[5]

Vi| 5 7 8 -2 1 9

Os elementos de um vetor nao tém nome e sao identificados pelo seu indice. Por exemplo, a variavel
que contém o valor 5, e que ocupa a primeira posicao do vetor v, é identificada como v[0] enquanto
que a variavel que contém o valor -2 é identificada como v[3]. Intuitivamente, um vetor pode ser visto
como um armario composto por varias gavetas onde cada gaveta contém um e um sé elemento.

3.1 Declaracao de vetores

A utilizacao de vetores em C++ requer a inclusao do pacote vector E], pelo que serd necessario escrever
a instrucao: #include<vector>, sempre que quisermos usar vetores. Existem duas formas principais
de declarar um vetor: com dimensao e sem dimensao.

3.1.1 Declaracao de vetor com dimensao

Esta forma de declaracao é usada quando sabemos quantos elementos tera o vetor a criar, sendo feita
de uma das seguintes formas:

vector<Tipo_de_dados> nome_vetor(n);
ou
vector<Tipo_de_dados> nome_vetor(n, x);

Ambas as instrugoes criam uma vetor com o nome nome_vetor com n posigoes (desde 0 até n-1) para
armazenar elementos do tipo Tipo_de_dados. A diferenca entre elas é que a primeira inicializa todos

Ver https://cplusplus.com/reference/vector/vector/ para mais informacoes sobre o pacote vector.

32

https://cplusplus.com/reference/vector/vector/

os seus elementos com o valor default do tipo Tipo_de_dados do vetor e a segunda inicializa todos os
elementos do vetor com o valor x.

Considerando que o Tipo_de_dados é int e que o nome_vetor é u, a figura que se segue representa o
que a primeira instrugao faz.

ul0] u[l] . u[n-2] u[n-1]

w | 01]0 010

Tal como ja foi dito, o vetor u tem n elementos mas cada um dos elementos do vetor tera o valor default
do tipo int, que é o valor 0. Para construir o vetor apresentado anteriormente v = (5,7,8,—2,1,9) é
necessario atribuir valores especificos a cada um dos elementos do vetor, o que é feito no seguinte excerto
de codigo:

1. #include <vector>

2. using namespace std;

3.

4. int main(){

5. vector<int> v(6); //Declarag3o
6.

7. v[0] = 5; //ou v.at(0) = 5;
8. v[1] = 7; //ou v.at(l) = 7;
9. v[2] = 8; //ou v.at(2) = 8;
10. v[3] = -2; //ou v.at(3) = -2;
11. v[4] = 1; //ou v.at(4) = 1;
12. v[5] = 9; //ou v.at(5) = 9;
13.

14. return O;

15. }

3.1.2 Declaracao de vetor sem dimensao

O C++ permite também a criacao de vetores sem que seja especificada a sua dimensao no momento
da criagao. Para tal, pode ser usada a seguinte instrucao:

vector<Tipo_de_dados> nome_vetor;

No entanto, ha que ter em conta que esta instrucao por si sé é inutil uma vez que apenas declara o
vetor, isto é, cria um vetor sem posicoes. Assim sendo, caso se pretenda armazenar elementos no vetor,
teremos primeiro que criar as posigoes necessarias para os colocar. Estas posicoes podem ser criadas
todas de uma sé vez fazendo um redimensionamento do vetor através da instrucao resize ou podem
ser criadas uma por uma usando a instrucao push_back, conforme mostrado a seguir.

33

1. #include <vector> 1. #include <vector>
2. using namespace std; 2. using namespace std;
3. 3

4. int main(){ 4. int main(){

5. vector<int> v; //Declaracgéo 5. vector<int> v;
6. v.resize(6); //Redimensionar 6

7. 7 //Cria nova posigdo e preenche-a
8. v[0] = 5; //Preenchimento 8 v.push back(5);
9. v[1] = 7; 9. v.push_back(7) ;
10. v[2] = 8; 10. v.push_back(8);
11. v[3] = -2; 11. v.push_back(-2);
12. v[4] = 1; 12. v.push_back(1);
13. v[5] = 9; 13 v.push_back(9);
14. 14

15. return O; 15. return O;

17. } 17. }

(Linha 5) V:

Vi
(Linha 6) Vil o ofo 0o |o 0
(Linha 8) V: 5 0 0 0 0 0 V. 5
(tmha®)vit 5 70|00 |oO Vil 5| 7
(nha10) v:| 5| 7| 8 | 0|0 |oO vi| 5|7 |8
(Linha11) 5 7 8 22 0 0 V| 5 7 8 -2
(Linha12) y: | 5 7 8) 1 0 V: 5 7 8 -2 1
(Linha13) y: [5 7 8 -2 1 9 Vil 5 7 8| -2 1 9

No programa a esquerda é criado um vetor sem posicoes (linha 5) e logo depois é redimensionado
(linha 6), passando a ter 6 posigdes. Neste redimensionamento, é atribuido automaticamente o valor
default do tipo de dados do vetor (zero no caso dos tipos numéricos) a todos os elementos do vetor.
Uma vez criadas as posicoes, estas sao entao preenchidas nas linhas 8-13. No programa a direita, o
vetor é também declarado sem posicoes. No entanto, cada vez que se pretende adicionar um elemento
ao vetor, é primeiro criada a posi¢ao para esse elemento, sendo depois preenchida com o elemento em
causa. Tudo isto é feito internamente pela instrucao push_back.

Em termos de eficiéncia computacional, o primeiro excerto de cdédigo com a instrucao resize é mais
eficiente que o segundo onde ¢é usada a instrucao push_back. Assim sendo, de entre estas duas instrucoes
devemos privilegiar a escolha da primeira sempre que possivel.

A dimensao de um vetor pode ser alterada varias vezes no decorrer do programa através do método
resize verificando-se o seguinte: i) se a nova dimensao do vetor for superior & anterior, todos os

34

elementos do vetor sao preservados e sao criadas as posigoes em falta, sendo que os elementos nessas
posigoes assumirao o valor default do tipo de dados do vetor (0 no caso de tipos numéricos); ii) se a
nova dimensao do vetor for inferior a dimensao atual, entao o vetor é simplesmente “cortado”, sendo
as ultimas posicoes eliminadas. Importa ainda salientar que o método resize pode ainda ser chamado
com dois argumentos, isto é,

v.resize(n,x);

neste caso, n sera a nova dimensao do vetor e x serd o valor de todos os elementos colocados nas novas
posigoes criadas. Por exemplo, se tivermos v = (1,2, 3), a instrugao v.resize(5,10) altera o vetor para
v=(1,2,3,10,10).

Tal como acontece com outros tipos de dados, é possivel inicializar um vetor no momento da sua
declaracao. No entanto, tal inicializacao tera que ser feita através de uma lista de elementos. Assim, no
exemplo que estamos a considerar bastaria escrever:

#include <vector>
using namespace std;

vector<int> v = {5, 7, 8, -2, 1, 9};

1.

2.

3.

4. int main(){
5

6 return O;
7

Esta seria a forma mais simples de criar o vetor pretendido, no entanto, este tipo de criacdo nem
sempre é possivel uma vez que frequentemente os valores a colocar no vetor (bem como a dimensao do
vetor) nao sao conhecidos quando o vetor é declarado.

3.2 Método .at() vs operador | |

Para aceder/preencher uma posigao de um vetor, pode ser usado tanto o operador [| como o método
.at (). A principal diferenca entre eles é o facto do método .at () fazer a validacao da posicao do vetor
que se pretende aceder, isto é, verifica se essa posicao existe no vetor. Vejamos o seguinte exemplo:

#include <vector>
using namespace std;

1.

2.

3

4. int main(){

5. vector<int> v(2);
6 vI0] =55 //ou v.at(0)
7 v[1] 7; //ou v.at(1) 7

8 v[2] = 8; //ERRO (o programa pode ndo terminar)

9. v.at(2) = 8; //ERRO (o programa termina imediatamente)
10. //. ..

11. return O;

12. }

5;

35

O vetor v declarado na linha 5 tem apenas duas posi¢oes (posigao 0 e posi¢ao 1). Assim sendo, o
acesso a estas posi¢oes pode ser feito através do operador [] ou do método .at () (linhas 6 e 7). Quando
tentamos aceder a uma posigao do vetor que nao existe (posi¢ao 2, por exemplo) usando o operador [],
o programa nao nos informa que tal posi¢ao nao existe e acede a uma qualquer localizacao da meméria
do computador, devolvendo-nos o valor lixo ai existente. Dependendo do contexto, o programa pode
terminar imediatamente sem apresentar qualquer mensagem de erro ou pode continuar a ser executado
ficando o erro “camuflado”. Neste tltimo caso, o erro acaba por ser propagado ao longo do programa sem
que nos apercebamos dele. Ao utilizarmos o método .at () para tentar aceder a uma posicao do vetor
que nao existe, o programa terminara imediatamente e apresentara a mensagem de erro out_of_range.

Mas entao, porque nao usar sempre o método .at() uma vez que é mais seguro? A principal razao
¢ a eficiencia. Como o método .at () faz sempre a validacao da posicao a que se estd a tentar aceder,
o seu esforco computacional é maior, o que podera ter grande impacto na eficiéncia computacional do
programa. Além disso, o operador | | é mais simples de escrever. Assim sendo, cada opgao tem as suas
vantagens e desvantagens, pelo que ambas as formas podem ser usadas nesta cadeira.

3.3 Manipulacao de vetores

Um vetor v pode ser visto como um conjunto de varidveis indexadas v[i] em que i é a posicao
da variavel no vetor. Significa isto que cada uma dessas varidveis pode ser manipulada através dos
operadores/métodos definidos para o seu tipo, como por exemplo os cin, cout, +, == para objetos do
tipo string. No entanto, é necessario ter sempre presente que estes operadores nao estao definidos para
vetores. Isto é, sendo v e u dois objetos do tipo vector nao é possivel fazer, por exemplo, v+u. Significa
isto que, para ja, um vetor serd sempre manipulado posicao a posicao e nao como um todo como a seguir
se explica.

3.3.1 Preenchimento de vetores

Ja vimos anteriormente como preencher um vetor com valores especificos, conhecidos a priori. Su-
ponhamos agora que pretendemos criar um vetor v de inteiros com dimensao 3, sendo os seus valores
pedidos ao utilizador. Sabemos ja que a instrucao cin permite pedir valores ao utilizador, mas esta
instrucao nao esta definida para vetores, pelo que nao é possivel fazer algo como “cin>>v”. No entanto,
é possivel fazer “cin>>v[0]”, “ cin>>v[1]” e “cin>>v[2]” uma vez que v[-] é uma variavel do tipo
int. Como estamos a repetir varias vezes o procedimento de pedir valores ao utilizador, podemos usar
uma estrutura de controlo ciclica para preencher o vetor. Além disso, dado que sabemos exatamente
quantos valores vao ser pedidos, devemos utilizar o for. Nos excertos de codigo abaixo é feita a criagao
e preenchimento do vetor v com valores pedidos ao utilizador com e sem a utilizagao de um ciclo for.

36

1. #include <iostream> 1. #include <iostream>

2. #include <vector> 2. #include <vector>

3. using namespace std; 3. using namespace std;

4. 4.

5. int main(){ 5. int main(){

6. vector<int> v(3); 6. vector<int> v(3);

7. 7.

8. //cin >> v; //ERRO 8. for(int i = 0; 1 < v.size(); ++i){
9. cin >> v[0]; //ou cin>>v.at(0); 9. cin >> v[i]; //ou cin>>v.at(i);
10. cin >> v[1]; 10. }

11. cin >> v[2]; 11.

12. 12.

13. return O; 13. return O;

14. } 14. }

O cédigo da direita permite preencher o vetor de forma automéatica uma vez que percorre sucessiva-
mente cada posi¢ao do vetor (desde 0 até 2) pedindo um valor ao utilizador para essa posigao. O método
size() devolve a dimensao do vetor (neste caso 3). A manipula¢do de vetores requer frequentemente a
utilizacao de um ciclo for como o que se apresenta na linha 8 do cédigo da direita para percorrer todas
as posicoes do vetor (desde 0 até size()-1).

Quando a dimensao do vetor nao é conhecida, aconselha-se a utilizacao de um ciclo while para
preencheé-lo. Suponhamos que se pretende pedir sucessivamente valores numéricos ao utilizador até ser
introduzido um valor nao numérico. Neste caso, nao sabemos a partida quantos valores numéricos o
utilizador vai introduzir, pelo que devemos definir um vetor sem especificar a sua dimensao e usar a
instrucao push_back para criar uma nova posicao no vetor cada vez que for inserido um valor numeérico.
Este procedimento é efetuado no cédigo abaixo.

1. #include <iostream>
2. #include <vector>

3. using namespace std;
4.

5. int main(){

6. vector<double> v;
7.

8. double x;

9. while(cin >> x){ //Enquanto forem lidos valores numéricos
10. v.push back(x);
11. }

12.

13. return O;

14. }

Cada vez que o ciclo while comega, a instrugao cin>>x ird tentar atribuir a variavel x (que é do tipo
double) o valor inserido pelo utilizador. Caso esse valor seja numérico, a atribui¢ao é bem sucedida e por
isso o programa entra no ciclo while, cria uma nova posicao no vetor e coloca nela o valor da variavel x.

37

Caso o utilizador insira um valor nao numérico, esse valor nao consegue ser atribuido a variavel x e a
instrucao cin>>x devolve false, fazendo com que o ciclo while termine imediatamente. Além disso, o
cin entra no estado com erro e nao pode ser utilizado até que o seu estado “seja limpo” (ver a Secgao
10.3 para mais informagoes).

3.3.2 Impressao de vetores

Tal como o preenchimento de um vetor, também a sua impressao deve ser feita posicao a posicao
uma vez que o método cout nao esta definido para vetores. Assim sendo, como o vetor que queremos
imprimir tem dimensao conhecida (uma vez que ja estd criado), a forma mais comum de o imprimir é
utilizando um ciclo for conforme mostrado no excerto de cédigo abaixo.

1. #include <iostream>

2. #include <vector>

3. using namespace std;

4.

5. int main(){

6. vector<int> v = {5, 7, 8, -2, 1, 9};

7.

8. cout << "(";

9. for(int 1 = 0; 1 < v.size(); ++i){

10. if(i < v.size() - 1)

11. cout << v[i] << ", "; //Para todos os elementos que n&do o dltimo
12. else

13. cout << v[i] << ")"; //Para o iltimo elemento
4.)

15. return O;

16. }

Note-se que o ciclo for tem exatamente a mesma estrutura do que aquele que é usado para preencher
o vetor, dado que é necessario percorrer todas as posicoes do vetor. O if presente no interior do ciclo
for tem como objetivo distinguir a impressao do tultimo elemento da dos restantes. Isto porque, apds
a escrita do ultimo elemento do vetor, deve ser escrito um paréntesis e nao uma virgula como acontece
para os restantes elementos. O output do programa sera entao

(5,7, 8, -2, 1, 9).

3.3.3 Ordenagao de vetores

A ordenacao de vetores é essencial para simplificar tarefas que habitualmente realizamos com vetores,
tais como a pesquisa de elementos ou a obtencao de estatisticas descritivas. Existem varios algoritmos
de ordenagao, como o Bubble Sort, o Insertion Sort, o Sequencial Sort, etc. O C++ dispoe ja de um
método de ordenacao, o método sort, que iremos usar nesta cadeira sempre que precisarmos de ordenar
vetores. Este método pertence ao pacote algorithm, pelo que a sua utilizacao requer a inclusao da
instrugao #include<algorithm> no preambulo. No cédigo abaixo é exemplificada a ordenagao de um
vetor por ordem crescente e decrescente.

38

#include <vector>
#include <algorithm>
using namespace std;

int main(){
vector<int> v = {5, 7, 8, -2, 1, 9};

O© 00 O O WN -~

//0rdenar vetor v por ordem crescente

10. sort(v.begin(), v.end());

11.

12. //0rdenar vetor v por ordem decrescente

13. sort(v.begin(), v.end(), greater <>());
14.

15. return O;

16. }

Na linha 6 temos, por exemplo, v[0] = 5. A partir da linha 10, o vetor v passa a estar ordenado
por ordem crescente, pelo que, v[0] = -2. A partir da linha 13, o vetor passa a estar ordenado por
ordem decrescente, pelo que v[0] = 9.

3.4 Vetores de vetores - Matrizes

Como vimos no inicio deste capitulo, um objeto do tipo vetor armazena variaveis de um determinado
tipo. Em particular, pode armazenar varidaveis também do tipo vetor, o que origina um vetor de vetores.
Esta estrutura de dados ¢é a forma mais natural de representar uma matriz em C++. Esquematicamente,
uma matriz pode ser representada da seguinte forma:

m
0 1 2
0 «
N—
> 2] mo][0]=5 m[0][1]=2 m[0][2]=1
1
“~—T25T0 [s m[1][0]=8 m[1][1]=0 m[1][2]=6
2l N~—T[7 T2 13 ‘ mR2l0]=7 m2)1]=2 m[2][2]=3
3 «\ 1 3 1 m[3][0] =1 m[3][1]=3 m[3][2]=1
mIi31

O vetor m é composto por 4 elementos, sendo que cada elemento é um novo vetor de dimensao 3.
O vetor m pode entao ser visto como uma matriz de dimensao 4x3, isto é, uma matriz com 4 linhas
e 3 colunas. Cada elemento da matriz é identificado por m[i] [j], sendo ¢ o indice no vetor principal
m (linha) e j o indice no vetor secundario m[i] (coluna). Sendo uma matriz um vetor de vetores, é
necessario definir as dimensoes de todos os vetores envolvidos antes de preencher a matriz. A criagao
da matriz do exemplo acima pode ser feita da seguinte forma:

39

1. #include <vector>

2. using namespace std;

3. int main(){

4. //0pgdo 1: Declarar e preencher a matriz

5. vector<vector<int>> m = { {5, 2, 1}, {8, 0, 6}, {7, 2, 3}, {1, 3, 1} };
6

7

8

9

//0pgdo 2: Criar matriz sem dimensdes e depois redimensionar
vector<vector<int>> m; //ou vector<vector<int>> m(4); e eliminar a linha 9
m.resize(4); //Definir nimero de linhas (dimensdo do vetor principal)

11. //Definir nimero de colunas (dimensdo de cada vetor secundario)
12. for(int i = 0; i < m.size(); ++i)
13. m[i] .resize(3);

14.

15. //Preencher matriz

16. m[0] [0] = 5;

17. //. ..

18. m[3][2] = 1;

19.

20. return O;

21. }

A primeira opgao de criagao da matriz é claramente a forma mais simples de o fazer. No entanto, esta
opcao ¢é apenas possivel no caso em que quer as dimensoes quer os elementos da matriz sao conhecidos
no momento da sua criacao, o que frequentemente nao acontece. Quando as dimensoes da matriz e os
seus elementos nao sao conhecidos no momento da criagao da matriz - o que acontece por exemplo se
essa informacao for pedida ao utilizador durante a execugao do programa - teremos de usar a segunda
0pcao. E importante também realgar que o nimero de linhas da matriz pode ser definido aquando
da sua declaracao, conforme descrito no comentario da linha 8. No entanto, nao podemos escrever
vector<vector<int>> m(4,3) para criar uma matriz 4 X 3, uma vez que se espera que o segundo
argumento do construtor do tipo de dados vector<vector<int>> seja um vector<int> e nao um int.
Para criar uma matriz 4 x 3 matrix (4 linhas e 3 colunas) inicializada com todas as entradas a zero,
podemos escrever

vector<vector<int>> m(4, vector<int>(3, 0));

Isto constréi um vetor externo com quatro posicoes, onde cada posicao é um vector<int> interno de
tamanho 3, com todos os seus elementos iguais a zero.

No exemplo apresentado o vetor de vetores foi usado para representar uma matriz, e para que tal
aconteca, os vetores secundarios devem ter todos a mesma dimensao. Contudo, seria possivel definir um
vetor de vetores onde os vetores secundarios teriam dimensoes diferentes.

Tal como no caso dos vetores simples, também as matrizes sao manipuladas entrada a entrada e
nao como um todo. Significa isto que para manipular uma matriz é necessario percorrer todas as suas
entradas, isto é, todas as suas linhas e colunas. A forma mais simples de o fazer é utilizar dois ciclos
for encadeados, sendo que o primeiro ira percorrer “as linhas” da matriz e o segundo “as colunas”. O
c6digo abaixo mostra como se pode imprimir uma matriz em C++.

40

©O© 00 NO O b W N -

=
= O -

e e
g W N

16.

. #include <iostream>

#include <vector>
using namespace std;

int main(){

}

vector<vector<int>> m = { {5, 2, 1}, {8, 0, 6}, {7, 2, 3}, {1, 3, 1} };
for(int i = 0; i < m.size(); ++i){ //Linha i
for(int j = 0; j < m[i].size(); ++j){ //Coluna j

cout << m[i][j] << " "y
}

cout << endl; //Muda de linha apés escrever uma linha completa

}

return O;

Note-se que usamos o método cout aplicado a cada entrada da matriz e nao a matriz em si. Fazer
algo como “cout << m” nao é possivel pois o comando cout nao estd definido para objetos do tipo
vector<vector<int>>. O preenchimento de uma matriz é feito de modo semelhante, isto é, através da
utilizacao de dois ciclos for, pelo que nao sera aqui apresentado.

41

Capitulo 4
Funcoes

O termo fun¢do remete-nos intuitivamente para a area da matematica onde uma funcao é caracte-
rizada por um dominio, um contradominio e uma expressao analitica. Por exemplo, a funcao f

f. ZxZ — R

(2,y) — f(2,y) = ——

y?+1

recebe dois argumentos inteiros (z e y) e devolve uma valor real que é o resultado da divisao de = por
y* + 1. Em programacao ¢ importante distinguir trés conceitos associados a uma funcao: declaracao,
definicao e chamada. A declaracao de uma funcao consiste em indicar o seu nome, o tipo dos seus
argumentos (tipo de dados que recebe - dominio) e o tipo de retorno (tipo de dados que devolve -
contradominio). A defini¢ao de uma funcao consiste em explicitar o que é que a fungao faz (expressao
analitica). Por fim, a chamada da fungao consiste em executar a funcdo para valores concretos dos seus
argumentos. No exemplo em causa temos:

f: ZxZ — R (declaracao)

(z,y) — flz,y) = (definigao)

y?+1
f(2,3), f(5*-8) ... (chamadas)
Em C++, para este mesmo exemplo teriamos:

//declaracgio
double f(int, int);

//declaracdo e definigdo
double f(int x, int y){
return x / (y *x y + 1);
}

//chamadas
cout << £(2,3); //chamada 1
double z1 =5 % f(1,7); //chamada 2
int a =6, b=1;
double z2 = f(a,b); //chamada 3

42

No primeiro bloco de cédigo, é feita apenas a declaracao da funcao. Isto é, é indicado que a funcao f
recebe dois argumentos do tipo int e devolve um resultado do tipo double. No segundo bloco de cédigo,
é feita simultaneamente a declaracao e a definicao da funcao. A definicao da funcao corresponde ao
bloco de cédigo que aparece dentro das chavetas {...}. Finalmente, no tltimo bloco de cddigo, sao feitas
trés chamadas da fungao. Note-se que nestes casos, tal como em matematica, apenas necessitamos de
colocar os valores nos argumentos da fungao sem indicar o seu tipo uma vez que tal ja ficou explicito na
declaracao/definigao da fungao.

Neste caso, a fungao f devolve um valor real que tanto pode ser diretamente impresso no ecra
(chamada 1), como usado para definir o valor de uma varidvel (chamadas 2 e 3). Na primeira chamada
da funcao, o primeiro argumento x assumira o valor 2 e o segundo argumento y o valor 3. Na terceira
chamada da funcao, x assumira o valor da variavel a (que é 6), y o valor da varidvel b que é 1 e o valor
devolvido pela funcao sera armazenado na variavel z2.

E importante notar que o nome dos argumentos de uma fungao é apenas usado internamente na
funcao, sendo por isso independente do nome das variaveis usadas na chamada dessa funcao. Além
disso, uma vez que esta funcao foi declarada com 2 argumentos do tipo int, ela terd sempre que ser
chamada com 2 argumentos do tipo int, pelo que, por exemplo, f(1), f(1,8,5), f(‘j’,5) e f nado sdo
chamadas vélidas para esta funcao.

4.1 Sintaxe geral de uma funcao

A estrutura geral da declaragao e definicao de uma funcao em C++ é a seguinte:

Tipo_retorno nome(Tipo_al nome_al, ..., Tipo_an nome_an){
//. ..
return ... ; //Se "Tipo" for diferente de "void"

nesta declaracao e defini¢ao:

- nome ¢é o nome dado a funcao;

Tipo_retorno é o tipo de dados devolvido pela funcao. Caso a funcao nao devolva qualquer
resultado o tipo de retorno sera void;

nome_v1, ..., nome_an sao os nomes dos argumentos da fungao;

Tipo_al, ..., Tipo_an sao os tipos de dados dos argumentos da funcao.

Quando a instrucao return é executada, o programa sai da funcao imediatamente e o valor de retorno
da funcao é devolvido/retornado (através de uma cépia) para o programa onde esta foi chamada. Assim
sendo, esta instrugao nao precisa de ser usada em fungoes do tipo void, uma vez que estas nada devolvem.
As fungoes do tipo void sao frequentemente usadas para imprimir algo no ecra, nao devolvendo por isso
qualquer resultado que possa ser usado no programa onde a funcao foi chamada, contrariamente ao
que acontecia com a funcao f apresentada anteriormente. De seguida é apresentado um exemplo da
declaracao e definicao de duas funcoes, uma com o tipo de retorno int e outra com o tipo de retorno
void. No entanto, é importante chamar a atencao para o facto de que as fungoes nao tém necessariamente
de ter argumentos, como ¢ o caso da funcao main que sempre temos usado.

43

Exemplo 1

Suponhamos que se pretende implementar uma funcao que devolva o maximo entre dois nimeros
inteiros e outra que escreva dois nimeros inteiros por ordem crescente. Ambas as func¢oes recebem os
mesmos argumentos: dois numeros inteiros que internamente serao denotados por nl e n2. Uma vez
que a primeira (linhas 4-9) tem como objetivo calcular o méximo entre dois ntimeros inteiros, o seu
tipo de retorno é também um numero inteiro. Por outro lado, a segunda funcao (linhas 11-16) apenas
escreve no ecra os dois nimeros inteiros recebidos por ordem crescente e por isso nao devolve qualquer
resultado para o programa onde for chamada. Assim sendo, esta funcao é do tipo void e por isso nao
existe qualquer instrucao return no seu interior.

1. #include <iostream>

2. using namespace std;

3.

4. int maximo(int nl, int n2){

5. int max = nl;

6. if(max < n2)

7. max = n2;

8. return max;

9. }

10.

11. void ordem(int nl, int n2){

12. if(nl < n2)

13. cout << nl << " <= " <K< n2;
14. else

15. cout << n2 << " <= " << ni;
16. 1}

17.

18. int main(){

19. int a;

20. int b;

21. cout << "Introduza a e b: ";
22. cin >> a >> b;

23.

24. //Chamadas das fungdes

25. int x = maximo(5,7);

26. int y = maximo(a,b) - 6;

27. cout << "0 maximo entre 2 e 8 é " << maximo(2,8) << endl;
28. int z = maximo(maximo(7,8) , maximo(1,6));
29

30. cout << "Ordem: ";

31. ordem(7,5);

32. cout << "\n Ordem: ";

33. ordem(maximo(1,8) , 3);

34. return O;

35. }

44

Dado que um programa em C++ inicia sempre a sua execucao pela funcao main, todas as restantes
fungoes terao de ser declaradas antes dela, por isso é que as fungoes maximo e ordem estao declaradas/-
definidas nas linhas 4-16. Como referido anteriormente, ao chamar uma funcao, é obrigatério escrever
o seu nome e todos os seus argumentos (sem especificar o seu tipo). Ao chamar a fungdo maximo na
linha 25, indicamos que o valor dos seus argumentos nl e n2 (linha 4) é respetivamente 5 e 7. Assim
sendo, quando o programa chega a linha 25, ird saltar para a linha 4 e executara as instrucoes da fungao
maximo considerando n1=5 e n2=7. Ao chegar a linha 8, o programa devolve o valor da varidvel max (que
serd 7) para o local onde a funcao foi chamada, isto é, para a linha 25, sendo por isso o valor da varidvel
x igual a 7.

Ao chamar a fungao maximo na linha 26, os valores das varidveis a e b (anteriormente pedidos ao
utilizador) sdo passados como argumento a funcao, definindo por isso os valores de n1 e n2. A execugao
da funcao maximo termina com o retorno do maximo entre os valores de a e b para a linha 26. A esse
maximo, é subtraido o valor 6, sendo o resultado final guardado na variavel y.

O valor devolvido por uma fungao nao tem necessariamente que ser guardado numa variavel como
nas linhas 25 e 26. Uma vez que a funcao maximo devolve um int, ele pode ser diretamente impresso
no ecra, como ¢ feito na linha 27.

Uma funcao pode ainda ser chamada com argumentos que sao eles préprios fungoes desde que os tipos
de retorno das fungoes interiores estejam de acordo com o tipo dos argumentos das fungoes exteriores, tal
como acontece na linha 28. A chamada das fun¢oes maximo (7,8) e maximo(1,6) resulta, respetivamente,
nos valores 8 e 6, que sao do tipo int pois é esse o tipo de retorno da funcao maximo. Estes valores serao
entao os argumentos da funcao exterior, pelo que a linha 28 é equivalente a int z = maximo(8,6) ;.
Assim sendo, o valor da varidvel z sera 8.

Contrariamente a funcao maximo, a funcao ordem nao devolve qualquer resultado para o programa
principal, apenas escreve informacao no ecra, sendo por isso uma funcao do tipo void. Assim sendo, esta
fungao terd de ser chamada de forma isolada (linhas 31 e 33), ndo podendo ser usada nem para definir
valores de variaveis nem dentro de um cout. A funcao ordem recebe dois argumentos do tipo int e por
isso pode ser chamada como na linha 33, uma vez que a chamada da funcao maximo(1,8) tem como
resultado um valor do tipo int que sera o primeiro argumento da funcao ordem.

No codigo abaixo sao apresentados varios exemplos de chamadas incorretas das duas fungoes ante-
riores.

int maximo(int n1, int n2){...}
void ordem(int nl, int n2){...}

//Chamadas incorretas das fungdes

int w = maximo; //Faltam argumentos

int a =9, b =4;

int r = maximo(int a , int b); //Ndo colocar os tipos

int 8 = maximo(c, d); //Variaveis c e d ndo declaradas
int t = maximo("A", 3); //Argumento ndo do tipo int

int y = maximo(nl, n2); //Argumento ndo definidos

int u = maximo(5); //Faltam argumentos

cout << "O maximo é " << maximo; //Faltam argumentos

int h = ordem(2,8); //Funcdo ordem n&o devolve um int
cout << "Ordem: " << ordem(7,5); //Funcido ordem nada devolve
ordem; //Faltam argumentos

cout << maximo(ordem(1,6), 5); //Funcdo ordem ndo devolve um int

45

Exemplo 2

Uma fungao pode ter como argumento qualquer tipo de dados, em particular pode ter argumentos
do tipo vector. No programa abaixo (lado esquerdo) estd declarada e definida uma fungao print que
recebe como argumento um vetor de inteiros e devolve esse vetor escrito como string.

1. #include <iostream> 1. #include <iostream>
2. #include <vector> 2. #include <vector>
3. using namespace std; 3. using namespace std;
4. 4.
5. string print(vector<int> x){ 5. int main(){
6. string s = "("; 6. vector<int> v = {2, 3, 1, 7};
7. for(int i = 0; i<x.size(); ++i){ 7. vector<int> u = {3, 5, 1, 1};
8. if(i< x.size() - 1) 8. vector<int> w(4);
9. s+=to_string(x[i]) + ", "; 9.
10. else 10. for(int i = 0; i<v.size(); ++i)
11. s+=to_string(x[i]) + ")"; 11. wlil = v[i] + uli]l;
12. } 12,
13. return s; 13. string s1 = "(";
14. } 14. for(int i = 0; i<v.size(); ++i){
15. 15. if(i < v.size() - 1)
16. int main(){ 16. sl+=to_string(v[i]) + ", ";
17. vector<int> v = {2, 3, 1, 7}; 17. else
18. vector<int> u = {3, 5, 1, 1}; 18. sl+=to_string(v[i]) + ")";
19. vector<int> w(4); 19. }
20. 20.
21. for(int i = 0; i<v.size(); ++i) 21. string s2 = "(";
22. wli] = v[i] + ulil; 22. for(int i = 0; i<u.size(); ++i){
23. 23. if(i < u.size() - 1)
24. cout << print(v) << "+"; 24 . s2+=to_string(uli]) + ", ";
25. cout << print(u); 25. else
26. cout << "=" << print(w); 26. s2+=to_string(ulil) + ")";
27. 27. 1}
28. return O; 28.
29. } 29. string s3 = "(";
30. for(int 1 = 0; i<w.size(); ++i){
31. if(i < w.size() - 1)
32. s3+=to_string(w[i]) + ", ";
33. else
34. s3+=to_string(w[i]) + ")";
35. }
36.
37. cout<< s1 << "+" << 82 << "=" <L 83;
38. return O;
39. }

46

Na funcao print, o vetor recebido é sempre designado por x. Significa isto, que cada vez que a funcao
print for chamada com um determinado vetor (u, v ou w como nas linhas 24, 25 e 26), serd criada uma
copia desse vetor (designada por x) que serd o argumento da fungao.

Este exemplo tem como objetivo mostrar duas das grandes utilidades das fungoes: a nao repeticao
de cddigo e a simplificagdo do programa onde a fungao é chamada (fungdo main). Ambos os excertos
de cédigo acima produzem o mesmo output, isto é,

(2,3,1,7) + (3,5,1,1) = (5,8,2,8).

No entanto, o cédigo da direita nao utiliza fungoes e por isso, cada vez que se pretende imprimir um
vetor é necessario replicar as linhas 13-19 para o vetor em causa. Note-se que o processo efetuado nas
linhas 21-27 e 29-35 é o “mesmo” das linhas 13-19, s6 que para vetores diferentes. Além de originar um
cédigo mais extenso, a repeticao de excertos de codigo também é mais propicia a erros. Definir uma
fungao para imprimir um (qualquer) vetor x, como é feito no cédigo da esquerda, permite que sempre que
se pretenda imprimir um vetor de inteiros (independentemente da sua dimensao) apenas seja necessario
chamar a funcao para esse vetor, tal como ¢ feito nas linhas 24, 25 e 26 do cédigo a direita. Note-se que
a funcao main do lado esquerdo é muito mais simples de ler do que a do lado direito.

4.2 Vantagens das funcoes

As funcgoes sao extremamente titeis em programacao. Como ilustrado no exemplo anterior, as fungoes
evitam repeticoes de codigo uma vez que sao implementadas de forma bastante genérica, podendo depois
ser chamadas varias vezes com argumentos diferentes.

Outra das grandes vantagens das fungoes é o facto de permitirem a modularidade do cédigo. Isto é,
com as funcoes é possivel dividir o cédigo em pedacgos mais pequenos que sao mais faceis de organizar,
testar e usar. Desta forma, as fungoes facilitam a divisao de tarefas em programas que envolvem varias
pessoas, uma vez que sao estruturas completamente independentes.

Uma vez definidas, as fungoes podem ser usadas por varias pessoas em diversos programas. Do ponto
de vista do utilizador, apenas ¢é necessario saber como é que uma determinada funcao foi declarada e
nao como foi definida, isto é, saber o seu nome, argumentos e tipo de retorno. Note-se que, sem que
talvez tenhamos dado conta disso, ja usamos varias funcoes que nao sabemos como foram definidas.
Alguns exemplos dessas fungoes sao as fungoes size, resize e at para objetos do tipo vector e a fungao
de conversao de valores numéricos para string (to_string).

4.3 Passagem por valor, por referéncia e por referéncia cons-
tante

Os argumentos de uma funcao podem ser passados por valor, por referéncia ou por referéncia cons-
tante, sendo a forma de o fazer a seguinte:

Tipo nome(Tipo argumento argumento){...} //Passagem por valor
Tipo nome(Tipo argumento& argumento){...} //Passagem por referéncia

Tipo nome(const Tipo argumento& argumento){...} //Passagem por referé&ncia constante

47

Na passagem por valor, é passado como argumento a funcao uma cépia do valor do argumento usado
no momento da chamada da funcao. Significa isto que todas as alteragoes que ocorram dentro da fungao
serao aplicas a essa copia e nao a variavel passada como argumento.

Na passagem por referéncia, o que é passado como argumento a fungao nao é uma copia do valor da
variavel mas sim o endereco de memoéria onde a variavel esta guardada. Assim sendo, a funcao consegue
“ver” e “alterar” diretamente o valor dessa variavel. Significa isto, que qualquer alteracao que ocorra
dentro da funcao serd aplicada a variavel que foi passada como argumento na chamada da funcao.

A passagem por referéncia constante é semelhante a passagem por referéncia no sentido em que o
que chega como argumento a funcao é também o endereco de memoria da variavel. No entanto, ao usar
uma referéncia constante, a funcao apenas consegue “ver”a variavel nao conseguindo fazer alteragoes.

Vejamos o seguinte exemplo:

1. #include <iostream>

2. using namespace std;

3.

4. void f(int a, int& b, const int& c){

5. a += 10 + c;

6. b += 10 + c;

7. //c += 10; ERRO!

8. cout << a <<« " " < b < " " ¢c; [/a=12, b=12, c=1
9. }

10.

11. int main(){

12. int x = 1;

13. int y = 1;

14. int z = 1;

15. f(x, v, 2);

16. cout << x << " "<y <"z //x=1, y=12, z=1
17.

18. return O;

19. }

A funcao f é chamada na linha 15 com os argumentos x, y e z. Esta funcao recebe trés argumentos,
sendo o primeiro passado por valor, o segundo por referéncia e o terceiro por referéncia constante.
Assim sendo, na chamada da fungao na linha 15 é passado como argumento o valor da varidvel x (que é
1), o enderego de meméria da varidvel y e o enderego de meméria da varidvel z. Significa isto que a=1,
b é exatamente a variavel y e ¢ é exatamente a variavel z. Assim sendo:

- alterar a variavel a dentro da funcao nao altera a variavel x, uma vez que a é uma cépia de x e
nao a variavel x. Note-se que no final da execucao da funcao temos a=12 e x=1.

- alterar a varidvel b é o mesmo que alterar a variavel y e por isso no final da execucao da fungao
temos b=y=12.

- ¢ é uma referéncia constante para a variavel z, pelo que o valor de ¢ nao pode ser alterado pela
funcao (linha 7) e por isso temos c=z=1.

48

Que tipo de passagem usar?

A utilizagao do tipo de passagem correta de um argumento numa fungao depende primeiramente da
necessidade da funcao alterar ou nao permanentemente esse argumento. Alterar permanentemente um
argumento, significa que se esse argumento for alterado dentro da fungao se mantera alterado fora dela.
Para que tal seja possivel, é necessario que a fungao receba o argumento por referéncia, independente-
mente do tipo de dados do argumento.

Quando uma fun¢ao nao modifica permanentemente o argumento que recebe, o tipo de passagem a
usar depende do tipo de dados desse argumento. Tipos de dados primitivos como int, double, char e bool
estao associados a objetos considerados “pequenos”, enquanto que tipos de dados nao primitivos como
vetores, strings e classes (que iremos ver mais adiante) estao associados a objetos “grandes”. O tempo e o
esforco computacional requeridos para criar cépias de objetos de tipos primitivos é desprezavel e por isso
estes tipos de objetos sao geralmente passados por valor as fungoes. O mesmo nao acontece com objetos
de tipos nao primitivos onde a criacao de copias pode ser demorada, dado que esses objetos podem ter
dimensoes muito elevadas. Assim, objetos nao primitivos que nao sao alterados permanentemente pela
funcao devem ser passados por referéncia constante.

O esquema abaixo ilustra o processo de decisao referente ao tipo de passagem de argumentos a usar.

A funcao modifica
permanentemente o argumento?

Sim Nao

O argumento é do

Passagem por
gem b tipo primitivo?

referéncia

Sim Nao

Passagem
por referéncia
constante

Passagem por
valor

Suponhamos que se pretende implementar uma funcao que receba um vetor e o imprima. A funcao
em causa apenas necessita de aceder aos elementos do vetor (sem os alterar) e, uma vez que os vetores
sao tipos de dados nao primitivos, esta fungao deve receber uma referéncia constante para um vetor. O
uso de referéncias constantes é também uma seguranca para o programador uma vez que garante que
um determinado objeto nao é alterado dentro de uma funcao.

Como ja sabemos, uma funcao pode apenas retornar um objeto. Contudo, as referéncias nao constan-
tes podem ser usadas como forma “artificial” de retornar um ou mais objetos. Note-se que no exemplo
da seccao anterior embora a funcao f sendo do tipo void nao devolva qualquer valor, o novo valor da
variavel b (que é 12) é “devolvido” para a fun¢ao main, devido ao facto de ter sido usada uma referéncia
nao constante.

49

Capitulo 5

Tratamento de erros

Para ser robusto, um programa deve ter a capacidade de lidar eficazmente com todos os tipos de
erros que possam ocorrer durante a sua execugao. Existem varias formas de lidar com erros sendo que a
escolha da mais adequada depende do erro em causa. Os erros comprometem a execugao do programa e,
por isso, devem ser identificados. Um programa deve ter mecanismos para corrigir os erros identificados
de modo a que possa continuar a sua execucao. A nao correcao dos erros pode levar a interrupcao
imediata do programa ou a propagacao de erros que comprometam o funcionamento do programa.

Um dos mecanismos mais comuns no tratamento de erros é o uso de ezxcecoes. Excegoes sao situagoes
anémalas que ocorrem durante a execucao de um programa. Assim sendo, um programa deve estar
preparado para sinalizar todas as excegoes que possam ocorrer. Sinalizar uma excecao significa identificar
um problema que pode ocorrer durante a execucao do programa e informar o sistema da sua existéncia -
a isto chama-se lan¢ar uma excegao. Para lancar uma excecao, usamos a instrucao throw. O lancamento
de uma excec¢ao faz com que o programa termine imediatamente, a nao ser que seja usado um mecanismo
que permita apanhar (e eventualmente tratar) a excegao lancada. Para apanhar uma excegao langada
para o sistema, usamos um bloco try...catch. A instrucao try procura por excecoes lancadas no seu
bloco de instrugoes. A instrugao catch permite definir agoes para lidar com a excecao lancada e assim
continuar a execucao do programa. FKEstas agoes podem ser meramente informativas, isto é, podem
apenas informar o utilizador da existéncia do erro sem o corrigir, ou podem de facto corrigir o erro
existente. O fluxograma abaixo resume o que acontece ao programa em fungao dos mecanismos usados
para apanhar/tratar uma excegao.

Ocorréncia N3o tratar Erro ndo é corrigido

de erro excecdo 1

Apanhar excec¢ao
1 (try...catch) O programa continua
Tratar .
N —_— apds o bloco
Langar excegdo excesao try...catch
(throw)
Ndo apanhar O programa termina
excegdo imediatamente

20

A sintaxe geral das estruturas throw e try...catch sao as seguintes:

//Bloco_de_instrugdes_1 try{
if(condigdo_de_erro) //Bloco_de_instrugdes_1
throw Excegdo_a_lancar;
if (condig&o_de_erro)
//Bloco_de_instrugdes_2 throw Excegdo_a_lancgar;
//Bloco_de_instrugdes_3 //Bloco_de_instrugdes_2
}catch(Excegdo_a_apanhar){

//Lidar com a excegdo

//Bloco_de_instrugdes_3

O langamento de excecoes é geralmente feito dentro de instrugoes condicionais, uma vez que apenas
acontece se determinada condicao de erro se verificar. No excerto de cédigo da esquerda, o programa
comega por executar o Bloco_de _instrugdes_ 1. Se a condigdo_de_erro se verificar, é langada uma
excecao e o programa termina imediatamente. Caso contrario, o programa executara os dois blocos de
instrucoes seguintes.

Para uma excegao ser apanhada pelo bloco catch, esta tera que ser langada dentro do bloco try asso-
ciado ao bloco catch. No bloco catch, é especificado o que deve ser feito no caso da Excegdo_a_apanhar
ter sido lancada dentro do bloco try. No excerto de cddigo da direita, o programa entra diretamente no
bloco try e comeca por executar o Bloco_de_instrugdes_1. De seguida, verifica se a condig8o_de_erro
é verdadeira e em caso afirmativo langa uma excecao. Apods lancar a excecdo, o programa salta o
Bloco_de_instrugdes_2 passando imediatamente para o bloco catch. Ao chegar ao bloco catch, o pro-
grama verifica se a excecao que foi lancada é do mesmo tipo da Excegdo_a apanhar. Caso nao seja,
o programa termina imediatamente. Caso contrario, sao executadas as instrugoes do bloco catch para
lidar com a excecao e o programa continua a sua execucao passando para o Bloco_de_intrugdes_3.

No c6digo da direita, se apds entrar no bloco try e executar o Bloco_de_instrugdes_1 nao se verificar
a condigdo_de_erro, o que significa auséncia de erro, o programa executarda o Bloco_de_instrugdes_2
e em seguida o Bloco_de_instrugdes_3, ignorando o bloco catch.

A uma unica instrucao try podem estar associados varios blocos catch, um para cada excecao que se
pretenda apanhar. Se uma excecgao for langada no bloco try e o bloco catch nao estiver preparado para
lidar com ela, a exceg¢ao nao serd apanhada, fazendo com que o programa termine imediatamente. Para
evitar que tal acontega, o ultimo bloco catch associado ao try deve ser um bloco geral que permita apa-
nhar todas as excecoes que nao foram apanhadas pelos blocos catch anteriores. Para apanhar qualquer
excegdo, devemos usar reticéncias (...) no argumento do catch. No exemplo abaixo é apresentado um
bloco try com trés blocos catch associados, sendo o primeiro e o segundo para duas excecoes especificas
(Excegdo_1 e Excegdo_2) e o ultimo um bloco geral para qualquer outra excegao que nao estas. Note-se
que quando a instrucao throw ¢é executada dentro do bloco try, o programa salta imediatamente para o
bloco catch e, como apenas uma exce¢ao foi lan¢ada, apenas um dos blocos catch (Excegdo_1, Excegdo 2
ou ...) sera executado.

o1

try{

//. ..

}catch(Excegdo_1){
//Lidar_com_excegdo_1
}catch(Excegdo_2){
//Lidar_com_excegdo_2
}catch(...){

//Lidar_com_excegles_restantes

As excegbes s@o objetos de um determinado tipo (int, string, entre outros). Contudo, para se
conseguirem identificar claramente as excecoes lancadas e lidar com elas de modo diferente, iremos
definir uma classe para cada excecao. As classes apenas serao introduzidas em detalhe no Capitulo 7.
Assim sendo, basta para ja ter a nocao de que uma classe é um tipo de dados nao primitivo criado pelo
utilizador. De seguida serd explicado como podemos utilizar uma classe definida por nés para lancar
uma exce¢ao e como podemos utilizar classes ja existentes na biblioteca standard para o fazer.

5.1 Classes vazias

A utilizacao de classes vazias para lidar com excecgoes € particularmente 1til quando sao lancadas
excegoes diferentes ao longo do programa e as queremos tratar separadamente. Quando este método é
usado, devemos comecar por declarar uma “classe vazia” para cada tipo de excegao que possa ocorrer.
Estas declaracoes devem ser feitas antes das fungoes onde as excegoes vao ser langadas. No exemplo
que se segue, as declaracoes sao feitas antes da funcao main, que é a funcao que lancara as excecoes.
Neste exemplo, sao criadas duas classes vazias, cada uma associada a uma condicao de erro diferente.
O bloco try apresentado neste exemplo tem dois blocos catch associados para lidar com duas excegoes
diferentes. E de referir ainda a utilizacao de referéncias constantes nos argumentos da instrucao catch,
o que se justifica por estarmos a lidar com objetos de tipos de dados nao primitivos (classes).

02

//Preambulo
class Nome_excegdo_1{};
class Nome_excegéo_Q{};

int main{
//. ..

try{
if(condigdo_de_erro_1)

throw Nome_excegdo_1Q);

/7. ..

if (condigio_de_erro_2)
throw Nome_excecgdo_2();

//. ..

}catch(const Nome_excegdo_1&){
//Lidar com a excegdo_1
}catch(const Nome_excegdo_2&){
//Lidar com a exceg&o_2
Yeatch(...){

//Lidar com outras excegdes

/7. ..

return O;

No exemplo abaixo sao pedidos ao utilizador os valores das variaveis n e m, e é criada uma nova
variavel result cujo valor é a divisao inteira de n por m. Caso algum dos valores de n ou de m nao
seja lido corretamente, por exemplo, se tiver sido introduzido um valor nao numérico, é lancada uma
excecao do tipo Leitura Incorreta e a divisao entre n e m nao é efetuada uma vez que o programa
passa diretamente para o primeiro bloco catch. Nesse bloco, a excecao é tratada atribuindo o valor 1
a variavel result e o programa continua a ser executado passando para o ultimo cout onde é impresso
o valor 2 no ecra. Note-se que a verificacao do sucesso da leitura de um valor de uma determinada
variavel é feita através da instrucao if (!cin), que significa “se nao foi lido o tipo de dados correto no
cin anterior”, uma vez que a instrucao cin assume valor false caso a leitura falhe.

Caso a leitura dos valores de n e m seja feita com sucesso mas o valor de m seja zero, é langada uma
excecao do tipo Valor_Nulo e o programa nao faz a divisao entre n e m. Neste caso, o programa passa
imediatamente para o tltimo bloco catch onde apenas apresenta uma mensagem de erro. Este é por isso
um exemplo em que lidamos com a excegdo (apresentando uma mensagem de erro) mas em que nao a
tratamos, ou seja, o programa continua a ser executado mas o erro é ignorando. Neste caso, a variavel
result continuarda com o seu valor inicial (zero) e o ultimo cout escreve no ecra o valor 1.

23

Note-se que quando tratamos a excecao Leitura_Incorreta atribuimos o valor 1 a variavel result,
sendo este um valor arbitrario. A questao que se poe é: qual é o valor que devemos atribuir a divisao
inteira quando um dos operandos é um valor nao numérico? A resposta a esta questao nao é clara,
sendo esta a razao principal pela qual normalmente nao tratamos as excegoes e apenas lidamos com elas
produzindo uma mensagem de erro.

//Preédmbulo
class Valor_Nulo{};
class Leitura_Incorreta{};

int main(){
int n, m, result = 0;

try{
cout << "Valor de n: ";

cin >> n;
if(lcin)
throw Leitura_Incorreta();

cout << "Valor de m: ";
cin >> m;
if(lcin)
throw Leitura_Incorreta();

if(m == 0)
throw Valor_Nulo();

result = n/m;

}catch(const Leitura_Incorreta&){
result = 1;
}catch(const Valor_Nulo&){
cout << "Atencao! o valor de m e zero...";
cout << "... mas o programa val continuar a executar";

cout << result + 1;
return O;

o4

5.2 Classes da biblioteca standard

No C++ existem varias classes predefinidas para o tratamento de erros H Dentre elas, salientamos a
classe runtime_error e a classe out_of_range que iremos explorar de seguida.

5.2.1 Classe runtime_error

A classe runtime_error da biblioteca standard é uma das que mais iremos usar no tratamento de
erros. Esta classe tem como argumento um objeto do tipo string onde se pode colocar uma mensagem
de erro apropriada. Assim sendo, esta é a op¢ao mais simples para fazer o tratamento de erros quando
se pretende apenas escrever mensagens de erro especificas para cada tipo de erro.

Qualquer excecao do tipo runtime_error que seja lancada mas nao seja apanhada causa a interrupgao
imediata do programa, como acontecia anteriormente com a instrucao throw. Assim, caso queiramos
lidar com a excecao, deve ser usado um bloco try...catch. A estrutura geral de um bloco try...catch para
lidar com excecoes do tipo runtime_error é a seguinte:

try{
//...

if(condig&o_de_erro_1)
throw runtime_error("Mensagem_de_erro_1");
//...
if (condig&o_de_erro_2)
throw runtime_error("Mensagem_de_erro_2");
/] ..
}catch(const runtime_error& e){
cout << e.what();
}

Em funcao do erro em causa, é passada como argumento a classe runtime _error uma mensagem
especifica. Quando uma excecao do tipo runtime_error ¢é lancada, é depois apanhada pelo catch. Dentro
do bloco catch é usado o método .what(), que devolve a mensagem que foi passada como argumento
no langamento da exce¢ao. Essa mensagem é entao escrita no ecra. O método .what() tem que estar
associado a um objeto do tipo runtime_error. Neste caso, esse objeto foi guardado na variavel chamada
e. No cddigo abaixo é exemplificado o uso da classe runtime_error no tratamento de erros do programa
apresentado na seccao anterior.

!Mais informagoes sobre estas classes em https://cplusplus.com /reference/exception/exception/.

95

int n, m, result = 0;

try{
cout << "Valor de n: ";

cin >> n;
if(lcin)

throw runtime_error("Leitura incorreta do n");

cout << "Valor de m: ";
cin >> m;
if(lcin)
throw runtime_error("Leitura incorreta do m");

if(m == 0)
throw runtime_error("0 valor de m e zero");

result = n/m;

}catch(const runtime_error& x){
cout << x.what();

Como este exemplo é muito semelhante ao anterior, vamos apenas analisar as principais diferencas.
Comecemos por reparar nas mensagens de erro existentes nos varios runtime _error. Caso o valor de n
seja um valor nao numérico, a mensagem de erro é “Leitura incorreta de n”. Caso seja o valor de m que
¢ nao numérico, temos a mensagem de erro “Leitura incorreta de m”. Note-se que aqui, contrariamente
ao exemplo anterior, conseguimos saber pela mensagem de erro qual dos valores introduzidos é o nao
numérico. Por fim, caso o valor de m seja 0, a mensagem de erro é “O valor de m e zero”. Apenas temos
um bloco catch, onde a excecao sera guardada na variavel x e a mensagem de erro sera impressa para o
ecra com o método .what().

5.2.2 Classe out_of range

A classe out_of range ¢ utilizada no tratamento de erros relacionados com acessos a posigoes ine-
xistentes. Dos tipos de dados que conhecemos, os Uinicos que tém posicoes a eles associadas sao o tipo
string e o tipo vector. A andlise seguinte é valida para os tipos de dados referidos.

Como vimos anteriormente, para aceder a elementos de vetores podemos usar tanto o operador | |
como o método .at(), sendo a principal diferenga entre eles o facto do método .at() fazer a validacao da
posicao a que estamos a tentar aceder. Ao tentar aceder a uma posicao do vetor que nao exista através
do método .at(), é langada uma excegao do tipo out_of _range, que pode ou nao ser apanhada através
do uso de um bloco try...catch.

Vejamos o seguinte exemplo:

26

vector<int> v(2);

try{
v.at(0)

v.at (1)
v.at(2)

7;
2;
5; // E langada uma exceg&o

tcatch(const out_of_range& e){
cout << "Erro: Posicao inexistente";
// ou cout << e.what();

Neste exemplo é criado um vetor de dimensao 2 (com posigoes 0 e 1). Ao tentar aceder a posi¢ao
2, que nao existe, ¢ langada uma excecao do tipo out_of _range que é apanhada pelo catch. Para lidar
com a excegao, pode ser impressa uma mensagem de erro personalizada (como no primeiro caso) ou
utilizado o método .what() que devolve informagao sobre qual a dimensao do vetor e qual a posicao a
que se esta a tentar aceder. Por fim, é importante ressalvar que nao é necessario verificar a condicao de
erro através de um if porque isto ja é feito na implementacao do método .at().

o7

Capitulo 6

Separacao de um projeto em ficheiros

A medida que um programa se torna maior, é pertinente dividir o codigo em diferentes ficheiros, cada
um contendo partes independentes das outras, de forma a tornar o cédigo mais modular. Os ficheiros
criados podem ser compilados individualmente, o que permite adicionar novas funcionalidades ao pro-
grama sem ser necessario compila-lo todo novamente. Assim sendo, novos erros que possam surgir serao
mais facilmente detetados, uma vez que estarao, provavelmente, associados as novas funcionalidades do
programa, estando assim circunscritos a um ficheiro.

Uma das grandes vantagens da modularidade é também o facto de permitir que cada um dos dife-
rentes ficheiros criados possa ser usado em vérios programas, evitando assim repetir implementacoes de
processos. Por exemplo, os pacotes da biblioteca standard estao implementados num tnico moédulo, que
nao podemos alterar mas que podemos consultar. Assim, cada vez que queiramos usar uma funcionali-
dade ja existente na biblioteca standard, basta fazer a sua inclusao no preambulo de cada programa e
chamar diretamente os métodos 14 existentes. Conforme explicado mais adiante, nés também podemos
definir médulos, que podem ser partilhados por vérios programas.

Para separar um projeto em ficheiros, devemos comecar por criar um projeto e adicionar-lhe dois
ficheiros: um ficheiro cabegalho (ou header ou .h) e um ficheiro corpo (ou .cpp). Para adicionar o ficheiro
cabecalho, clicamos com o botao direito do rato no projeto criado, selecionamos Add new, selecionamos
depois C/C++ Header File e finalmente definimos o nome do médulo. Para adicionar o ficheiro corpo,
repetimos o mesmo processo, selecionando C/C++ Source File e atribuindo o mesmo nome que foi
usado para o ficheiro cabegalho. Este processo ¢ ilustrado na Figura [6.1]

(@ main.cpp @ Projeto - Qt Creator

File Edit Vi Build Deb Analy Tools Wind Hel,
ile Edit View Buil ebug Analyze Tools Window Help @ New File - Ot Creator %

Projects > B main.cpp*

v & Projeto

ey & Projetopro

Run gmake Files and Classes q
~ @ Sources -
Creates a header file that you can
=] 2 maincpp Deploy C/ces ap | G Class "

Edit » Run add to a C/C++ project.

o Choose a template Al Templates v

Modeling
Rebuild Q

Clean GLSL

o C/C++ Source File Supported Platforms:

* Desktop

General C/C++ Header File

", Add New. "
Debug Add Existing Files. Java
Python
)4
Projects Add Existing Directory.
(] Add Library.
GED Find in This Directory.
Show i File System View
Open Command Prompt Here
Open Command Prompt With >
Close All Files in Project “Projeto”
Close Project "Projeto”
Expand
Collapse All G

Expand All

Figura 6.1: Como adicionar um ficheiro cabecalho e um ficheiro corpo a um projeto.

o8

Apoés a criacao do ficheiro cabecalho e do ficheiro corpo, a estrutura do projeto serd a que se apre-
senta na Figura Neste caso, o médulo criado tem o nome Vetores. O ficheiro cabecalho tem
a estrutura apresentada na figura, sendo que o nosso codigo é escrito no local indicado na imagem.
As instrugoes #ifndef VETORES H e #define VETORES_H servem para definir o conteido do ficheiro
cabecalho caso ainda nao tenha sido definido. Caso j4 tenha sido definido (através da instrucao #include
"Vetores.h"), o contetiido deste ficheiro é ignorado. O ficheiro corpo é criado vazio.

Projects . & Vetores.h*
HHE. ¢ Pf"j“‘_’ #ifndef VETORES_H
Welcome = Projeto.pro #define VETORES_H
~ n Headers
E n Vetores.h
Edit ¥ Sources i
& main.cpp //Escrever o cédigo aqui
« Vetores.cpp
| .
Debug #endif // VETORES_H
9
}a
Projects
(7]
Help

Figura 6.2: Estrutura do projeto com ficheiros cabecalho e corpo.

O ficheiro cabecalho deve conter apenas as declaragoes dos métodos, o que se justifica por duas
principais razoes: reduzir o tempo de compilagao, e permitir que o utilizador identifique facilmente
quais as componentes do médulo. Assim, o ficheiro cabecalho pode ser visto como um “indice” de um
livro. O “contetddo” do livro, que no nosso caso corresponde ao conjunto das definicoes dos métodos,
encontra-se no ficheiro corpo. Vejamos o exemplo seguinte.

Ficheiro Cabegalho Ficheiro Corpo

#ifndef VETORES_H #include "Vetores.h"
#define VETORES_H
void print(const vector<int>& v){

#include <iostream> for(int i = 0; i<v.size(); ++i){
#include <vector> if(i == 0)
using namespace std; cout << "(" << v[il;
else if(i == v.size() - 1)
void print(const vector<int>&); cout << ", " << y[i] << ")y
else
#endif // Vetores_H cout << " " << v[i];

29

Programa Principal

#include "Vetores.h"

int main(){
vector<int> u = {1, 2, 3};
print(u);
return O;

Neste exemplo, é criado um médulo (Vetores) que contém, no ficheiro cabecalho, a declaragao de
uma funcao print com tipo de retorno wvoid que recebe como argumento uma referéncia constante para
um vetor. A definicdo desta funcao é feita no ficheiro corpo. A instrucao #include "Vetores.h" é
necessaria no topo deste ficheiro para estabelecer ligacao entre os ficheiros cabecalho e corpo. Uma
vez definido o modulo, este pode ser usado em qualquer programa, bastando para isso a sua inclusao
no programa através da instrucao #include "Vetores.h". Note-se que nao é necessario incluir no
programa principal os pacotes ja incluidos no ficheiro cabecalho, pois ao incluirmos o ficheiro cabegalho
estamos automaticamente a incluir todos os pacotes nele incluidos. Depois da inclusao do mddulo,
todos os métodos que lhe pertencem podem ser chamados diretamente, tal como é exemplificado com
a instrugao print(u). A modularidade torna o programa principal muito mais compacto e legivel,
conforme foi ilustrado neste exemplo.

6.1 Espacos de nomes

Programas mais complexos requerem muitas vezes a inclusao de varios moédulos, que podem ser
criados por pessoas diferentes de forma independente. Isto pode fazer com que existam elementos
declarados com o mesmo nome em modulos diferentes, por exemplo, duas fungoes com o mesmo nome. Ao
fazer include de varios ficheiros cabecalho no programa principal, corremos o risco de haver declaragoes
repetidas, o que nao é aceite pelo compilador por existir um conflito de nomes. Uma das formas de
evitar este problema é através do uso de espacos de nomes - namespaces.

Um namespace é um ambito com nome no qual podem ser declarados varios elementos. Quando
usamos namespaces, 0 acesso aos seus elementos é feito indicando explicitamente a que namespace eles
pertencem. Assim, mesmo que haja dois elementos com o mesmo nome em modulos diferentes, o acesso
a cada um deles serd feito de forma diferente, evitando assim conflitos de nomes.

Consideremos os seguintes modulos M1 e M2 onde é declarada uma funcao print. A primeira funcao
pertence ao namespace X e a segunda ao namespace Y. Desta forma, para definir estas fungdes nos
ficheiros corpo respetivos, é necessario especificar a que namespace pertencem usando as instrugoes X: :
e Y:: antes do seu nome.

60

Ficheiro Cabegalho M1 Ficheiro Cabegalho M2

#ifndef M1_H #ifndef M2_H
#define M1_H #define M2_H
#include <iostream> #include <iostream>
#include <vector> #include <vector>
using namespace std; using namespace std;
namespace X{ namespace Y{
void print(const vector<int>&); void print(const vector<int>&);
#endif // M1_H #endif // M2_H
Ficheiro Corpo M1 Ficheiro Corpo M2
#include "M1.h" #include "M2.h"
void X::print(const vector<int>& v){ void Y::print(const vector<int>& v){
/] ... //

} }

Programa Principal

#include "M1.h"
#include "M2.h"

int main(){
vector<int> u = {1, 2, 3};
print(u); // ERRO!
X::print(u); // OK!
Y::print(u); // OK!
return O;

No programa principal, onde sao incluidos os dois ficheiros cabegalho, podemos entao chamar ambas
as funcoes especificando a que namespace pertencem. Desta forma, fica inequivocamente identificada a
funcao que queremos usar.

Indicar sempre o namespace a que pertence determinado elemento torna o programa mais extenso e

61

dificil de ler, mas é fundamental caso existam elementos com o mesmo nome pertencentes a namespaces
diferentes. No entanto, quando esta questao nao se coloca, podemos simplificar a escrita através da
instrugao using. Adicionar ao preambulo a instrugao using namespace X; permite aceder aos elementos
do namespace X diretamente sem ter que usar X:: em cada um deles, uma vez que ja indicdmos que
estamos a usar os elementos do namespace X. Note-se que isto é o que fazemos com os elementos do
namespace std quando usamos a instrucao using namespace std;. Deste namespace fazem parte, por
exemplo, os elementos cout, cin, string e vector. Assim, para escrever algo como

vector<string> v;

// ...
cout << v[0];

sem usar a instru¢ao using namespace std; teriamos de escrever

std::vector<std::string> v;

//

std::cout << v[0];

o que torna claramente o programa mais dificil de ler. A utilizacao da instrucao std:: tem apenas a
vantagem de identificar claramente a que namespace os elementos pertencem.

No mesmo ficheiro cabegalho podemos definir varios namespaces. Além disso, podemos ainda definir
namespaces dentro de outros namespaces, conforme ilustrado no exemplo abaixo.

Ficheiro Cabegalho M1 Programa Principal
#ifndef M1_H
#define M1_H #include "M1.h"
#include <iostream> int main(){
#include <vector> using namespace std; vector<int> u = {1, 2, 3};
X::printi(u);
namespace X{ X::Z::print2(u);
void printl(const vector<int>&); W::print3(u);
return O;
namespace Z{ }

void print2(const vector<int>&);

}
}

namespace W{
void print3(const vector<int>&);

#endif // M1_H

Note-se que as fungoes printl, print2 e print3 poderiam ter o mesmo nome por estarem associadas
a namespaces diferentes. Além disso, todas estas fungdes poderiam estar definidas no mesmo ficheiro

62

corpo, sendo a identificacao de cada uma deles feita de forma semelhante a que é feita no programa
principal, isto é, usando as instrucoes X::, X::Z:: e W::.

6.2 Redefinicao de tipos de dados - type alias

Em C++, a instrucao using permite definir um nome alternativo (um pseudénimo ou alias), nor-
malmente mais simples, para um determinado tipo de dados. Esse pseudénimo pode depois ser utilizado
em todo o cédigo em vez do tipo de dados original. A sintaxe geral da palavra-chave using para definir
pseuddénimos é:

using nome_alternativo = tipo_de_Dados;

No exemplo abaixo, apresentamos um exemplo de um ficheiro cabecalho que contém a declaracao
de duas fungoes para manipular matrizes. A primeira (do tipo void) imprime uma matriz, enquanto a
segunda devolve uma matriz que é a soma das duas matrizes que recebe como argumento. No primeiro
c6digo, nao é usado um type alias, pelo que é necessario escrever vector<vector<int>> sempre que nos
referirmos a esse tipo de dados. No segundo cédigo, é definido um alias para criar o pseudénimo matriz
para o tipo de dados vector<vector<int>>. O segundo excerto de codigo é claramente menos extenso
e mais legivel que o primeiro, sendo esta a principal vantagem do uso de pseudénimos - type aliases.

Ficheiro Cabegalho M1 - Sem type alias

#ifndef M1_H
#define M1_H

#include <iostream>
#include <vector>

using namespace std;

void print(const vector<vector<int>>&);
vector<vector<int>> soma(const vector<vector<int>>&; const vector<vector<int>>&);

#endif // M1_H

Ficheiro Cabegalho M1 - Com type alias

#ifndef M1_H
#define M1_H

#include <iostream>

#include <vector>

using namespace std;

using matriz = vector<vector<int>>; // Definir "vector<vector<int>>" como "matriz"

void print(const matriz&);
matriz soma(const matriz&; const matriz&);

#endif // M1_H

63

Capitulo 7

Classes

Como sabemos, existem em C++ vérios tipos de dados primitivos como int, double, char, etc. Devido
a sua simplicidade, estes tipos de dados nao permitem representar objetos com que frequentemente nos
deparamos, tais como vetores, fra¢oes, nimeros complexos, carros, livros, etc. Estes objetos tém: (i)
atributos (por exemplo, matricula, cor e nimero de portas, no caso de um carro); e (ii) funcionalidades
(arrancar, travar, etc.), que podem ser representadas em C++ através de classes. Uma classe é um
novo tipo de dados definido pelo utilizador para representar e manipular objetos que nao sao possiveis
de representar e manipular através de tipos de dados primitivos. As classes tornam mais claro qual
é o objeto ao qual estamos a aplicar a sua funcionalidade, sendo assim a base de qualquer linguagem
de programagao orientada a objetos. As classes nao vém substituir o que aprendemos até agora, vém
dar-nos uma ferramenta adicional para lidar com a complexidade do cédigo, permitindo que o codigo
seja escrito de forma mais modular.

Um exemplo de uma classe que tao bem ja conhecemos é a classe vector. Esta classe foi criada
para representar vetores e contém por isso métodos para aceder as suas propriedades, como é o caso do
método size(), e funcionalidades para os manipular, como o método push_back().

Suponhamos que queremos fazer um programa que lide com nimeros complexos. Embora a biblioteca
standard do C++ disponibilize um tipo de dados para representar niimeros complexof] , iremos definir
a nossa propria classe, Complexo, para representar e manipular nimeros complexos. Esta classe servira
como exemplo ao longo deste capitulo.

Uma classe deve ser declarada num ficheiro cabecalho e definida num ficheiro corpo, de forma a ser
reutilizada facilmente. Assim, para criar uma classe, clicamos com o botao direito do rato em cima do
projeto e de seguida selecionamos Add New, tal como ilustrado na Figura [6.1] apresentada no capitulo
anterior. Depois disso, selecionamos a opgao C++ Class (ver Figura e damos um nome a classe.
Os excertos de codigo abaixo ilustram a estrutura dos ficheiros cabecalho e corpo criados para a classe
Complexo.

!Para mais informacoes, ver https://en.cppreference.com/w/cpp/numeric/complex.html.

64

Ficheiro Cabegalho Ficheiro Corpo

1. #ifndef COMPLEXO_H 1. #include "complexo.h"
2. #define COMPLEXO_H 2.

3. 3. Complexo::Complexo(){
4. class Complexo{ 4

5. 5. }

6. public:

7. Complexo () ;

8. };

9.

10. #endif // COMPLEXO_H

W,

Note-se que a declaracao da classe contém um “;”no final (ver linha 8 do ficheiro cabecalho) e que,
ao criar uma Class C++, o ficheiro corpo comega com o include do ficheiro cabecalho.

Qualquer novo tipo de dados criado pelo utilizador tem por base outros tipos de dados. Um nimero
complexo tem a forma a+bi, sendo a a parte real e b a parte imaginaria. Assim, um nimero complexo
pode ser representado por duas variaveis do tipo double que correspondem a essas partes real e ima-
ginaria. Numa classe, as variaveis usadas para representar um objeto sao os atributos da classe, que
podem ter qualquer tipo, incluindo outras classes.

Na classe podemos ter também varios métodos que permitam manipular o objeto da classe. Além
disso, uma classe tem sempre pelo menos um construtor, cujo propdsito € inicializar os seus atributos
quando um novo objeto é criado. O construtor tem o mesmo nome da classe, podendo ou nao ter
argumentos. Assim, um construtor pode ser visto como uma “funcao” sem tipo de retorno. Os atributos,
construtor(es) e métodos de uma classe sao designados por membros da classe.

Numa classe podemos ter membros publicos (public) e privados (private). Os membros publicos
podem ser acedidos dentro e fora da classe, enquanto que os membros privados apenas podem ser
acedidos dentro dela, isto é, em métodos da classe. A declaracdo de um membro da classe como
publico ou privado depende da sua finalidade. No entanto, por serem os elementos estruturais da classe,
os atributos devem ser privados para impedir que sejam diretamente modificados pelo utilizador. Para
visualizar e modificar os atributos privados serd entao necessario criar métodos ptiblicos, como é ilustrado
no codigo abaixo.

65

Ficheiro Cabegalho Ficheiro Corpo
#ifndef COMPLEXO_H #include "complexo.h"
#define COMPLEXO_H

// Construtor por omissé&o

//Colocar os includes necessarios Complexo: :Complexo (){
Real = 0;
class Complexo Im = 0O;
{ }
private:
//Atributos // Outro construtor
double Real; Complexo: :Complexo(double a, double b){
double Im; Real = a;
Im = b;
public: }
//Construtores
Complexo(); //Métodos
Complexo(double , double); void Complexo::AlterarReal(double x){
Real = x;
//Métodos }
void AlterarReal(double);
void AlterarIm(double); void Complexo::AlterarIm(double x){
double VerReal() const; Im = x;
double VerIm() const; }
b double Complexo::VerReal() const{

return Real;
#endif // COMPLEXO_H }

double Complexo::VerIm() const{
return Im;

A classe Complexo contém como atributos privados duas variaveis do tipo double, uma com o nome
Real e outra com o nome Im que guardam, respetivamente, a parte real e a parte imaginaria do nimero
complexo. Note-se que os atributos de uma classe aparecem no QT Creator a cor vermelha. Sendo
os atributos privados, a classe dispoe de dois métodos publicos que permitem alterar cada um des-
ses atributos, os métodos AlterarReal e AlterarIm. Existem também dois outros métodos publicos
(VerReal e VerIm) que permitem aceder ao valor dos atributos da classe. E importante referir que
estes dois métodos, tais como todos os que nao alterem os atributos da classe, devem ser definidos
como constantes. Para definir um método como constante, escrevemos a palavra const a seguir aos seus
argumentos.

Nesta classe estao presentes dois construtores, o construtor por omissao, que nao tem argumentos, e
um outro, que recebe dois argumentos do tipo double. O primeiro construtor nao recebe argumentos e,
por isso, foi programado para inicializar os atributos da classe com o seu valor default, o valor zero. O
segundo construtor recebe dois argumentos e utiliza-os para inicializar os atributos da classe. Os dois

66

construtores referidos podem ser alternativamente implementados através da listagem dos atributos da
classe da seguinte forma:

Ficheiro Corpo
// Construtor por omiss&o
Complexo: :Complexo(): Real(0), Im(0){ }

// Outro construtor
Complexo: :Complexo(double a, double b): Real(a), Im(b){ }

sendo o significado de, por exemplo, Real(a) semelhante a Real=a. O propdsito dos construtores é
inicializar os atributos do objeto aquando da sua criacao. Como pudemos ver no exemplo, uma classe
pode ter vérios construtores, desde que tenham argumentos diferentes.

Vejamos agora como é que esta classe pode ser usada no programa principal, na funcao main.

Programa Principal

1. #include "complexo.h"

2.

3. int main(){

4. Complexo z1;

5. Complexo z2(3, 2);

6.

7. z1.Real = 1; //ERRO
8. z1.Im = 5; //ERRO
9. z1.AlterarReal(7);
10. z1.AlterarIm(0);

11.

12. //Imprimir z2

13. cout << z2.VerReal() << "+" << z2.VerIm() << "i";
14.

15. return O;

16. }

Para usar uma classe num programa é necessario fazer o include do seu ficheiro cabecalho. Na linha
4, é criado um objeto z1 do tipo Complexo. Neste momento, é implicitamente chamado o construtor por
omissao, pelo que a parte real e a parte imaginaria de z1 serao inicializadas com o valor zero. Na linha
5, é criado um novo objeto z2 do tipo Complexo. No entanto, neste caso, uma vez que sao recebidos
dois argumentos, ¢ implicitamente chamado o segundo construtor, sendo por isso z2=3+21i;

Para aceder aos métodos piiblicos de uma classe usamos um ponto (“.”) depois do nome do objeto
da classe, seguido do nome do método, tal como é feito nas linhas 9 e 10. Na linha 9, é chamado o
método AlterarReal com o argumento 7, que permite alterar a parte real do complexo z1 para 7. Uma
vez que os atributos da classe sao privados, nao é possivel aceder-lhes fora da classe, tal como é ilustrado
nas linhas 7 e 8. Na linha 13 é impresso no ecra o niimero complexo z2 na forma a+bi, sendo por isso
usados os métodos VerReal () e VerIm() para aceder aos seus atributos.

E importante ressalvar que os métodos de uma classe, quando chamados fora da classe, estao sempre
associados a um objeto dessa classe, pelo que nunca poderao ser chamados sem serem aplicados a um

67

objeto da classe. Por exemplo, a tinica forma de utilizar o método VerReal é escrevendo x.VerReal (),
onde x é um qualquer objeto do tipo Complexo. Assim, escrever algo como .VerReal() ou VerReal()
fora da classe nao é possivel.

Uma classe pode conter métodos para manipular o tipo de objeto que representa. No caso da classe
Complexo, faz sentido ter, por exemplo, um método publico que permita imprimir um nimero complexo
na forma a+bi. Nesta classe podemos ter ainda incluir métodos ptublicos para calcular o médulo de um
nimero complexo, para verificar se um niimero complexo é um imaginario puro, entre outros. Estes
métodos podem ter como argumentos e tipo de retorno objetos da prépria classe. No codigo abaixo
é ilustrada a inclusao de quatro fungoes (Imprime, ImPuro, Simetrico e Soma) na classe Complexo.

68

Ficheiro Cabegalho Ficheiro Corpo
#ifndef COMPLEXO_H #include "complexo.h"
#define COMPLEXO_H

//
//Colocar os includes necessarios // Restantes definigdes
/] ...
class Complexo{
private: void Complexo::Imprime() const{
//Atributos cout << Real;
double Real; if (Im >= 0)
double Im; cout << " 4+ " << Im << "i";
else
public: cout << Im << "i";
//Construtores }
Complexo () ;
Complexo(double , double); bool Complexo: :ImPuro() const{
if (Real == 0 and Im != 0)
//Métodos return true;
void AlterarReal(double); else
void AlterarIm(double); return false;
double VerReal() const; }
double VerIm() const;
void Imprime() const; Complexo Complexo::Simetrico() const{
bool ImPuro() const; Complexo z;
Complexo Simetrico() const; z.Real = —-1%real;
Complexo Soma(const Complexo&) const; z.Im = -1%xIm;
}s //ou
Complexo z(-1%Real, -1%Im);
return z;
}
Complexo Complexo::Soma(const Complexo& z) const{
Complexo zSoma(Real + z.Real, Im + z.Im);
return zSoma;
#endif // COMPLEXO_H }

A funcao Imprime, tal como o nome indica, imprime o objeto do tipo Complexo na forma “a+bi”.
O método ImPuro verifica se o nimero complexo é um imaginario puro. A funcao Simetrico calcula
um novo complexo que é o simétrico do objeto da classe. Por fim, o método Soma devolve um ntimero
complexo que é a soma do objeto da classe com outro Complexo.

Estas fungoes nao alteram os atributos da classe e, por isso, sao definidas como constantes. A funcao
Simetrico devolve um objeto z do tipo Complexo que é o simétrico do objeto que lhe deu origem.
Nesta fungao, o Complexo z é criado usando o construtor da classe e é depois devolvido. A fungao Soma
tem como argumento uma referéncia constante para um objeto do tipo Complexo, por se tratar de um

69

tipo de dados nao primitivo que nao é alterado pela funcao. Esta funcao cria um novo objeto do tipo
Complexo, que resulta da soma do objeto da classe com o Complexo z, e devolve-o.

No programa principal abaixo é exemplificada a utilizagao dos métodos Imprime, Simetrico e Soma.
Inicialmente, é usado o construtor para criar o Complexo z1 que é impresso no ecra como 3+2i. De
seguida, é criado um novo Complexo z2 que é o simétrico do Complexo z1. Este novo Complexo é depois
impresso na forma -3-2¢. Por fim, é criado um novo objeto z3 do tipo Complexo, que resulta da soma
de z1 com z2 e que é impresso no ecra.

Programa Principal
#include "complexo.h"

int main(){
Complexo z1(3, 2);
z1.Imprime();
Complexo z2 = zl.Simetrico();
z2.Imprime();
Complexo z3 = zl.Soma(z2);
z3. Imprime();
return O;

Como a soma é comutativa, obterfamos o mesmo resultado no programa anterior fazendo Complexo
z3 = z2.Soma(zl);. Uma funcao Soma mais intuitiva receberia dois niimeros complexos e devolveria
a sua soma, podendo ser chamada da seguinte forma Complexo z3 = Soma(zl, z2);. Isto é possivel,
criando funcgoes globais, isto é, fun¢oes declaradas nos ficheiros da classe que nao sao membros da classe.

Ficheiro Cabegalho
#ifndef COMPLEXO_H
#define COMPLEXO_H

//Colocar os includes necessarios

class Complexo{
//Classe complexo definida anteriormente sem a fungdo soma

b
Complexo Soma(const Complexo&, const Complexo&) ;

#endif // COMPLEXO_H

70

Ficheiro Corpo
#include "complexo.h"

/...
// Definicgdes dos membros da classe

/] ...

Complexo Soma(const Complexo& zl, const Complexo& z2){
Complexo zSoma(zl.VerReal ()+z2.VerReal(), zl.VerIm()+z2.VerIm());
return zSoma;

Dado que a funcao Soma nao é um membro da classe, a sua declaracao é feita fora da classe, nao
sendo por isso necessério incluir o identificador “Complexo: :”antes do seu nome no ficheiro corpo. Por
esta mesma razao, o acesso aos atributos da classe (definidos como privados) tem que ser feito usando
as fungoes Ver. A chamada da fungao Soma no programa principal ¢é feita da seguinte forma:

Complexo z3 = Soma(zl, z2);.
Para terminar, considere-se uma nova classe cujo propoésito é representar uma pessoa. Esta classe

tem como atributos o nome da pessoa e a sua idade. Para além do construtor por omissao, a classe
Pessoa tem um construtor com atributos e fungoes para aceder aos seus atributos.

Ficheiro Cabegalho Ficheiro Corpo
#ifndef PESSOA_H #include "pessoa.h"
#define PESSOA_H

Pessoa: :Pessoa(): Nome(" "), Idade(-1){ }
//Colocar os includes necessarios

Pessoa::Pessoa(const string& nome, int id):

class Pessoa{ Nome (nome), Idade(id){ }
private:
string Nome; const string& Pessoa::VerNome() const{
int Idade; return Nome;
}
public:
//Construtores int Pessoa::VerIdade() const{
Pessoa(); return Idade;
Pessoa(const string&, int); }
//Métodos

const string& VerNome() const;
int VerIdade() const;

¥

#endif // PESSOA_H

71

Na analise deste exemplo vamos apenas focar as principais diferencas em relacao aos exemplos an-
teriores. Comecemos por reparar na definicao do método VerNome, mais especificamente no seu tipo de
retorno. Este método devolve uma referéncia constante para uma string, uma vez que a fungao deve
devolver o atributo Nome e ndo uma cépia dele (que seria o que aconteceria se o tipo de retorno fosse
apenas string em vez da referéncia constante). Assim, os atributos de tipos nao primitivos devem ser
retornados como referéncias constantes, de forma a evitar copias desnecessarias. Note-se que o atributo
Idade sendo do tipo int (que é um tipo de dados primitivo) ndo necessita de ser devolvido na fungao
VerIdade através de referéncias.

Para sumarizar, no contexto das classes, a palavra reservada const pode aparecer em trées situagoes
distintas:

i. nos argumentos dos métodos, sendo a sua funcao semelhante a que vimos no Capitulo 4;

ii. associada aos métodos, sendo o seu propoésito indicar que o método nao ira alterar os atributos da
classe;

iii. no tipo de retorno de métodos que devolvam atributos da classe cujo tipo nao seja um tipo de
dados primitivo, de forma a retornar esses atributos sem que possam ser alterados e evitando a
criacao de copias.

72

Capitulo 8

Sobrecarga de operadores

A maioria dos operadores que vimos no Capitulo 1 apenas estdo definidos para tipos de dados
primitivos. De facto, j4 usdamos os operadores “+”7, “=7 “==" e “<<” para, por exemplo, variaveis do
tipo int. Como uma classe é um novo tipo de dados criado pelo utilizador, os operadores usuais nao
estao definidos para objetos dessas classes. Contudo, é possivel definir “versoes” dos operadores que
permitam que eles funcionem quando aplicados a objetos de uma determinada classe. A isso chamamos
sobrecarga de operadores.

Tomemos como exemplo a classe Complexo criada no capitulo anterior que inclui o método Simetrico.

A utilizagao deste método fora da classe € feita com a seguinte instrucao:

Complexo w = z.Simetrico();

[k

sendo z um objeto do tipo Complexo e w o seu simétrico. Ora, o operador simétrico ja existe para
tipos de dados numéricos, mas nao para o tipo de dados Complexo, embora possa ser sobrecarregado
para tal. Apos fazer a sobrecarga do operador, serd possivel escrever

Complexo w = -z;

tornando assim o codigo mais legivel e intuitivo. O mesmo acontece, por exemplo, para o método
Imprime, que também integra a classe Complexo. A alternativa direta a este método é o operador de
output << que, apds ser sobrecarregado, permite imprimir um objeto Complexo utilizando a segunda
forma de escrita apresentada abaixo.

// Usando o método Imprime
z.Imprime() ;

// Usando o operador <<
cout << z;

Existem varios operadores que podem ser sobrecarregados em C++, sendo alguns deles apresentados
na tabela seguinte.

Operadores Unarios Operadores Binarios
Incremento ++ Aritméticos Simples + = % /.
Decremento - Aritméticos Compostos +=, -=, *=, /= =
Simétrico - Relacionais <, >, <=, 0= 1= ==
Negacao ! Escrita e Leitura <<, >>

Acesso e Paréntesis (1, O

73

Os operadores podem ser unarios ou binarios. Os operadores unarios tém um unico operando, que
serd um objeto da classe. Ja os operadores bindrios atuam sobre dois operandos, sendo pelo menos
um deles um objeto da classe. Vejamos entao como fazer a sobrecarga de alguns destes operadores
tomando como exemplo a classe Complexo. E importante referir que, também no caso dos operadores,
as declaracoes devem ser feitas no ficheiro cabecalho e as defini¢oes no ficheiro corpo. No codigo abaixo
¢ ilustrado um possivel ficheiro cabecalho da classe Complexo onde sao declarados varios operadores.

Ficheiro Cabegalho
//Colocar instrugles para definir o ficheiro cabegalho e includes necessérios
class Complexo {
private:
double Real;
double Im;

public:
Complexo();
Complexo(double , double);

void AlterarReal(double);
void AlterarIm(double);
double VerReal() const;
double VerIm() const;

//0Operador simétrico: para escrever -z
Complexo operator-() const;

//0Operador soma/atribuigdo: para escrever zl+=z2
Complexo& operator+=(const Complexo&);

//Operador incremento (de prefixo): para escrever ++z
Complexo& operator++();

//0perador incremento (de sufixo): para escrever z++
Complexo operator++(int);

//0Operador paréntesis: para escrever z(a)
double operator() (double a) const;

//0perador negagdo: para escrever !z
bool operator!() const;

s

//Operador soma: para escrever zl+z2

Complexo operator+(const Complexo& , const Complexo&);
//0Operador relacional: para escrever zl==z2

bool operator==(const Complexo& , const Complexo&);
//Operador de escrita: para escrever cout << z

ostream& operator<<(ostream& , const Complexo&);
//0perador de leitura: para escrever cin >> z

istream& operator>>(istream& , Complexo&);

74

Note-se que alguns operadores sao membros da classe e outros nao. Existem operadores que podem
ser definidos tanto fora como dentro da classe, sendo a forma como sao declarados e definidos dependente
da opcao escolhida. Contudo, para nao tornar este capitulo demasiado moroso, adotaremos a seguinte
logica:

e operadores aritméticos simples, relacionais, de escrita e de leitura serao definidos fora da classe;

e operadores aritméticos compostos, de incremento/decremento, simétrico, de negacao, de acesso e
parénteses serao definidos dentro da classe.

Vejamos entao como definir cada um destes operadores no ficheiro corpo da classe.

Operador simétrico

O simétrico de um nimero complexo é um nimero complexo e por isso o operador simétrico tem
como tipo de retorno um objeto do tipo Complexo. Este operador estd definido dentro da classe, pelo
que é necessario usar o identificador Complexo::. Ao escrever z1=-z2, sendo z1 e z2 objetos do tipo
Complexo, estamos a aplicar o operador “-” a z2. O resultado de -z2 é guardado em z1, mas o valor de
z2 nao ¢ alterado. Assim sendo, ao implementar o operador simétrico, devemos criar um novo Complexo
cuja parte real e imagindria sao o simétrico da parte real e imaginaria, respetivamente, do objeto ao
qual foi aplicado o operador.

Ficheiro Corpo
Complexo Complexo::operator-() const{

Complexo novo;
novo.Real = -1%xReal;
novo.Im = —-1%Im;
return novo,

//ou
Complexo novo = Complexo(-1*Real, -1xIm);
return novo,

//ou simplesmente. ..
return Complexo(-1*Real, -1xIm);

Operador de soma/atribuigao

Contrariamente ao operador simétrico, o operador aritmético composto da soma/atribuicao requer
dois operandos, sendo que um deles ¢é alterado e o outro se mantém. Por exemplo, ao escrevermos a+=b
estamos a adicionar b a a e, por isso, apenas o valor de a é alterado. Assim, este operador recebe
como argumento uma referéncia constante para o objeto que nao sera alterado (operando b) e devolve
uma referéncia (ndo constante) para o objeto que foi alterado (objeto a). A instrugao return *this;
significa “devolve uma referéncia para este”, sendo “este” o objeto sobre o qual o operador foi aplicado,
o objeto a.

75

Ficheiro Corpo
Complexo& Complexo::operator+=(const Complexo& b){
Real += b.VerReal();
Im += b.VerIm();
return *this;

A declaracao e definicdo dos restantes operadores aritméticos compostos é semelhante a que foi aqui
apresentada para o operador += e por isso serd omitida da sebenta. Note-se, no entanto, que o resto da
divisao nao é uma operacao valida para nimeros complexos uma vez que os seus atributos sao do tipo
double, pelo que a sobrecarga do operador %= nao faz sentido para este tipo de dados.

Operadores de incremento

Como vimos anteriormente, o operador de incremento pode ser usado como prefixo ou sufixo. Quando
usado como prefixo (++a), o objeto é primeiro incrementado e depois devolvido. Quando usado como
sufixo (a++), é primeiro feita uma cépia do objeto e apenas depois o objeto é incrementado, sendo por
fim devolvida a cépia do objeto (que nao foi incrementada). Conforme ilustrado no cédigo abaixo, o que
distingue a declaragao dos operadores de incremento é o argumento int no operador sufixo. Note-se que
o argumento int apenas serve para distinguir qual o operador que queremos sobrecarregar e nao para
indicar que o operador de sufixo necessita de um argumento do tipo int.

Contrariamente ao que acontece com outros tipos de dados, o significado dos operadores de incre-
mento para objetos do tipo Complexo nao ¢é claro e poderd nem fazer sentido. Contudo, para explicar
como deve ser feita a declaracao e definicao destes operadores, consideramos que eles aumentam em uma
unidade a parte real e a parte imaginaria do Complexo.

Ficheiro Corpo
//0perador de incremento prefixo (++a)
Complexo& Complexo: :operator++(){
++Real;
++Im;
return *this;

}

//Operador de incremento de sufixo (a++)
Complexo Complexo::operator++(int){
Complexo aux(Real,Im);
++Real;
++Im;
return aux;

A implementacao dos operadores de decremento é semelhante e por isso nao serd apresentada na
sebenta.

76

Operadores aritméticos simples

Os operadores aritméticos efetuam uma operagao aritmética entre dois objetos da classe, que recebem
como argumento, e devolvem um novo objeto da classe. Uma vez que estes operadores nao alteram os
objetos que recebem como argumento, tais objetos devem ser passados por referéncia constante. E
importante ainda notar que, sendo estes operadores definidos fora da classe, o identificador Complexo::
deixa de ser necessario. No cddigo abaixo, é definido o operador soma, sendo a definicao dos restantes
operadores aritméticos simples semelhante.

Ficheiro Corpo
Complexo operator+(const Complexo& zl, const Complexo& z2){
double novo_real = zl.VerReal() + z2.VerReal();
double novo_im = zl1.VerIm() + z2.VerIm();
Complexo aux(novo_real, novo_im);
return aux;

// ou simplesmente. ..
return Complexo(zl.VerReal()+z2.VerReal(), zl.VerIm()+z2.VerIm());

Operadores relacionais

Os operadores relacionais permitem comparar dois objetos da classe e devolvem um resultado do
tipo bool. Tal como os operadores aritméticos simples, também os relacionais nao alteram os objetos
sobre os quais operam. Assim, esses objetos devem ser passados por referéncia constante. No cdédigo
abaixo é definido o operador == para objetos do tipo Complexo. A definicdo dos restantes operadores
relacionais seria feita de forma semelhante. No entanto, é importante referir que os operadores <, >, <=
e >= nao tém um significado claro para objetos do tipo Complexo.

Ficheiro Corpo
bool operator==(const Complexo& zl, const Complexo& z2){
if (zl.VerReal()==z2.VerReal() && zl1.VerIm()==z2.VerIm())
return true;

else
return false;

Para avaliar se dois objetos do tipo Complexo sao diferentes, nao podemos usar a instrucao z1 !=

z2, pois nao sobrecarregamos o operador !'=. Contudo, como o resultado desse operador é a negacao do
resultado do operador ==, poderiamos usar o operador == para fazer essa verificacao da seguinte forma:
1(z1 == z2).

Operador de escrita

O operador de escrita (<<) é um operador bindrio que recebe dois argumentos, nomeadamente uma
referéncia para um objeto ostream e uma referéncia constante para um objeto da classe, e devolve uma

7

referéncia para um objeto ostream. O ostream é uma classe da biblioteca standard e significa output
stream. Esta classe permite escrever e formatar sequéncias de carateres. Note-se que a definicao do
operador de escrita é bastante semelhante a definicao da funcao Imprime, sendo a unica diferenca a
utilizagao do objeto do tipo ostream em vez do tradicional cout.

Ficheiro Corpo
ostream& operator<<(ostream& output, const Complexo& z){
if (z.VerIm() >= 0)
output << z.VerReal() << "+" << z.VerIm() << "i';

else
output << z.VerReal() << z.VerIm() << "i'";

return output,

Tendo em conta o que aprendemos sobre fungoes, a questao que se coloca é: porque é que o operador
<< nao é void dado que recebe um argumento como referéncia? A resposta é simples, o operador <<
devolve uma referéncia para que possamos encadear instrucoes, isto é, para podermos fazer, por exemplo,
cout << z << endl;, sendo z um objeto do tipo Complexo. Se o tipo de retorno do operador fosse void
ficarfamos com void << endl;, sendo isto algo que o computador nao sabe interpretar. Ao devolvermos
a referéncia do objeto ostream ficamos com cout << endl;, algo que o computador ja conhece.

Operador de leitura

O operador de leitura (>>) é também um operador bindrio que recebe dois argumentos, nomeada-
mente uma referéncia para um objeto istream e uma referéncia para um objeto da classe, e devolve uma
referéncia para um objeto istream. O istream é uma classe da biblioteca standard e significa input
stream. Esta classe permite ler sequéncias de carateres. No cdédigo abaixo, é definido o operador de
leitura para objetos do tipo Complexo, assumindo que esses objetos sao introduzidos pelo utilizador na
forma a + bi. De acordo com esse formato, o utilizador deve comecar por inserir a parte real do niimero
complexo, que é guardada na variavel a. De seguida, introduz um carater que se espera que seja ou o
sinal + ou o sinal -, e que fica armazenado em c1. Por fim, é inserida a parte imagindria do nimero
complexo (armazenada na varidvel b) e um caracter, que se espera que seja ‘i’ e que é armazenado em
c2.

78

Ficheiro Corpo
istream& operator>>(istream& input, Complexo& z){
char cl1, c2;

double a, b;
input >> a >> cl >> b >> c2;
if(cl == =)
b = -b;
if(tinput || (cl!=‘-’> && ci!=‘+’) || c2!=1")

//langar excegdo

z.AlterarReal(a);
z.AlterarIm(b);
return input;

A declaracao do operador de leitura >> é bastante semelhante & do operador de escrita <<, as Unicas
diferencas sao a utilizagao da classe istream em vez da ostream e o objeto Complexo ser passado como
referéncia em vez de referéncia constante. Foquemos-nos na parte da passagem por referéncia. Isto
acontece porque o operador de leitura vai modificar o objeto do tipo Complexo, uma vez que altera os
valores da sua parte real e imagindria para os valores introduzidos pelo utilizador.

Operador Paréntesis

O operador paréntesis () pode receber um qualquer niimero de argumentos e retornar um qualquer
tipo de dados. Esta sua flexibilidade permite que seja usado em muitas situacoes, sendo duas delas
ilustradas no exemplo abaixo para a classe Complexo considerada anteriormente.

Ficheiro Corpo
double Complexo::operator()(double a) const{
return Real*a + Im;

Complexo Complexo::operator()(double a, double b) const{
return Complexo(Real*a , Im*b);
}

No primeiro exemplo, que corresponde ao apresentado no ficheiro cabecalho, o operador () recebe
apenas um argumento do tipo double e devolve o resultado obtido através da soma da multiplicagao da
sua parte real pelo valor recebido com a parte imaginaria do objeto do tipo Complexo, sendo por isso
o tipo de retorno double. No segundo caso, o operador () é usado para calcular um novo objeto do
tipo Complexo que terd como partes real e imaginéaria os valores do objeto original multiplicados por
constantes reais. Assim, recebe dois doubles que sao multiplicados pelas partes real e imaginaria do
Complexo original, dando origem a um novo Complexo.

79

Operador de negacao

O operador de negagao ! nao recebe qualquer argumento e tem como tipo de retorno o tipo bool. No
exemplo abaixo, é definido operador de negagao da classe Complexo.

Ficheiro Corpo
bool Complexo::operator!() const{
if (Real == 0 and Im == 0)
return true;

else
return false;

No exemplo apresentado, o operador de negagao ¢ usado para indicar se um Complexo ¢ ou nao nulo,
ou seja, se tem as suas partes real e imaginaria iguais a zero.

Apos a sobrecarga dos operadores anteriores, a sua utilizacao pode ser feita como é ilustrado abaixo.

Programa Principal

#include "complexo.h"

int main(){
Complexo z1(3,2), z2;
cout << "z2: ",

cin >> z2; //0Operador de leitura
Complexo z3 = zl + z2; //0Operador soma
cout << zl1 << " + " << z2 << " =" << z3; //Operador de escrita
++z1; //0Operador de incremento
Complexo z4 = -z1; //0perador simétrico
z4 += z2; //Operador soma e atribuigdo
if(zl == z2) //0Operador de igualdade
cout << "Sao iguais";
else
cout << "Sao diferentes";
double a = z1(2); //0perador paréntesis exemplo 1
Complexo z5 = z2(2, 3); //0Operador paréntesis exemplo 2
if ('zl) //Operador negagédo
cout << "Complexo nulo";
else
cout << "Complexo nao nulo";
return O;

80

Operador de acesso

Habitualmente, usamos o operador [] para aceder a elementos de vetores e, por isso, a sobrecarga
deste operador é particularmente 1til quando na classe existe um atributo do tipo vector. Para ilustrar
a sobrecarga do operador de acesso, consideremos entao uma classe ficticia VetorLP que tem como
atributo privado um vetor de strings e cujo ficheiro cabecalho é mostrado de seguida.

Ficheiro Cabecgalho

#ifndef VETORLP_H
#tdefine VETORLP_H
//Colocar os includes necessarios

class VetorLP {
private:
vector<string> V;

public:
//Construtor e outros membros piblicos

//Operador acesso - versdo ndo constante
string& operator[](int);

//0Operador acesso - versdo constante
const string& operator[](int) const;

I¥

#endif // VETORLP_H

Tal como ja foi referido, a sobrecarga do operador [] é feita dentro da classe. Nessa sobrecarga, sao
usualmente consideradas duas suas versoes: a versao constante e a versao nao constante. Comecemos por
analisar a versao nao constante. Esta versao recebe como argumento um valor inteiro, que corresponde a
uma posicao do vetor, e devolve uma referéncia para o elemento do vetor que esta nessa posi¢ao. Assim
sendo, esta versao do operador permite a alteracao dos elementos do vetor, sendo a sua definicao feita
como indicado abaixo.

//versdo ndo constante
string& VetorLP::operator[](int i){
return V[i];

E importante reforcar que o uso de referéncia no tipo de retorno desta versao do operador nao esta
relacionado com o facto de estarmos a retornar uma string (tipo nao primitivo), mas sim com o facto
de querermos que o objeto devolvido possa ser alterado. Assim sendo, esta versao do operador devolve
sempre uma referéncia, mesmo que o tipo de retorno seja um tipo de dados primitivo.

O operador [], apds sobrecarregado, é muitas vezes usado na defini¢ao de outros métodos/operadores.
Alguns desses métodos recebem como argumento objetos constantes, isto é, referéncias constantes para

81

objetos da classe. Objetos constantes sé podem ser manipulados por métodos/operadores também
constantes e, por isso, tais objetos nao podem ser manipulados pela versao nao constante do operador [].
Para contornar esta situacao, é necessario implementar a versao constante do operador []. Essa versao -
apresentada abaixo - devolve uma referéncia constante para um elemento do vetor, pelo que nao permite
a alteracao desse elemento.

//versdo constante
const string& VetorLP::operator[](int i) const{
return V[i];

Por fim, é importante referir que nao é necessario fazer na implementacao das versoes do operador []
qualquer validagao do argumento i, uma vez que esse operador nao faz essa validacao, tal como vimos
no caso dos vetores. Note-se que, na implementacao de um operador, devemos sempre manter as suas
propriedades originais.

Operador de acesso para matrizes

Como ja vimos, uma matriz é um vetor de vetores, isto é, um vetor em que cada um dos seus
elementos é um vetor. Por exemplo, a matriz

— =~J 00 Ot
NN O N
— W o =

pode ser definida em C++ como

vector<vector<int>> m = { {5, 2, 1}, {8, 0, 6}, {7, 2, 3}, {1, 0, 1} }

Significa isto que m é na verdade um vetor “principal” com quatro elementos (m[0] = {5, 2, 1},
m[1] = {8, 0, 6},m[2] = {7, 2, 3}em[3] = {1, 0, 1})sendo cada um desses elementos um vetor
“secundario” de dimensao 3. A sobrecarga do operador [] para um objeto de uma classe que tenha
como atributo uma matriz apenas permite aceder ao vetor principal dessa matriz, pelo que o operador
tera como tipo de retorno um vetor de elementos com o mesmo tipo que o vetor secundario, tal como é
ilustrado no proximo exemplo.

Nos ficheiros cabegalho e corpo do exemplo, é criada uma classe XPTO que tem como atributo uma
matriz de doubles e é definido o operador de acesso [] na sua versdo constante e nao constante. A
definicao desse operador permite aceder diretamente ao atributo Matriz de um objeto do tipo XPTO,
tal como é ilustrado na definicao do operador de escrita. Note-se que x é um objeto do tipo XPTO e
nao um vetor ou uma matriz, pelo que, sem a sobrecarga do operador [], nao seria possivel escrever
algo como x[i]. Contudo, apds a definicao do operador de acesso, passa a ser possivel escrever x[i]
e, consequentemente, x[1]1 [j]. Ao escrever x[1] [j], é primeiramente chamado o operador [] definido
na classe, o qual devolve um vetor de doubles, isto é, devolve x[i]. Sendo x[i] um vetor de doubles, o
acesso aos seus elementos pode ser feito diretamente usando o operador de acesso [] ja predefinido na
biblioteca standard para vetores e que permite entao obter o elemento que estd na posicao j do vetor
x[1], isto é, x[1] [j]. Assim sendo, nao é necesséaria a sua implementacao.

82

Ficheiro Cabegalho

#ifndef XPTO_H
##define XPTO_H
//Colocar os includes necessarios

class XPTO {
private:
vector<vector<double>> Matriz;

public:
//Construtor e outros membros piublicos

//0Operador acesso - versdo ndo constante
vector<double>& operator[](int);

//0Operador acesso - versdo constante
const vector<double>& operator[](int) const;

ostream& operator<<(ostream& , const XPT0&);

#endif // XPTO_H

Ficheiro Corpo

//0Operador acesso - versdo ndo constante
vector<double>& XPTO::operator[](int i){
return Matrizl[i];

//0Operador acesso - versdo constante
const vector<double>& XPTO::operator[](int i) const{
return Matriz[i];

//0Operador de escrita
ostream& operator<<(ostream& output, const XPTO& x){
for(int i = 0; i < x.N_linhas(); ++i){ //Definir método N_linhas()
for(int j = 0; j < x[i].size(); ++j){
output << x[i][j] << " "
}

output << endl;

}

return output;

83

Capitulo 9

Heranca e polimorfismo

A heranga é a capacidade de criar novas classes (classes derivadas ou filhas) a partir de classes ja
existentes (classes base ou mae), sendo os membros das classes mae herdados pelas classes derivadas.
Numa classe mae podemos ter membros publicos (public), privados (private) ou protegidos (protected).
Membros protegidos, tal como membros privados, nao podem ser acedidos fora da classe onde foram
definidos. A diferenca entre membros privados e protegidos apenas existe no contexto da heranca: as
classes derivadas tém acesso aos membros protegidos da classe mae, mas nao aos seus membros privados.

A indicagao de que uma classe (classe derivada) herda de outra classe (classe mae) é feita da seguinte
forma:

Ficheiro Cabegalho
#ifndef CLASSE_DERIVADA_H
#define CLASSE_DERIVADA_H

class Classe Derivada: tipo de acesso Classe Mae {

//. ..
b

#endif // CLASSE_DERIVADA_H

O tipo_de_acesso define o acesso aos membros da classe mae e pode ser public, private ou protected.
Membros privados da classe mae nunca podem ser acedidos pelas classes derivadas, independentemente
do tipo de acesso usado. Assim sendo, a diferenca entre os trés tipos de acesso diz apenas respeito aos
membros publicos e protegidos da classe mae:

i) private: a classe derivada herda todos os membros publicos e protegidos da classe mae, mas esses
membros sao definidos como privados na classe derivada.

ii) protected: a classe derivada herda todos os membros publicos e protegidos da classe mae, mas
esses membros sao definidos como protegidos na classe derivada.

iii) public: a classe derivada herda todos os membros piiblicos e protegidos da classe mée e o seu tipo
de acesso nao é alterado. Ou seja, membros publicos da classe mae sao também publicos na classe
derivada e membros protegidos da classe mae sao também protegidos na classe derivada.

Tomemos como exemplo uma classe Poligono para representar e manipular um poligono. Como
existem carateristicas comuns a todos os poligonos, podemos implementar uma classe mae que represente

84

essas carateristicas. Por exemplo, todos os poligonos podem ser definidos através de um vetor que
contenha o comprimento de cada um dos seus lados, pelo que esse vetor pode ser o tnico atributo da
classe. O célculo do perimetro de um poligono corresponde a soma de todos os seus lados, sendo também
independente do poligono em causa. O mesmo nao acontece com a area, cujo calculo depende do tipo
de poligono. A classe mae Poligono poderia entao ser implementada como mostrado abaixo.

Ficheiro Cabegalho Ficheiro Corpo
#ifndef POLIGONO_H #include "poligono.h"
#define POLIGONO_H
//Colocar os includes necessarios Poligono: :Poligono(const vector<double>& v){
Lados = v;
class Poligono{ }
protected: double Poligono::Perimetro() const{
//atributos double p = 0;
vector<double> Lados; for(int i = 0; i<Lados.size(); ++i){
p += Lados[i];
public: }
//Construtor return p;
Poligono(const vector<double>&); }
//Métodos double Poligono::Area() const{
double Perimetro() const; throw runtime_error ("ERRO!");
double Area() const; }

}s

#endif // POLIGONO_H

Suponhamos que queremos criar duas novas classes para representar triangulos e quadrados. Quer
o triangulo quer o quadrado sao poligonos e, por isso, partilham as carateristicas da classe Poligono.
Estas carateristicas podem ser herdadas da classe mae Poligono em vez de voltarem a ser definidas nas
classes Triangulo e Quadrado, evitando assim repetigoes de codigo. Além dos membros herdados da
classe mae, as classes derivadas podem ainda incluir outros membros especificos.

Vejamos entao a declaracao e a definicao destas duas classes. Para simplificar, apresentamos apenas
o ficheiro cabegalho das classes, onde incluimos as definigoes (que deverfamos incluir no ficheiro corpo).
Note-se que, o calculo da drea estd bem definido para um qualquer quadrado e triangulo, pelo que as
respetivas classes podem conter um método para o fazer.

85

Ficheiro Cabegalho

#ifndef QUADRADO_H
#define QUADRADO_H
//Colocar os includes necessarios

class Quadrado: public Poligono{
public:

//Construtor
Quadrado(double x): Poligono(vector<double>(4,x)){ }

//Métodos
double Area() const{ return Lados[0]*Lados[0]; }

}s

#endif // QUADRADO_H

Ficheiro Cabecgalho

#ifndef TRIANGULO_H
#tdefine TRIANGULO_H
//Colocar os includes necessarios

class Triangulo: public Poligono{

private:
double Base;
double Altura;

public:
//Construtor
Triangulo(double a, double b, double c¢): Poligono({a,b,c}){
Base = a;
double s = (at+b+c)/2; //férmula de Heron
Altura = 2*sqrt(s*(s-a)*(s-b)*(s-c))/Base;

}

//Métodos
double Area() const{ return Base*Altura/2; }

s

#endif // TRIANGULO_H

Ambas as classes herdam publicamente da classe Poligono e tém definido um método especifico
para calcular a area. A classe Quadrado apresentada, nao inclui atributos extra. Nesta classe, existe
um construtor que recebe como argumento a medida do lado do quadrado. O construtor de uma classe

86

derivada é sempre definido através do construtor da classe mae. Ora, o construtor da classe mae recebe
como argumento um vetor, pelo que é necessario criar um vetor com quatro posicoes sendo o valor de
cada uma delas igual ao lado do quadrado (z). A classe Triangulo tem dois atributos especificos além
dos atributos gerais herdados da classe Poligono. Assim, qualquer objeto do tipo Tridngulo terd trés
atributos: a base e a altura definidas na classe Tridngulo e o vetor com as medidas dos lados herdado
da classe Poligono. O construtor da classe Triangulo recebe as trés medidas dos lados do triangulo e
com elas preenche os seus atributos especificos (base e altura) e o vetor Lados através do construtor da
classe Poligono.

Apesar do método Perimetro nao estar implicitamente declarado nestas duas classes, é herdado da
classe Poligono, pelo que pode ser usado pelos objetos do tipo Quadrado e do tipo Triangulo, conforme
ilustrado no exemplo abaixo

//includes necessirios

int main(){
Poligono P({3, 1, 3, 5, 7});
cout << "PerimetroP: " << P.Perimetro();

Quadrado Q(3);
cout << "\nPerimetroQ: " << Q.Perimetro();

cout << "\nAreaQ: " << Q.Area();

Triangulo T(3, 4, 5);

cout << "\nPerimetroT: " << T.Perimetro();
cout << "\nAreaT: " << T.Area();
return O;

sendo obtido o output esperado, isto é,

PerimetroP: 19
PerimetroQ: 12

AreaQ: 9
PerimetroT: 12
AreaT: 6

Consideremos agora o programa abaixo. Neste programa é criada uma fungao global f que recebe
como argumento uma referéncia constante para um Poligono. Ora, um Quadrado e um Triangulo,
sendo classes derivadas da classe Poligono, sao também do tipo Poligono e, por isso, podem também
ser argumentos da funcao f. A chamada do método Perimetro, por ser definido na classe Poligono,
nao levanta qualquer problema, independentemente da funcao f receber um Poligono, um Quadrado
ou um Triangulo. Contudo, o mesmo nao acontece com o método Area. Apesar das classes Quadrado
e Triangulo terem o seu proprio método Area, ao passar um objeto de um desses tipos para a funcao
f, o método Area chamado sera sempre o da classe Poligono, sendo por isso langada uma excecao, que
é o que o método Area da classe Poligono faz.

87

//includes necessarios

void f(const Poligono& P){
cout << "\nPerimetro: " << P.Perimetro();
cout << "\nArea: " << P.Area();

}

int main(){
Quadrado Q(3);
£(Q);
Triangulo T(3, 4, 5);
£(T);

O que se pretende seria que para objetos do tipo Quadrado e Triangulo fosse chamado o método
Area definido nas respetivas classes. Para que isso acontega, o método Area na classe Poligono deve ser
declarado como um método virtual ou puramente virtual. Isto é, como um método que sera redefinido
nas classes derivadas. Ao chamar um método virtual para um objeto da classe derivada através da
classe mae, serd usado o método da classe derivada (se existir) em vez do da classe mae. A declaragao e
defini¢ao do método virtual ou puramente virtual Area no ficheiro cabegalho da classe Poligono pode ser
feita como apresentado abaixo, sendo que nenhuma alteracao precisa de ser feita nas classes derivadas.

//Declaragido como método virtual
virtual double Area() const { };

//Declaragdo como método puramente virtual
virtual double Area() const = 0;

A principal diferenca entre métodos virtuais e puramente virtuais é a possibilidade de criar objetos
da classe em que sao definidos. Caso o método Area seja declarado como um método puramente virtual,
deixa de ser possivel criar objetos do tipo Poligono, sendo apenas possivel a criagao de objetos do tipo
das classes derivadas. Isto é, se a funcao Area for puramente virtual temos:

Poligono P({1, 4, 7, 3}) //ERRO!
Quadrado Q(3) //0K
Triangulo T(3, 4, 5) / /0K

O mesmo nao acontece com um método que seja apenas virtual. Neste caso, a criagao de obje-
tos do tipo Poligono é também possivel. Além disso, um método puramente virtual tem que estar
implementado em todas as classes derivadas enquanto que um método virtual nao.

A definicao do método Area como virtual ou puramente virtual, permite que a funcao f anterior
funcione corretamente, isto é, que o Poligono recebido como argumento seja visto como um Quadrado
quando a funcao é chamada com um Quadrado e que esse Poligono seja visto como um Triangulo
quando a fung¢ao é chamada com um Triangulo. A esta capacidade de um objeto se comportar como
se fosse de outro tipo chama-se polimorfismo.

88

Capitulo 10

Escrita e leitura de ficheiros

A utilizacao de ficheiros é essencial para importar e exportar grandes quantidades de informacao
de um programa. O pacote fstream da biblioteca standard do C++ - cujo significado é file stream -
contém métodos para manipular ficheiros, pelo que é necesséria a sua inclusao no preambulo através da
instrucao

#include <fstream>

Este pacote contém as classes ofstream e ifstream que permitem, respetivamente, a escrita e a
leitura de ficheiros, sendo o seu significado output file stream e input file stream, respetivamente.

10.1 Escrita de ficheiros

Para escrever um ficheiro, é necessério criar um objeto da classe ofstream, que cria um canal para
enviar informagao para um ficheiro. Para tal, devemos usar a instrugao:

ofstream nome(Caminho, modo_de_abertura);

ou as instrucoes:

ofstream nome;
nome . open(Caminho, modo_de abertura);

onde nome é o nome do objeto ofstream que queremos associar ao ficheiro, Caminho ¢é a localizagao
do ficheiro onde se pretende escrever, incluindo o seu nome, e modo_de_abertura é a opcao que indica
o que queremos fazer com o conteido ji existente no ficheiro (caso exista). Para o modo_de_abertura
existem duas opgoes: ios_base::out e ios_base::app. Ambas as opgoes criam um ficheiro caso ainda
nao exista, no entanto, no caso do ficheiro ja existir, a primeira opcao apaga o seu contetido, enquanto
que com a segunda o contetido do ficheiro é preservado, sendo a nova informacao adicionada no final do
ficheiro. Se o modo de abertura nao for especificado, é assumido o modo ios_base: :out.

O Caminho é uma string que indica o caminho completd'] até ao ficheiro e que inclui o seu nome.

'Para aceder a localizacdo de um ficheiro em Windows, devemos ir & pasta onde est4 o ficheiro, carregar no ficheiro com
o botao direito do rato e selecionar Propriedades. De seguida basta copiar o caminho completo que 14 aparece substituindo
cada barra de separagao (“\”) por duas barras (“\\”). Em Mac, é usado como separador a barra invertida (“/”) em vez
das duas barras.

89

Quando no Caminho apenas é indicado o nome do ficheiro, é assumida a localizacao default, que é a
pasta build do projeto.

Apés criar o objeto ofstream nome, devemos verificar se o ficheiro foi aberto com sucesso. Para tal,
podemos usar o método is_open (nome.is_open()) ou o operador de negagao (!'nome). Tendo a garantia
de que o ficheiro esta aberto, podemos entao escrever no ficheiro usando a variavel nome. O processo de
escrita no ficheiro é semelhante ao da escrita para o ecra, mas em vez de usar a instrucao cout usamos
a variavel nome. Vejamos o exemplo abaixo.

#include <iostream>
#include <fstream>
using namespace std;

int main(){
ofstream file("C:\\Users\\A\\Novo.txt", ios_base::out);

if(1file) //ou if(!file.is_open())
throw runtime_error("ERRO: Nao foi possivel abir o ficheiro.");

file << "Texto";

file.close();
return O;

Neste exemplo é criado um objeto of stream com o nome file para enviar informacao para o ficheiro
com o nome Nowo.tzt e cuja localizagao é “C:\ Users\A”. O modo de abertura é ios_base: :out, pelo
que todo o conteido que existir no ficheiro - se existir - é apagado. De seguida, verificamos se o ficheiro
foi aberto com sucesso e caso nao tenha sido lancamos uma excecao. Caso nao seja lancada a excecgao -
o que significa que o ficheiro foi aberto com sucesso - é entao escrita no ficheiro a palavra “Texto”. Por
fim, o canal de escrita para o ficheiro é fechado através do método close().

10.2 Leitura de ficheiros

Para ler um ficheiro, é necessario criar um objeto da classe ifstream, que cria um canal de informagao
para ler de um ficheiro. Para tal, devemos usar a instrucao:

ifstream nome(Caminho)

onde, tal como anteriormente, nome é o nome do objeto ifstream e Caminho é a localizacao do ficheiro
que se pretende ler (incluindo o seu nome). Apds criar o objeto ifstream nome, devemos também verificar
se o ficheiro foi aberto com sucesso, tal como no caso da escrita de ficheiros. A leitura do conteuido do
ficheiro ¢ semelhante a leitura de informagao do ecra, mas usamos a varidavel nome, em vez da instrugao
cin. Vejamos o exemplo abaixo.

90

#include <iostream>
#include <fstream>
using namespace std;

int main(){
ifstream file;
file.open("Dados.txt");
//ou simplesmente: ifstream file("Dados.txt");

if('file) //ou if(!file.is_open())
throw runtime_error("ERRO: Nao foi possivel abir o ficheiro.");

string s;
file >> s;

file.close();
return O;

Neste exemplo é criado um objeto ifstream com o nome file que ird ler informacgao do ficheiro com
o nome Dados.txt localizado na pasta build do projeto, dado que nao foi especificada uma localizagao.
De seguida, verificamos se o ficheiro foi aberto com sucesso e, em caso afirmativo, é lida a primeira
sequéncia de carateres do ficheiro, que é guardada na variavel s. Por fim, o canal de informacao para
ler o ficheiro é fechado através do método close(). Note-se que apenas a primeira sequéncia de carateres
do ficheiro é lida uma vez que a leitura de uma string termina apds ser encontrado um espaco ou uma
mudanca de linha. Por exemplo, se o conteido do ficheiro Dados.tzt for

Dados.txt
Amanha vai chover muito.
Hoje nao chove.

apenas a palavra Amanha é lida e guardada na variavel s. Para ler uma linha completa, ou seja, ler até
encontrar uma mudanca de linha, podemos usar a funcao getline que tem dois ou trés argumentos. No
caso de trés argumentos, a sua sintaxe é a seguinte:

getline(InputStream, guardalnformacao, delimitador)

onde InputStream é um objeto do tipo ifstream (por exemplo, o cin) que é usado para indicar o
canal de onde serd lida a informagcao (consola, ficheiro, etc.). O segundo argumento é a variavel string
(chamada guardaInformacao) onde queremos guardar a informagao lida. O terceiro argumento é o
carater delimitador do tipo char que indica até onde deve ser lida a string. Se o carater especificado
nao existir na linha que se pretende ler, a leitura continua para as linhas seguintes até que o carater
delimitador seja encontrado ou, no caso de ficheiros, até que se chegue ao final do ficheiro. Na sintaxe
da fungao getline com dois argumentos, é removido o ultimo argumento (carater delimitador), que por
defeito se assume ser a mudanca de linha. Vejamos o exemplo abaixo:

91

int main(){
ifstream file("Dados.txt");
if(1file)
throw runtime_error("ERRO: Nao foi possivel abir o ficheiro.");

string si;
getline(file, s1, ‘i’);

string s2;
getline(file, s2);

file.close();

string s3, s4;
getline(cin, s3);
getline(cin, s4, ‘/’);
return O;

O contetudo da string s1 é lido do ficheiro Dados.txt. Assim, o primeiro getline ira ler a primeira
linha do ficheiro até encontrar o carater ‘i’, ou seja, le “Amanha va”, sendo este o conteudo de si.
O segundo getline também ird ler do ficheiro Dados.txt. A leitura do segundo getline comega onde
terminou a leitura anterior, isto é, ap6s o primeiro carater ‘i’ na primeira linha. Uma vez que neste
caso nao é especificado o carater delimitador, a leitura terminara no final da primeira linha, pelo que
teremos s2 = “ chover muito.”.

Nos dois ultimos getlines é usado o cin, pelo que o conteido das strings s3 e s4 serd lido do ecra. A
leitura da string s3 termina quando for inserida uma mudanca de linha. De seguida, comega a leitura
da string s4, onde serd armazenada toda a informagao introduzida antes do cardter ¢/°.

Para ler toda a informacgao de um ficheiro podemos usar um ciclo while semelhante ao que usamos
para pedir sucessivamente valores ao utilizador. A instrucao while(getline(file, s)) pode ser lida
como “enquanto houver linhas no ficheiro para ler”.

//ler linhas sucessivamente //ler palavras sucessivamente
int main(){ int main(){

ifstream file("Dados.txt"); ifstream file("Dados.txt");

string s; string s;

while(getline(file, s)){ while(file >> s){

//. .. //. ..

} t

file.close(); file.close();

return O; return O;

92

10.3 Instrucoes clear() e ignore()

As instrugoes clear () e ignore () servem para manipular canais de leitura, sendo muito importantes
para garantir o bom funcionamento do programa. O cin é um canal de leitura do ecra de onde é extraida
informacao e tem dois estados possiveis: “com erro” e “sem erro”. Um dos motivos que pode levar a que
o canal cin fique com erro é a leitura de um tipo de dados diferente do da variavel que o ird armazenar.
Uma vez com erro, o canal de leitura nao voltara ao estado “sem erro” enquanto o programa nao for
executado novamente ou enquanto o canal nao for “limpo”, o que impossibilitara a utilizacao do canal
no resto da execucao do programa. A instrucao cin.clear() tem como finalidade “limpar” o canal,
restaurando o seu estado sem erro e permitindo assim que este continue a ser usado no decorrer do
programa. Consideremos o exemplo abaixo.

int ni; int ni;

int n2; int n2;

string s; string s;

cout << "Primeiro numero: "; cout << "Primeiro numero: ";
cin >> nil; cin >> ni;

cin.clear();
cin.ignore(10000, ‘\n’);

cout << "Segundo numero: "; cout << "Segundo numero: ";

cin >> n2; cin >> n2;

cout << "Texto: "; cout << "Texto: ";

cin >> s; cin >> s;

cout << nl1 << " "< n2 <" " <K s; cout << nl << " " <K<K n2 <K " "KL g;

Consideremos primeiro o codigo do lado esquerdo. Suponhamos que aquando da leitura da variavel
nl (numérica) o utilizador introduz um cardater ndo numérico. Neste caso, a varidvel n1 ficard com um
valor lizo e o canal de leitura ficard com erro, nao sendo por isso efetuada a leitura da segunda e terceira
varidveis (que ficarao também com um valor lizo).

No c6digo da direita foram adicionadas as instrugoes cin.clear() e cin.ignore (10000, ‘\n’) ao
programa. Comecemos por analisar o que acontece se apenas tivermos a instrucao cin.clear(). Ao
introduzir um valor nao numérico, por exemplo ‘g’, aquando da leitura de n1, o canal do cin passara a
estar com erro. Ao chegar a instrugao cin.clear(), o programa altera o estado do canal de leitura cin
para sem erro, pelo que pode ser lida novamente informacao a partir desse canal. Ora, a informacao que
neste momento existe no canal é o carater que foi introduzido aquando da leitura de n1 e uma mudanca
de linha acrescentada automaticamente no momento em que se carregou na tecla enter apds inserir g
na consola, isto é, “g\n”. Uma vez que existe ainda essa informacdo no canal pois nao foi lida para
nenhuma variavel, o utilizador nao tera possibilidade de introduzir novos valores no canal. Significa isto
que o programa ird tentar associar o conteiudo ja existente no canal a variavel n2, causando novamente
o problema anterior. Note-se que no caso da leitura da varidvel s (do tipo string) ser feita primeiro do
que a leitura da variavel n2 nao iria existir qualquer problema com o canal de leitura pois a informagao
nele contida seria associada a variavel s, isto é, terfamos s=‘ ‘g’ e o utilizador teria a possibilidade de

93

introduzir um novo valor para n2.

Podemos entao concluir que alterar apenas o estado do canal de leitura para sem erro pode nao
ser suficiente para resolver problemas de leitura uma vez que a informacao existente no canal nao
¢ removida até que seja guardada numa varidvel. Para apagar todo o conteido existente no canal de
leitura, devemos usar a instrugao cin.ignore (10000, ‘\n’). Esta instrugao tem como objetivo apagar
todos os carateres (até ao maximo de 10000) que foram introduzidos antes de ter sido efetuada uma
mudanca de linha (causada por carregar na tecla enter).

No coédigo do lado direito, quando o utilizador introduz erradamente um carater nao numérico na
leitura da varidvel n1, o canal cin fica com erro sendo depois o seu estado alterado para sem erro
pela instrugao cin.clear (). De seguida, a instru¢do cin.ignore (10000, ‘\n’) apaga todo o contetido
existente no canal de leitura. Assim sendo, uma vez que o canal de leitura nao estd em erro e nao tem
contetdo, é pedido um novo valor ao utilizador para a varidvel n2 e depois para a variavel s, caso nao
tenha havido erro na leitura de n2.

Uma outra situacao em que utilizagao da instrugao cin.ignore() pode ser necessaria é em progra-
mas onde sejam usadas conjuntamente as instrucoes cin >> e getline(cin, ...). Consideremos os
seguintes exemplos:

int ni; int nil;

string s; string s;

cout << "Nome: "; cout << "Numero: ";
getline(cin, s); cin >> nl;

cout << "Numero: "; cin.clear();

cin >> nil; cin.ignore(10000, ‘\n’);
cout << nl <K " " K g; cout << "Nome: ";

getline(cin, s);

cout << nl << " " KK g;

Como ja sabemos, a leitura do getline termina quando for encontrada uma mudanca de linha que,
no caso deste exemplo, serd implicitamente inserida ao carregar na tecla enter, sendo essa mudanca de
linha também lida mas ignorada. Assim sendo, no cédigo do lado esquerdo, apds a leitura da string
s, o canal do cin estard sem erro e vazio, pelo que o utilizador pode introduzir nova informacao no
canal aquando da leitura da varidvel nl. Significa isto que aqui nao serao necessarias as instrucoes
cin.clear() ou cin.ignore().

No cédigo do lado direito, é primeiramente lida a variavel nl e, aquando dessa leitura, a mudanga
de linha "\n" incluida automaticamente através da tecla enter ficard armazenada no canal. Ao ser
colocado um getline logo de seguida, a informacao existente no canal ("\n") é lida pelo getline, pelo que
teremos s="\n". A utilizagdo da instru¢do cin.ignore (10000, ‘\n’) permite apagar todo o contetido
do canal incluindo a mudanca de linha 14 existente. Assim sendo, o utilizador tera a possibilidade de
voltar a introduzir informacao que serd guardada na variavel s. E importante notar que neste exemplo o
cin.clear () apenas é necessario para prevenir o caso em que o utilizador coloca um valor nao numérico
aquando da leitura do n1, pelo que nao tem qualquer efeito se tal nao acontecer.

94

Por fim, é importante reforcar que as instrugoes .clear() e .ignore() podem ser usadas exatamente
da mesma forma para outros canais de leitura que nao o cin. Tais canais sao, por exemplo, canais de
leitura para ficheiros ou para strings (string streams, que serao introduzidas na sec¢ao seguinte).

10.4 String streams

Um stream é um “canal” onde pode ser inserida informacao ou de onde pode ser extraida informacao.
Como vimos nas secgoes anteriores, um objeto do tipo ofstream é um canal para inserir informagao num
ficheiro enquanto um objeto do tipo ifstream é um canal para extrair informacao de um ficheiro. Existem
também canais para inserir e extrair informagao do ecra, que sao o cout e o cin, respetivamente. Nesta
sec¢ao veremos como inserir e extrair informacao de strings.

Para usar uma string como um canal de leitura ou de escrita devemos utilizar objetos do tipo
istringstream e ostringstream, respetivamente, estando ambos disponiveis no pacote sstream (string
stream) da biblioteca standard. Assim, é necessaria a inclusdo deste pacote no preambulo através da
instrucao

#include <sstream>
Para criar um canal de leitura para uma string, usamos um objeto do tipo istringstream. Depois

disso, sera entao possivel usar o operador >> para extrair informacao da string. Vejamos o exemplo
abaixo.

string s = "Amanha terei 30 anos";
istringstream iss(s);

string sl, s2, s3;
int n;

iss >> sl >> 82 >> n >> s83;

Neste exemplo é criado um objeto do tipo istringstream com o nome iss, que ¢ um canal de leitura
para a string s. Assim, serd possivel extrair cada elemento da string s e armazenéd-lo numa variavel
do tipo adequado, o que ¢ ilustrado pela variavel n do tipo int. Nessa variavel ficara armazenado o
valor inteiro 30. Note-se que a leitura de uma string sem a utilizacao do getline termina assim que for
encontrado um espaco ou uma mudanca de linha.

Um objeto do tipo ostringstream cria um canal de escrita para uma string ao qual podemos adi-
cionar informagao facilmente com o operador <<. A grande vantagem da utilizacdo de ostringstreams
é o facto de se tornar possivel concatenar facilmente objetos de diferentes tipos numa tunica string.
Recorde-se que, até aqui, para concatenar uma variavel de um tipo numérico numa string era necessario
utilizar a funcao to_string. Apds construir o canal de informacao para a string pretendida através do
objeto ostringstream, é necessario extrair a string criada, sendo para isso usado o método .str().
Vejamos o exemplo abaixo.

95

string s = "A Maria pesa ";
double x 60.25;

ostringstream oss;
0ss << s << x << '"kg e mede " << 1.7 << ‘m’;

string nova = oss.str(Q);
cout << nova;

Neste exemplo, é criado um objeto do tipo ostringstream com o nome oss que serd usado para
concatenar informacao, sendo essa informacao resultante de diferentes tipos de dados, nomeadamente
strings, variaveis numéricas e carateres. O conteido da string criada é depois devolvido e guardado
numa nova variavel do tipo string (chamada nova) através do método str (), sendo essa varidvel escrita
no ecra.

96

Bibliografia

[1] Stroustrup, B. (2014). Programming: principles and practice using C++. Pearson Education.
[2] Stroustrup, B. (2018). A Tour of C++. Addison-Wesley Professional.
[3] https://www.learncpp.com/

97

https://www.learncpp.com/

	Variáveis e operadores
	Tipos de variáveis
	Escrita de variáveis - Output
	 Atribuição de valores a variáveis - Input
	Variáveis constantes
	Operadores
	Operadores aritméticos
	Operadores relacionais
	Operadores lógicos
	Operador ternário (Informação complementar)

	Estruturas de controlo
	Estruturas de controlo condicionais
	Estrutura black if
	Estrutura black if else
	Estruturas condicionais encadeadas

	Uso de chavetas e de indentação
	Estruturas de controlo cíclicas
	Estrutura black while
	Estrutura black do-while
	Estrutura black for
	Ciclos encadeados
	As instruções break e continue

	Variáveis indexadas - Vetores
	Declaração de vetores
	Declaração de vetor com dimensão
	Declaração de vetor sem dimensão

	Método .at() black vs operador []
	Manipulação de vetores
	Preenchimento de vetores
	 Impressão de vetores
	Ordenação de vetores

	Vetores de vetores - Matrizes

	Funções
	Sintaxe geral de uma função
	Vantagens das funções
	Passagem por valor, por referência e por referência constante

	Tratamento de erros
	Classes vazias
	Classes da biblioteca standard
	Classe runtime_error
	Classe out_of_range

	Separação de um projeto em ficheiros
	Espaços de nomes
	Redefinição de tipos de dados - black type alias

	Classes
	Sobrecarga de operadores
	Herança e polimorfismo
	Escrita e leitura de ficheiros
	Escrita de ficheiros
	Leitura de ficheiros
	Instruções clear() e ignore()
	black String streams

