
Linguagens de Programação

Uma sebenta

Editado por

Filipe Rodrigues

Raquel Bernardino

Instituto Superior de Economia e Gestão

Conteúdo

1 Variáveis e operadores 5
1.1 Tipos de variáveis . 5
1.2 Escrita de variáveis - Output . 8
1.3 Atribuição de valores a variáveis - Input . 9
1.4 Variáveis constantes . 10
1.5 Operadores . 11

1.5.1 Operadores aritméticos . 11
1.5.2 Operadores relacionais . 13
1.5.3 Operadores lógicos . 13
1.5.4 Operador ternário (Informação complementar) . 14

2 Estruturas de controlo 15
2.1 Estruturas de controlo condicionais . 15

2.1.1 Estrutura if . 15
2.1.2 Estrutura if else . 16
2.1.3 Estruturas condicionais encadeadas . 18

2.2 Uso de chavetas e de indentação . 21
2.3 Estruturas de controlo ćıclicas . 23

2.3.1 Estrutura while . 24
2.3.2 Estrutura do-while . 25
2.3.3 Estrutura for . 27
2.3.4 Ciclos encadeados . 28
2.3.5 As instruções break e continue . 30

3 Variáveis indexadas - Vetores 32
3.1 Declaração de vetores . 32

3.1.1 Declaração de vetor com dimensão . 32
3.1.2 Declaração de vetor sem dimensão . 33

3.2 Método .at() vs operador [] . 35
3.3 Manipulação de vetores . 36

3.3.1 Preenchimento de vetores . 36
3.3.2 Impressão de vetores . 38
3.3.3 Ordenação de vetores . 38

3.4 Vetores de vetores - Matrizes . 39

1

4 Funções 42
4.1 Sintaxe geral de uma função . 43
4.2 Vantagens das funções . 47
4.3 Passagem por valor, por referência e por referência constante 47

5 Tratamento de erros 50
5.1 Classes vazias . 52
5.2 Classes da biblioteca standard . 55

5.2.1 Classe runtime error . 55
5.2.2 Classe out of range . 56

6 Separação de um projeto em ficheiros 58
6.1 Espaços de nomes . 60
6.2 Redefinição de tipos de dados - type alias . 63

7 Classes 64

8 Sobrecarga de operadores 73

9 Herança e polimorfismo 84

10 Escrita e leitura de ficheiros 89
10.1 Escrita de ficheiros . 89
10.2 Leitura de ficheiros . 90
10.3 Instruções clear() e ignore() . 93
10.4 String streams . 95

2

Introdução

Saber programar é essencial no mundo em que vivemos porque a nossa civilização depende fortemente
de software. A programação encontra-se em praticamente todo o lado, desde simples eletrodomésticos
como máquinas de lavar até grandes objetos como navios, aviões, satélites, etc. Para programar é
necessário usar uma linguagem de programação, isto é, uma linguagem codificada que possa ser entendida
por computadores. Existem várias linguagens de programação tais como C++, C, C#, java, python, etc.
Nesta cadeira estudaremos a linguagem C++ pois, além de ser uma das linguagens de programação
mais utilizadas em todo o mundo e estar dispońıvel em quase todo o tipo de computadores, incute boas
práticas de programação que são essenciais para novos programadores. Com os conhecimentos adquiridos
nesta cadeira poderão depois facilmente aprender outras linguagens de programação por vocês próprios.

Para escrever os programas em C++ usaremos o QT Creator. Além de permitir escrever e executar
os nossos programas, o QT Creator tem ainda uma série de outras funcionalidades, nomeadamente
aplicações gráficas, que não iremos explorar nesta cadeira, mas que poderão aprender sozinhos mais
tarde, se assim o desejarem.

Esta sebenta contém alguma informação complementar sobre a linguagem de programação C++ que
não será lecionada nem avaliada na unidade curricular de Linguagens de Programação. As secções com
esta informação estão assinaladas como Informação Complementar.

O básico

Programar é dizer ao computador o que tem que fazer para atingir um determinado objetivo ou para
resolver um determinado problema. Para isso, é necessário escrever de forma detalhada as instruções que
o computador tem que executar numa linguagem que ele consiga entender. Esse conjunto de instruções
é aquilo a que chamamos programa. Sendo máquinas, os computadores não têm a capacidade de pensar
e por isso todas as instruções devem ser escritas de forma detalhada e expĺıcita. Para validar todas as
instruções que foram escritas, o computador usa um compilador . A missão do compilador é verificar
se o computador consegue perceber e executar todas as instruções que escrevemos. Isto significa que o
compilador permite apenas identificar erros de escrita (chamados erros de sintaxe) no nosso código. O
compilador não verifica erros de execução, isto é, não verifica se as instruções que estamos a escrever
correspondem ao que queremos que, de facto, o computador faça. Para que o compilador consiga
identificar o fim de cada uma das instruções que escrevemos, estas terminam geralmente com ponto e
v́ırgula “;”, havendo algumas exceções. No QT Creator, os erros de compilação aparecem a vermelho
e têm obrigatoriamente que ser corrigidos para que possamos executar o programa. Além disso, o
compilador lança ainda warnings (mostrados a amarelo) que devem também ser corrigidos, mas cuja
não correção não impede a execução do programa. Como iremos perceber, alguns warnings podem ser
ignorados pois não afetam o funcionamento do programa, no entanto, existem outros que deturpam
completamente o funcionamento do programa. O compilador analisa todas as instruções que escrevemos
exceto as que correspondem a comentários do programador e queixar-se-á sempre que alguma coisa

3

esteja errada. Os comentários são notas do programador e aparecem após o śımbolo “//” ou entre os
śımbolos “/* . . . */”. Eles são completamente ignorados pelo compilador, pelo que podemos escrever
neles tudo o que quisermos. No QT Creator, os comentários aparecem a cor verde.

Os programas que vamos criar usam muitos comandos que foram previamente definidos por outras
pessoas, tal como, por exemplo, a função seno ou a função raiz quadrada. A definição desses comandos
envolve frequentemente muitas linhas de código e por isso encontra-se em pacotes espećıficos do C++.
Estes comandos predefinidos (seno, raiz quadrada, potência, etc.) podem ser usados diretamente nos
programas que fazemos sem que tenhamos que saber como foram implementados originalmente. No
entanto, para isso, teremos que informar primeiro o compilador onde é que esses comandos foram
definidos. Para tal, usamos a instrução #include seguida do nome do pacote que contém os comandos
que queremos usar. Por exemplo, todas as funções matemáticas estão dispońıveis no pacote cmath, pelo
que, se as quisermos usar no nosso programa, teremos que começar por escrever #include <cmath>.
Aos poucos iremos perceber quais dos muitos pacotes existentes nos interessam. Para já, ficamos apenas
com a ideia de que todas as funções matemáticas estão no pacote cmath e que o pacote iostream tem
que ser inclúıdo sempre que queiram ler/escrever informação do ecrã pois contém as definições de todos
os comandos básicos de leitura e escrita que vamos usar.

O cabeçalho de um programa em C++ é designado por Preâmbulo e é nessa região que é feita a
inclusão de todos os elementos externos que o programa precisa, como por exemplo os pacotes.

//Preâmbulo

int main(){
//Escreva aqui o seu código

/* Isto também

é um

comentário */

return 0;

}

Quando um programa em C++ é executado, o ponto de partida é sempre a função main pelo que esta
função tem sempre que existir no programa. Ao encontrar esta função, o programa percorre todas as
linhas do código de forma sequencial de cima para baixo (a não ser que existam instruções que alterem
o fluxo de execução do programa, como veremos mais adiante). A função main, é delimitada por duas
chavetas “{ }” dentro das quais devemos escrever o nosso código. A última instrução da função main é
“return 0;”. Esta instrução era usada em muitos sistemas operativos para verificar se o programa tinha
conseguido chegar ao fim sem qualquer problema. Assim sendo, o que está representado no código acima
é o esqueleto de um qualquer programa em C++.

A função main apresentada acima tem apenas vários comentários no seu interior que serão comple-
tamente ignorados pelo compilador, pelo que o programa apresentado é na verdade um programa vazio,
pois não há qualquer instrução a ser executada.

4

Caṕıtulo 1

Variáveis e operadores

As variáveis são os elementos base de qualquer linguagem de programação e servem essencialmente
para guardar informação na memória do computador.

Na Secção 1.1 são apresentados tipos de variáveis. As Secções 1.2 e 1.3 contêm detalhes sobre a
escrita e a leitura de variáveis para o ecrã, respetivamente. Na Secção 1.4 são apresentadas as variáveis
constantes e, por fim, na Secção 1.5 são detalhados os vários tipos de operadores existentes.

1.1 Tipos de variáveis

Um objeto é uma região da memória do computador que pode conter um valor. Uma variável é um
objeto com nome. Cada variável é caracterizada por um nome e por um tipo. Em relação ao nome,
existem algumas regras que têm de ser respeitadas:

1. Só pode começar com letras (pode também começar com underscore mas devem evitar fazê-lo).

2. Não pode coincidir com palavras reservadas da linguagem tais como: main, if , else, while, int ,
double, try , etc. As palavras reservadas aparecem geralmente escritas a uma cor diferente no
editor.

3. Não pode conter espaços nem carateres que não sejam números, letras ou o underscore.

Os nomes que usamos não devem ser muito longos e devem ser o mais sugestivos posśıvel para
facilitar a leitura do programa. Por exemplo, se pretendemos criar uma variável para guardar a idade
de uma pessoa, o nome idade é talvez o mais sugestivo para essa variável. É necessário, no entanto, ter
em conta que no mesmo programa não podem existir duas variáveis com o mesmo nome. Se precisarmos
de duas variáveis para guardar duas idades, podemos, por exemplo, usar os nomes idade 1 e idade 2
ou simplesmente idade1 e idade2 . É importante também ter em conta que o C++ faz distinção entre
letras maiúsculas e minúsculas, pelo que, por exemplo, os nomes idade e Idade não correspondem à
mesma variável. Nos programas que escrevemos, devemos ter o cuidado de não usar variáveis com
nomes parecidos para evitar confusões.

Todas as variáveis usadas num programa têm que ser primeiro declaradas para que o computador
crie espaço na memória para o tipo de dados que se pretende guardar. Para isso, devemos escrever o
tipo da variável e depois o seu nome, ou seja,

int idade; //Declaraç~ao de uma variável chamada idade do tipo int

5

Ao declarar uma variável, é-lhe imediatamente atribúıdo o valor que se encontra no pedaço de
memória que lhe está associado e que é um “valor lixo”. Para que tal não aconteça, devemos, no
momento da criação das variáveis, atribuir-lhes um valor inicial, o que é chamado de inicialização e é
exemplificado de seguida:

int idade;

idade = 18; //Inicializaç~ao da variável idade com o valor 18

A declaração e a inicialização de uma variável podem ser feitas na mesma instrução da seguinte forma:

int idade = 18; //Inicializaç~ao da variável idade com o valor 18

Informalmente, criar variáveis é criar caixas na memória do computador onde vão ser colocados
valores do tipo que foi definido. A Figura 1.1 contém uma representação esquemática do que acontece
na memória do computador quando a variável é declarada (Figura 1.1a) e de quando é inicializada
(Figura 1.1b).

(a) Declaração de uma variável. (b) Inicialização de uma variável.

Figura 1.1: Declaração versus inicialização de uma variável.

O tipo de uma variável indica a natureza dos valores que ela pode assumir. A Tabela 1.1 contém
exemplos de vários tipos de dados existentes.

6

Tabela 1.1: Exemplos de tipos de dados.

Tipos
Números inteiros short

int
long

long long int
Números inteiros positivos size t
Números decimais float

double
Carater char
Texto string
Valor lógico bool

Os primeiros quatro tipos de dados são usados para guardar valores inteiros (positivos ou negativos)
e diferem entre si na gama de valores que podem guardar, isto é, no espaço de memória que ocupam.
O tipo short permite guardar valores inteiros mais pequenos (poucos d́ıgitos) enquanto o tipo long long
int permite guardar valores inteiros maiores (com mais d́ıgitos). Nos nossos programas, o tipo int é,
em regra, o mais usado uma vez que permite representar números com uma ordem de grandeza sufici-
entemente elevada. O tipo size t representa números inteiros não negativos. Para números decimais,
podemos usar os tipos float ou double. No entanto, como a precisão do tipo double é maior do que
a do float - isto é, o tipo double permite guardar mais casas decimais - será esse o tipo de dados que
usaremos. Numa variável do tipo char podemos guardar um qualquer caráter, isto é, uma letra (sem
acento nem cedilha), um algarismo (de 0 a 9) ou um śımbolo (/, +, ;, $, etc.). Uma string é um tipo
de dados que permite guardar uma sequência de caracteres, isto é, permite guardar texto. Finalmente,
o tipo bool assume apenas os valores lógicos true ou false, sendo que true corresponde ao valor 1 e
false corresponde ao valor 0. Os valores booleanos não são guardados como true e false, mas sim como
inteiros com a correspondência referida anteriormente.

Todos os tipos apresentados são tipos de dados fundamentais ou primitivos , à exceção do tipo
string . No código abaixo são apresentados exemplos de variáveis dos diferentes tipos de dados referidos
anteriormente.

#include <iostream>

using namespace std;

int main(){

int idade = 18; //Variável inteira com o nome idade e valor 15

double peso = 56.8; //Variável decimal com o nome peso

string nomeP = "Pedro"; //Variável que guarda um conjunto de carateres

char c = ‘)’; //Variável que guarda um carater e tem o nome c

bool logico = true; //Variável booleana com o nome logico

double altura; //Variável com o nome altura n~ao inicializada

return 0;

}

7

Temos seis variáveis declaradas, estando as cinco primeiras também inicializadas. Note-se que os
caracteres (tipo char) são definidos por plicas enquanto que o texto (tipo string) é definido com aspas.
Relembramos que não é obrigatório inicializar as variáveis quando são declaradas, mas é boa prática
fazê-lo pois, quando as variáveis são declaradas mas não são inicializadas poderão assumir valores dis-
paratados, sendo por isso valores lixo. Na primeira linha do programa temos o #include <iostream>
que é necessário quando utilizamos uma variável do tipo string . Na segunda linha do programa temos
a instrução using namespace std; da qual falaremos mais adiante. Como já vimos anteriormente, a
instrução int idade=18 cria uma variável com o nome idade para guardar o número inteiro 18. Muito
informalmente, este processo corresponde a criar uma caixa com o nome “idade”e dentro dela colocar
o valor 18. A lógica é a mesma para os restantes tipos de dados, exceto para as strings , por não se
tratarem de tipos de dados primitivos.

15

idade

56.8

peso

)

c

5 Pedro

nomeP

p

Ao longo da execução de um programa, as variáveis tomam normalmente valores distintos, mas em
cada instante apenas têm um valor. É importante relembrar que uma variável é como uma caixa que só
pode ter um único valor dentro dela.

int main(){
int x = 10; //Variável inicializada com o valor 10

x = 20; //O valor da variável é alterado para 20

//...

x = 30; //O valor da variável é alterado para 30

return 0;

}

No código acima, a variável x é inicializada com o valor 10. O seu valor é depois alterado para 20 e
mais tarde para 30, sendo esse o seu valor final.

1.2 Escrita de variáveis - Output

Nos programas que constrúımos é necessário frequentemente mostrar informação ao utilizador, ou
seja, escrever informação no ecrã. A isto chamamos imprimir . Para imprimir algo, usamos o comando
cout , cujo significado é console output , juntamente com o operador <<.

8

#include <iostream>

using namespace std;

int main(){

int idade = 15;

string nomeP = "Pedro";

cout << "Output: \n";
cout << nomeP;

cout << endl;

cout << idade;

cout << "\n";

return 0;

}

Para usar o comando cout é necessário incluir o pacote iostream e escrever a segunda linha do
programa. A instrução \n é um comando de controlo que serve para mudar de linha. A instrução endl ,
significa end of line e serve também para mudar de linha. Ao ser executado, este programa começa por
declarar e inicializar as variáveis idade e nomeP . Depois disso, encontra o primeiro cout e por isso escreve
no ecrã a mensagem “Output: ”. Ainda nessa linha, encontra o controlador \n e faz uma mudança de
linha no que escreve no ecrã. Na linha de código seguinte, o programa vai aceder à variável (ou caixa)
com o nome nomeP e escrever o que está lá dentro, que neste caso é “Pedro”. Ao chegar à linha de
código seguinte, faz apenas uma mudança de linha porque encontrou o controlador endl . Depois disso,
o programa acede à variável com o nome idade e escreve o que está lá dentro. No último cout é apenas
efetuada mais uma mudança de linha. Na prática, os cinco comandos cout anteriores podem (e devem)
ser escritos com uma única instrução, o que permite simplificar a escrita. Assim sendo, podemos escrever
apenas:

cout << "Output: \n" << nomeP << endl << idade << "\n";

sendo o output exatamente o mesmo.

1.3 Atribuição de valores a variáveis - Input

Para atribuir valores a uma variável podemos usar simplesmente o operador =, por exemplo, x = 5 .
A função do operador = é atribuir o valor que está do lado direito à variável que está do lado esquerdo.
Por exemplo, a instrução x = 5 corresponde a fazer x ← 5 , ou seja, a atribuir o valor 5 à variável
x. O operador = é usado para atribuir valores a variáveis quando sabemos qual o valor a atribuir no
momento em que o código está a ser escrito. No entanto, em muitas situações, o valor das variáveis
não é previamente conhecido, sendo apenas definido posteriormente pelo utilizador. Para estes casos
devemos usar o comando cin, cujo significado é console input , juntamente com o operador >>.

9

#include <iostream>

using namespace std;

int main(){

int idade;

cout << "Introduza a idade: ";

cin >> idade;

cout << "A idade e: " << idade << "\n";

return 0;

}

Para usar o comando cin é também necessário incluir o pacote iostream e escrever a segunda linha
do programa. Este programa começa por declarar uma variável do tipo int com o nome idade. Depois,
escreve no ecrã o texto “Introduza idade: ”. De seguida, o programa passa para a linha seguinte e ficará
à espera até que o utilizador introduza um número inteiro. Quando o utilizador insere o número, este é
guardado na variável idade. Finalmente, o programa escreve para o ecrã “A idade e: ”, vai ver qual o
valor que está na variável idade, escreve-o no ecrã e termina com uma mudança de linha.

Embora seja boa prática inicializar as variáveis, não é necessário fazê-lo no caso em que o seu valor
é pedido ao utilizador (quase) imediatamente após a sua declaração, como no exemplo anterior. As três
primeiras linhas de código dentro da função main no exemplo anterior são usadas sempre que queremos
pedir o valor de uma variável ao utilizador. A isso chama-se ler a variável.

Os operadores >> e << usados, respetivamente, nas instruções cin e cout indicam movimento. No
caso do cin, ao escrevermos cin >> x estamos de certa forma a enviar o que foi escrito no ecrã (lado
esquerdo) para a variável x que está no lado direito. Por outro lado, ao fazermos cout << x estamos a
enviar o que está do lado direito (valor da variável x) para ser escrito no ecrã (lado esquerdo).

1.4 Variáveis constantes

Como vimos anteriormente, o valor de uma variável pode ser sucessivamente alterado ao longo da
execução de um programa. No entanto, pode ser útil em algumas situações usar variáveis cujo valor
não queremos alterar. Este tipo de variáveis são designadas por constantes e são definidas através da
palavra reservada const . Um bom exemplo é o caso do π, que pode ser definido como const double pi
= 3.141592 . Isto permite não só que ao longo do programa usemos sempre a variável pi em vez de
escrevermos o valor 3.141592, como também impede que o valor da variável pi seja alterado, isto é,
não seria posśıvel fazer uma nova atribuição do tipo pi = 3.14 . Este exemplo é retratado no próximo
excerto de código, que não é compilado pelo editor uma vez que se está a alterar o valor de uma variável
definida como constante.

int main(){
const double pi = 3.141592;

pi = 3.14; //ERRO!

return 0;

}

10

1.5 Operadores

O C++ contém operadores de diferentes tipos, nomeadamente operadores aritméticos simples, opera-
dores aritméticos compostos, operadores relacionais e operadores lógicos.

1.5.1 Operadores aritméticos

Os operadores aritméticos simples são os que já conhecemos da matemática e encontram-se na tabela
abaixo, sendo os valores apresentados na coluna Resultado correspondentes ao caso em que a=13 e b=5 .

Tabela 1.2: Operadores aritméticos simples

Operador Nome Exemplo Resultado
+ Soma a+b 18
- Subtração a-b 8
* Multiplicação a*b 65
/ Divisão inteira ou decimal a/b 2 ou 2.6
% Resto da divisão inteira a%b 3

O resultado do operador “/” é o resultado da divisão inteira sempre que os dois operandos forem de
um tipo de dados inteiro. Se um dos operandos for do tipo decimal, o resultado do operador “/” é a
divisão decimal. Para obter a divisão decimal entre duas variáveis do tipo inteiro é necessário primeiro
converter uma delas para um tipo de dados decimal e só depois fazer a divisão. Este processo designa-se
por cast e, uma das formas de o fazer, consiste em escrever o tipo de dados que se pretende obter entre
parêntesis antes da variável a transformar. Isto é, sendo a e b variáveis do tipo int , a divisão decimal
pode ser obtida através da instrução (double) a/b. Isto significa que o programa começa por converter
a variável a para uma variável do tipo double e depois faz a divisão entre um double e um int , sendo
por isso o resultado um valor decimal.

Os operadores aritméticos apresentados na tabela anterior são usados entre operandos do tipo
numérico. No entanto, o operador “+” pode também ser usado para strings , funcionando como operador
de concatenação (junção).

#include <iostream>

using namespace std;

int main(){
string a = "Eu tenho ";

int c = 18;

string b = " anos.";

string frase = a + to string(c) + b + " Sou Jovem!";

cout << frase;

return 0;

}

11

No exemplo acima, é impressa para o ecrã a variável frase do tipo string que resulta da concatenação
de várias strings e de um inteiro. Variáveis do tipo string podem ser concatenadas diretamente, no
entanto, no caso de tipos de dados numéricos, é necessária a utilização da função to string . A finalidade
da função to string é converter um valor numérico para uma string , que depois pode ser concatenada
diretamente com outras strings . No exemplo acima, o output impresso no ecrã - que é o valor da variável
frase criada - é “Eu tenho 18 anos. Sou Jovem!”.

Os operadores aritméticos compostos permitem simplificar a escrita de instruções. Por exemplo,
escrever a=a+3 é o mesmo que escrever a+=3 . Para usar estes operadores, é necessário compreender
bem o uso do operador = já explicado anteriormente. Recorde-se que este operador tem como função
atribuir o valor que está do seu lado direito à variável do lado esquerdo. Assim sendo, ao escrever a=a+3
não estamos a dizer que o lado direito é igual ao lado esquerdo, tal coisa nem faria sentido do ponto de
vista matemático. O significado da expressão a= a+3 é o mesmo que a ← (a+3). Suponhamos que o
valor de a é 6. Quando o programa chega à instrução a=a+3 , vai primeiro olhar para o lado direito
e calcular o valor da expressão a+3 que será 9. Depois disso, irá então atribuir o valor 9 à variável a.
A partir dáı, o valor da variável a é 9. Na tabela abaixo apresentam-se os operadores compostos e o
resultado da variável a no final das operações, considerando como valores iniciais a=6 e b=2 .

Tabela 1.3: Operadores aritméticos compostos (considerando a=6 e b=2).

Operador Nome Exemplo Significado Valor de a
+= Soma/atribuição a+=b a=a+b 8
-= Subtração/atribuição a-=b a=a-b 4
= Multiplicação/atribuição a=b a=a*b 12
/= Divisão/atribuição a/=b a=a/b 3
%= Resto/atribuição a%=b a=a%b 0
++ Incremento a++ a=a+1 7
-- Decremento a-- a=a-1 5

Estes operadores são aplicados a tipos de dados numéricos, no entanto, o operador += pode também
ser aplicado a strings . Nessa situação, ele funciona como operador de concatenação+atribuição, conca-
tenando o que estiver do lado direito ao que estiver do lado esquerdo. No exemplo abaixo, o valor final
da variável b não é alterado, sendo ele “BB”. O valor da variável a (escrito no ecrã) será “AABB”. Ou
seja, uma vez que a+=b é equivalente a a=a+b, o valor da variável b vai ser concatenado ao valor inicial
da variável a, sendo o resultado guardado na variável a.

#include <iostream>

using namespace std;

int main(){
string a = "AA";

string b = "BB";

a += b

cout << a;

return 0;

}

12

O operador de incremento a++ é equivalente a escrever a+=1 que é ainda equivalente a escrever
a=a+1. Os operadores de incremento e decremento têm a particularidade de puderem ser usados como
prefixo (++a) ou sufixo (a++). Quando usados de forma isolada, o seu significado é exatamente o mesmo.
No entanto, em operações nas quais o resultado da operação de incremento ou de decremento é avaliado
noutra expressão, os resultados podem ser diferentes. No caso do operador de incremento de prefixo
(++a) o valor da variável é incrementado e depois é devolvido. Ou seja, a variável é incrementada antes
da expressão ser avaliada e, portanto, é considerado na expressão o valor já incrementado. No caso
do operador de incremento de sufixo (a++) o valor da variável é devolvido e depois é incrementado.
Ou seja, o valor da variável é incrementado apenas após a avaliação da expressão. Vejamos o exemplo
abaixo:

Tabela 1.4: Diferenças entre os operadores incremento de prefixo e de sufixo (a=3 e b=3).

Exemplo Valor final de a Valor final de b
a=++b 4 4
a=b++ 3 4

Quando utilizados isoladamente, devemos dar preferência à utilização ao operador de incremento de
prefixo (++a) pois, como veremos mais à frente, é mais eficiente que o operador de incremento de sufixo
(a++).

1.5.2 Operadores relacionais

Os operadores relacionais servem para comparar duas expressões. O resultado dessa comparação é
um valor do tipo bool que pode ser true (caso o resultado da comparação seja verdadeiro) ou false (caso
contrário).

Tabela 1.5: Operadores relacionais.

Operador Significado
< menor
> maior
<= menor ou igual
>= maior ou igual
== igual
!= diferente

Estes operadores são fundamentais para a secção seguinte. Para já, é importante realçar o operador
==, que nada tem a ver com o operador de atribuição = usado anteriormente. O operador == verifica
se o que está do seu lado direito é igual ao que está do seu lado esquerdo, devolvendo como resultado
true ou false. Por exemplo, o resultado da comparação 5==8/2 é false pois 5 não é igual a 8/2 (=4).
O operador = serve para atribuir o valor do lado direito à variável do lado esquerdo e não para efetuar
comparações.

1.5.3 Operadores lógicos

Os operadores lógicos servem para negar e combinar expressões. Assim sendo, o resultado das
operações com os operadores lógicos é também true ou false.

13

Tabela 1.6: Operadores lógicos.

Operador Significado
&& ou and conjunção (e)
|| ou or disjunção (ou)

! negação

O operador !, colocado à esquerda de uma expressão, inverte o seu valor lógico. Isto é, se a expressão
é verdadeira passa a falsa e vice–versa. Como exemplo, considerem-se três variáveis inteiras a=5 , b=3
e c=2 . Temos então

b > a −→ false

!(b > a) −→ true

!(b > a) && c == a− b || c > b −→ true

(!(b > a) or c == a− b) and c > b −→ false

b > a || c == a− b && b > c −→ true

Note-se que a última expressão é equivalente a b > a || (c == a− b && b > c), uma vez que a
conjunção (lida como “e”) tem prioridade em relação à disjunção (lida como “ou”).

1.5.4 Operador ternário (Informação complementar)

O operador ternário ou condicional avalia uma expressão e devolve diferentes valores de acordo
essa avaliação. Este operador não será lecionado nas aulas, estando aqui apenas como informação
complementar. A sintaxe deste operador é a seguinte:

(<condição> ? <resultado1> : resultado2>)

Se a <condição> é verdadeira então o operador vai devolver o <resultado1>. Caso contrário devolve o
<resultado2>. Por exemplo, ao escrevermos

int x;

x = (7==5 ? 4 : 3);

a variável x vai ficar com o valor 3, uma vez que a condição 7==5 é falsa.

14

Caṕıtulo 2

Estruturas de controlo

As estruturas de controlo são essenciais em qualquer linguagem de programação e dividem-se em
condicionais e ćıclicas. As estruturas de controlo condicionais servem essencialmente para executar
instruções espećıficas em função da satisfação ou não de determinadas condições. Isto é, servem para
permitir ao programa seguir caminhos distintos. Por outro lado, as estruturas de controlo ćıclicas estão
associadas à repetição de instruções/processos.

As estruturas de controlo condicionais são apresentadas na Secção 2.1. Na Secção 2.2 é detalhada
a importância do uso de chavetas e da indentação. Por fim, as estruturas ćıclicas são apresentadas na
Secção 2.3.

2.1 Estruturas de controlo condicionais

Serão apresentadas três estruturas condicionais diferentes, nomeadamente a estrutura if , a estrutura
if else e as estruturas condicionais encadeadas.

2.1.1 Estrutura if

A estrutura de controlo condicional mais simples em programação é a estrutura if . A sua sintaxe
geral é:

if (Condiç~ao) {
Bloco de instruç~oes

}

Um if carateriza-se por uma condição e um bloco de instruções. Blocos de instruções são definidos
através do uso de chavetas e contêm várias instruções. A condição toma o valor true ou false podendo
por isso ser uma variável booleana ou uma expressão lógica que, na maior parte dos casos, envolve
os operadores relacionais e lógicos apresentados no caṕıtulo anterior. A tradução de if é “se”, por
isso, como o próprio nome indica, o bloco de instruções do if será apenas executado se a condição for
verdadeira.

O exemplo seguinte contém um excerto de código onde a estrutura if é utilizada.

15

#include <iostream>

using namespace std;

int main(){
int a = 1;

int b;

cout << "Introduza o valor de b: ";

cin >> b;

if (b > 10 && b % 3 == 0) {
++a;

}

return 0;

}

Neste exemplo, o programa começa por declarar duas variáveis a e b, inicializando a primeira com o
valor 1. De seguida, o valor da variável b é pedido ao utilizador. Ao chegar à instrução if o programa
começa por avaliar o valor lógico da condição b>10 && b%3==0. Se o resultado dessa avaliação for true,
então o programa irá entrar no bloco de instruções do if (que neste caso contém apenas uma instrução)
e irá incrementar o valor da variável a numa unidade. Suponhamos que o valor de b introduzido pelo
utilizador é 20. Apesar de 20 ser maior que 10, o resto da divisão de 20 por 3 não é zero e por isso
o resultado lógico da condição do if é false. Neste caso, o programa não irá executar as instruções
associadas ao if , passando de imediato para o return final e, portanto, o valor final da variável a é 1.
Suponhamos agora que o valor introduzido pelo utilizador é 15. Neste caso, como 15 > 10 e o resto da
divisão de 15 por 3 é zero, a condição do if é verdadeira e por isso o programa irá executar as instruções
do bloco if . Assim sendo, o valor da variável a no final do programa será 2.

Neste exemplo, é importante salientar dois aspetos. Em primeiro lugar, a utilização do operador de
igualdade == que se justifica pelo facto de estar a ser feita uma comparação e não uma atribuição e, em
segundo lugar, o significado da segunda parte da expressão lógica, isto é, b%3 == 0. Verificar se o resto
da divisão de b por 3 é zero é o mesmo que verificar se b é múltiplo de 3, pelo que será sempre esta a
forma usual de definir condições do tipo “ser múltiplo de”.

2.1.2 Estrutura if else

A estrutura if else tem dois blocos de instruções, o que nos permite definir instruções caso a condição
do if seja avaliada como falsa. Assim, o Bloco de instruções 1 será executado caso a condição do if seja
verdadeira, enquanto o Bloco de instruções 2 será executado no caso contrário, isto é, caso a referida
condição seja falsa. A sintaxe geral de um if else é:

if (Condiç~ao) {
Bloco de instruç~oes 1

} else{
Bloco de instruç~oes 2

}

16

Note-se que o else não necessita de uma condição pois, implicitamente, a condição do else é a negação
da condição escrita no if . Vejamos o seguinte exemplo:

1. int main(){
2. int a = 1, b = 19, c = 3;

3.

4. if (b % 3 == 0 or b % 2 == 0) {
5. a = 10;

6. c += a;

7. }else{
8. a = 20;

9. c -= a;

10. }
11. return 0;

12.}

A condição associada ao if pode ser lida como “b é múltiplo de 3 ou de 2”. Como b=19, a condição
é falsa e por isso o programa salta imediatamente da linha 4 para a linha 7, que é a linha do else,
executando de seguida todas as instruções nesse bloco. Assim sendo, o programa redefine o valor de a

como sendo 20 e em seguida atualiza o valor de c para 3-20, ou seja, -17. No final do programa temos
então a=20, b=19 e c=−17. Neste exemplo, a condição impĺıcita no else é “b não é múltiplo de 3 nem
de 2”, isto é, b % 3 != 0 and b % 2 != 0.

Como comentário final, é importante notar que sempre que temos um else, este tem que estar
associado a um if . Contudo, o inverso não é obrigatório, isto é, podemos ter um if sem ter qualquer
else associado, como vimos na secção anterior.

17

2.1.3 Estruturas condicionais encadeadas

A estrutura if else permite ao programa seguir dois caminhos distintos em função da avaliação de
uma condição. Contudo, existem situações onde há mais do que dois caminhos posśıveis para o programa
seguir. Para tal, podemos usar estruturas condicionais encadeadas . O termo encadeado significa que
existem estruturas condicionais que estão elas próprias contidas noutras estruturas condicionais.

A sintaxe geral da forma compacta das estruturas condicionais encadeadas é apresentada do lado
direito. Do lado esquerdo é apresentada a versão entendida da mesma estrutura, usando apenas várias
estruturas if else:

if (Condiç~ao 1) {
Bloco de instruç~oes 1

} else {
if (Condiç~ao 2){

Bloco de instruç~oes 2

} else {
if (Condiç~ao 3){

Bloco de instruç~oes 3

} else {
Bloco de instruç~oes 4

}
}

}

if (Condiç~ao 1) {
Bloco de instruç~oes 1

} else if (Condiç~ao 2){
Bloco de instruç~oes 2

} else if (Condiç~ao 3){
Bloco de instruç~oes 3

} else {
Bloco de instruç~oes 4

}

Considere-se a forma compacta das estruturas condicionais encadeadas. Caso a Condição 1 seja
verdadeira, é executado o Bloco de instruções 1. Caso a Condição 2 seja verdadeira e a Condição 1 seja
falsa, é executado o Bloco de instruções 2. O Bloco de instruções 3 apenas será executado se a Condição
3 for verdadeira e se as Condições 1 e 2 forem falsas. O Bloco de instruções 4 será apenas executado no
caso de todas as Condições 1, 2 e 3 serem falsas. É importante realçar que nesta estrutura, um e apenas
um bloco de instruções é executado, mesmo que mais do que uma condição seja verdadeira. Se duas ou
mais condições forem verdadeiras, o único bloco de instruções executado é o primeira que aparecer. Por
exemplo, se a Condição 2 e a Condição 3 forem ambas true o bloco de instruções a ser executado é o
Bloco de instruções 2.

Para clarificar as diferenças entre as estruturas de controlo condicionais apresentadas até aqui,
considere-se o seguinte exemplo. Suponhamos que o preço unitário de um dado produto depende da
quantidade a comprar e que queremos fazer um programa que, dado o número de unidades a comprar,
calcule o preço final a pagar. Se o preço unitário do produto for dado de acordo com a tabela seguinte:

Quantidade <50 [50, 99[[100, 150[≥ 150
Preço 5 4 3,5 3,3

então o código abaixo, embora não use estruturas encadeadas, faz o que se pretende.

18

#include <iostream>

using namespace std;

int main(){
int qt, preco;

cout << "Quantidade: ";

cin >> qt;

if (qt < 50) {
preco = 5 * qt;

}
if (qt >= 50 and qt < 99) {

preco = 4 * qt;

}
if (qt >= 100 and qt < 150) {

preco = 3.5 * qt;

}
if (qt >= 150) {

preco = 3.3 * qt;

}

cout << "Preco final: " << preco;

return 0;

}

O código acima é composto por quatro estruturas if independentes. O mesmo código pode ser escrito
usando estruturas condicionais encadeadas tal como apresentado abaixo.

19

1. #include <iostream>

2. using namespace std;

3.

4. int main(){
5. int qt, preco;

6. cout << "Quantidade: ";

7. cin >> qt;

8.

9. if (qt < 50) {
10. preco = 5 * qt;

11. }else{
12. if (qt < 99) {
13. preco = 4 * qt;

14. }else{
15. if (qt < 150) {
16. preco = 3.5 * qt;

17. }else{
18. preco = 3.3 * qt;

19. }
20. }
21. }
22.

23. cout<<"Preco final: "<<preco;

24. return 0;

25. }

1. #include <iostream>

2. using namespace std;

3.

4. int main(){
5. int qt, preco;

6. cout << "Quantidade: ";

7. cin >> qt;

8.

9. if (qt < 50) {
10. preco = 5 * qt;

11. }else if(qt < 99) {
12. preco = 4 * qt;

13. }else if (qt < 150)

14. preco = 3.5 * qt;

15. }else{
16. preco = 3.3 * qt;

17. }
18.

19. cout<<"Preco final: "<<preco;

20. return 0;

21. }

Na primeira implementação, existe uma estrutura de controlo principal que começa na linha 9 e
termina na linha 21. O else desta estrutura (linha 11) contém no seu bloco de instruções um novo
if que começa na linha 12 e termina na linha 20. Este novo if , por sua vez, inclui também um
novo if no bloco de instruções associado ao seu else que começa na linha 15 e termina na 19. No
entanto, é importante realçar que cada if só poderá ter no máximo um else associado (podendo esse
else ter outros if s, e consequentemente outros elses, dentro dele). As condições dos if s aqui apresentados
podem parecer incompletas quando comparadas com as apresentadas no código anterior, mas na verdade
estão corretas. Vamos analisar diferentes casos para perceber melhor como as estruturas encadeadas
funcionam. Consideremos o código do lado esquerdo.

1. Suponhamos que a quantidade qt introduzida pelo utilizador na linha 7 é 30. Quando o programa
chega à linha 9, vai verificar se qt<50, o que é de facto verdade. Assim sendo, o programa entrará
no primeiro if , fará a instrução da linha 10 e passará imediatamente para a linha 21 (final do
primeiro if). No final, teremos preco=150 . Note-se que, uma vez que a condição do primeiro if é
verdadeira, o programa não entra no else a ele associado (linhas 11-20).

2. Suponhamos que a quantidade qt introduzida pelo utilizador é 60. Ao chegar ao primeiro if (linha
9) o programa verifica que a condição qt<50 é falsa e por isso passa imediatamente para o bloco
else associado (linha 11). Dentro desse bloco, o programa começa por avaliar a condição do if da
linha 12, ou seja, verifica se qt<99 . Como a condição é verdadeira, o programa entra nesse if ,
fazendo a instrução da linha 13. De seguida, o programa passa para a linha 20 e consequentemente

20

para a linha 21. Note-se que o programa entrou no if da linha 12 pelo que não vai entrar no else
da linha 14.

3. Suponhamos que a quantidade qt introduzida pelo utilizador é 200. Tal como no caso anterior, o
programa vai entrar no else da linha 11 fazendo as instruções desse bloco. A condição do if da
linha 12 é falsa e por isso o programa entra no else da linha 14. Ao chegar à linha 15, o programa
analisa a condição qt<150 cujo valor lógico é falso, e por isso o programa entra no else da linha
17, fazendo depois a instrução da linha 18. De seguida, o programa passa para a linha 19, depois
para a linha 20 e finalmente para a linha 21, não realizando qualquer ação nestas fases.

Com base neste exemplo conseguimos perceber, por exemplo, porque é que podemos escrever sim-
plesmente qt<150 na linha 15 em vez de qt<150 and qt>=100 . Isto acontece pois se o programa chegar
à linha 15 é porque entrou primeiro no else da linha 11 (ou seja, é porque qt≥50) e no else da linha 14,
(ou seja, é porque qt≥100).

O segundo excerto de código apresentado acima usa a forma compacta das estruturas condicionais
encadeadas. Relembramos que quando usamos uma estrutura deste tipo é preciso ter em conta que o
programa apenas entra num bloco de instruções: ou entra no bloco associado ao if , ou entra num dos
blocos associados ao else if , ou entra no bloco do else. Quando o programa entrar num dos blocos -
seja ele qual for - executa as instruções presentes nesse bloco e depois passa imediatamente para o final
da estrutura de controlo (linha 17 neste exemplo).

Ao usar estruturas de controlo encadeadas, é importante ter sempre em mente o funcionamento da
estrutura if else, isto é, ter em conta que o programa ou executa as instruções do bloco associado ao if
ou executa as instruções do bloco associado ao else e nunca ambas simultaneamente.

2.2 Uso de chavetas e de indentação

A utilização correta de chavetas e a indentação do código são dois aspetos muito importantes em
programação. Por um lado, as chavetas servem para delimitar blocos de instruções, tal como vimos na
secção anterior, e a sua errada colocação pode levar a erros de sintaxe ou de execução. Por outro lado, a
indentação do código é completamente ignorada pelo compilador e por isso não afeta o funcionamento do
programa. Indentar o código serve apenas para facilitar (e muito) a sua leitura de modo a tornar claro
que instruções estão dentro de quais. Abaixo é apresentado o mesmo código indentado (lado esquerdo) e
não indentado (lado direito). Através deste exemplo facilmente se percebe a importância da indentação
uma vez que no primeiro caso conseguimos ver claramente onde é que começa e termina cada bloco de
instruções.

21

1. #include <iostream>

2. using namespace std;

3.

4. int main(){
5. int qt, preco;

6. cout << "Quantidade: ";

7. cin >> qt;

8.

9. if (qt < 50) {
10. preco = 5 * qt;

11. }else{
12. if (qt < 99) {
13. preco = 4 * qt;

14. }else{
15. if (qt < 150) {
16. preco = 3.5 * qt;

17. }else{
18. preco = 3.3 * qt;

19. }
20. }
21. }
22.

23. cout<<"Preco final: "<<preco;

24. return 0;

25. }

1. #include <iostream>

2. using namespace std;

3.

4. int main(){
5. int qt, preco;

6. cout << "Quantidade: ";

7. cin >> qt;

8.

9. if (qt < 50) {
10. preco = 5 * qt;

11. }else{
12. if (qt < 99) {
13. preco = 4 * qt;

14. }else{
15. if (qt < 150) {
16. preco = 3.5 * qt;

17. }else{
18. preco = 3.3 * qt;

19. }
20. }
21. }
22.

23. cout<<"Preco final: "<<preco;

24. return 0;

25. }

No Qt Creator podemos indentar automaticamente o código que escrevemos carregando nas teclas
Control + A (para selecionar tudo) e em seguida em Control + I (para indentar). Esta indentação
automática permite perceber de que forma o compilador lê o código que escrevemos e verificar se tal
coincide com a forma que de facto queremos que ele o leia.

O uso de chavetas é essencial para delimitar blocos de instruções. No entanto, quando um bloco de
instruções é composto apenas por uma instrução, as chavetas podem ser omitidas. No exemplo abaixo,
existe apenas uma instrução associada ao if da linha 4 pelo que a chaveta da linha 4 e a primeira chaveta
da linha 6 podem ser omitidas. As chavetas associadas ao if da linha 7 não podem ser removidas porque
temos mais do que uma instrução (duas neste caso) dentro do respetivo bloco. No entanto, a segunda
chaveta da linha 10 e a chaveta da linha 12 podem ser removidas, pois no bloco por elas delimitado
apenas existe uma instrução.

As chavetas que mencionámos podem ser trivialmente removidas do código para torná-lo mais com-
pacto. No entanto, também a segunda chaveta da linha 6 e a chaveta da linha 13 podem ser removidas.
Isto acontece porque, o primeiro bloco else também tem, na verdade, apenas uma instrução dentro dele,
isto é, uma instrução if else que, apesar de ocupar várias linhas, é vista como uma única instrução. Este
tipo de situações pode causar alguma confusão numa fase inicial da programação, pelo que se recomenda
que se mantenham as chavetas nestes casos. Mais uma vez é importante relembrar que no QT Creator
podemos indentar automaticamente o nosso código e assim verificar facilmente erros relacionados com
colocações/omissões de chavetas bem como verificar quais as instruções que estão dentro de quais.

22

1. int main(){
2. int a = 1, b = 19, c = 3;

3.

4. if (b % 3 == 0) {
5. c += a;

6. }else{
7. if(c>2){
8. a = 20;

9. c -= a;

10. }else{
11. a = 20;

12. }
13. }
14. return 0;

18. }

1. int main(){
2. int a = 1, b = 19, c = 3;

3.

4. if (b % 3 == 0)

5. c += a;

6. else

7. if(c>2){
8. a = 20;

9. c -= a;

10. }else
11. a = 20;

12.

13.

14. return 0;

18. }

O próximo exemplo reforça a importância da utilização de chavetas e da indentação e ilustra uma
propriedade da estrutura if else que ainda não foi mostrada anteriormente.

1. int main(){
2. int a = 1, b = 19, c = 3;

3. if (b % 3 == 0)

4. if (c>2)

5. a = 30;

6. else

7. a = 20;

8. return 0;

9. }
10.

11.

1. int main(){
2. int a = 1, b = 19, c = 3;

3. if (b % 3 == 0) {
4. if (c>2){
5. a = 30;

6. }
7. }else{
8. a = 20;

9. }
10. return 0;

11. }

O primeiro excerto de código não contém chavetas nem está indentado. Além disso, contém dois if s
e apenas um else, sendo por isso dif́ıcil perceber a qual if este está associado, originando ambiguidade.
Nestes casos amb́ıguos, o else é emparelhado com o último if que se encontra no mesmo bloco de
instruções, isto é, o if da linha 4. O segundo excerto de código já contém chavetas e está indentado,
tornando-se assim claro que neste caso o else está associado ao primeiro if , que começa na linha 3,
estando o segundo if (linha 4) contido no seu bloco de instruções.

2.3 Estruturas de controlo ćıclicas

As estruturas ćıclicas permitem a execução de um conjunto de instruções de forma repetitiva enquanto
uma determinada condição for satisfeita. A linguagem de programação C++ dispõe de três estruturas
de controlo ćıclicas: while, do-while e for . Como referido anteriormente, um programa em C++ começa

23

sempre por executar a função main, percorrendo depois cada linha sequencialmente de cima para baixo,
a não ser que existam instruções em contrário. As instruções ćıclicas são as primeiras instruções que
estudamos que alteram a sequência de execução de um programa.

2.3.1 Estrutura while

A estrutura while (que em português significa “enquanto”) é a mais simples das três estruturas
ćıclicas dispońıveis em C++ e tem uma estrutura semelhante à da estrutura if . A sintaxe geral de um
ciclo while é:

while (Condiç~ao){
Bloco de instruç~oes

}

Quando uma estrutura while é executada, o programa começa por verificar se a Condiç~ao é verda-
deira. Em caso afirmativo, o Bloco de instruções é executado. Ao contrário do que acontece na estrutura
if, ser executado o Bloco de instruções, o programa volta ao topo da estrutura while e avalia novamente
a Condiç~ao. Caso a Condiç~ao continue a ser avaliada como true, o Bloco de instruções é executado
novamente. Este processo é repetido até a Condiç~ao ser avaliada como false. Quando isto acontece, o
programa abandona o ciclo, prosseguindo a sua execução para a linha de código imediatamente abaixo da
estrutura while. Assim sendo, um ciclo while pode ser lido como: “Enquanto a condição for verdadeira,
executa o bloco de instruções”.

Considere-se o seguinte exemplo onde é utilizada uma estrutura while para imprimir no ecrã os
números de 1 a 10:

1. #include <iostream>

2. using namespace std;

3.

4. int main(){
5. int i = 1;

6. while(i <= 10){
7. cout << i << " ";

8. ++i;

9. }
10.

11. return 0;

12. }

Vejamos agora ver em detalhe o que o programa está a fazer. Primeiramente, a variável i é inicializada
a 1, pois esse é o primeiro número que vamos imprimir. De seguida, como a condição i = 1 <= 10 é
verdadeira, o bloco de instruções do while (linhas 7-8) é executado. A primeira instrução do bloco
imprime para o ecrã o valor 1, que é o valor da variável i neste momento, e um espaço. A segunda
instrução incrementa o valor da variável i para 2. Agora, o programa volta à linha 6 e a condição
é avaliada outra vez. Como 2 <= 10 é verdade, o bloco de instruções é executado novamente sendo
impressos no ecrã o valor 2 e um espaço. O ciclo é executado repetidamente até a variável i ter valor 11
e nesta altura a condição 11 <= 10 será falsa e o bloco de instruções associado ao while não é executado,
passando o programa para a linha 10.

24

No exemplo anterior, para implementarmos um ciclo while precisámos de:

1. definir e inicializar uma variável de controlo de ciclo (variável i);

2. ter uma condição ou critério de paragem (i <= 10);

3. atualizar a variável de controlo de ciclo (++i).

Estes três componentes estão sempre, de alguma forma, presentes num ciclo while e a sua não inclusão
pode originar erros de código.

A não inicialização da variável de controlo de ciclo com um valor apropriado pode fazer com que o
bloco de instruções associado ao ciclo while nunca seja executado. Se no exemplo anterior na linha 5
tivéssemos, por exemplo, int i = 15; a condição do while era avaliada como falsa e o programa saltava
diretamente para a linha 10. A variável de controlo de ciclo deve ser declarada e inicializada fora da
estrutura while. As variáveis que são declaradas dentro de blocos de instruções, em particular do bloco
while, não existem fora desses blocos. A isto se chama o âmbito da variável, isto é, o local do programa
onde a variável é reconhecida pelo programa.

Quando a variável de controlo de ciclo não é atualizada, podemos ter um ciclo infinito em que a
condição do while permanece sempre verdadeira. Significa isto que o programa executará indefinida-
mente as instruções do bloco de instruções, nunca conseguindo sair do ciclo e terminando, eventualmente,
com um crash do sistema. Se no exemplo anterior não tivéssemos a instrução da linha 8 (++i;), a variável
i teria sempre o valor 1, pelo que a condição i<=10 era sempre avaliada como verdadeira. Estaŕıamos
por isso na presença de um ciclo infinito.

2.3.2 Estrutura do-while

A sintaxe geral do-while é:

do{
Bloco de instruç~oes

}while (Condiç~ao);

O termo do significa “faz”e o termo while significa “enquanto”. Assim sendo, um ciclo do-while pode
ser interpretado como: “Fazer o que está no bloco de instruções enquanto a condição considerada for
verdadeira”. Ao encontrar um ciclo do-while, o programa começa por executar imediatamente o bloco de
instruções nele contido sem verificar qualquer condição (contrariamente ao que acontece com a estrutura
while). Após executar o Bloco de instruções, o programa avalia o valor lógico da Condiç~ao. Caso a
condição tenha valor lógico verdadeiro, o programa volta a executar novamente todas as instruções do
bloco de instruções do ciclo e a avaliar a Condiç~ao. Este processo é repetido enquanto a condição do
while permanecer verdadeira, pelo que poderão ser efetuadas várias iterações até que tal aconteça. Assim
que no momento da avaliação da condição do while esta seja falsa, o programa abandona imediatamente
o ciclo prosseguindo para a linha de código imediatamente abaixo dele.

A principal diferença entre a estrutura do-while e a estrutura while é que na primeira iteração do ciclo
do-while o bloco de instruções é sempre executado dado que a condição apenas é avaliada a seguir. Assim
sendo, o bloco de instruções da estrutura do-while é sempre executado pelo menos uma vez enquanto
que o bloco de instruções da estrutura while pode nunca ser executado.

Vejamos os seguintes dois exemplos.

25

1. #include <iostream>

2. using namespace std;

3.

4. int main(){
5. int n = 3;

6.

7. int i = 1;

8. do{
9. cout << i << " ";

10. ++i;

11. }while(i <= n);

12.

13. return 0;

14. }

1. #include <iostream>

2. using namespace std;

3.

4. int main(){
5. int n;

6. int conta = 0;

7.

8. do{
9. cout << "Valor: ";

10. cin >> n;

11. if (n > 0)

12. ++conta;

13. }while(n > 0);

14.

15. cout << "Total: " << conta;

16. return 0;

17. }

Ao ser executado, o primeiro programa começa por declarar e inicializar a variável inteira n com o
valor 3. Ao chegar à linha 7, o programa declara e inicializa uma nova variável i com o valor 1. Esta
variável é usada na condição do ciclo do-while e será em função do seu valor que o ciclo irá continuar a
ser executado ou será interrompido. Assim sendo, a variável i neste programa é a variável de controlo
do ciclo. Após a linha 7, o programa passa para a linha 8 e de seguida para a linha 9 onde vai escrever
no ecrã o valor da variável i (que é 1) e um espaço em branco. De seguida, passa para a linha 10 onde
vai aumentar o valor de i numa unidade, isto é, i=2. O programa passa depois para a linha 11 e verifica
que a condição associada ao while, isto é, i <= n, é satisfeita. Assim sendo, o programa volta à linha 8
para executar novamente todas as instruções do bloco do-while. Ao chegar à linha 9, o programa volta
a escrever o novo valor da variável i (que agora é 2) e um espaço em branco, incrementando depois
o valor da variável i na linha 10. A condição associada ao while volta novamente a ser avaliada e o
resultado dessa avaliação continua a ser true pois i = 3 <= 3 = n. Assim sendo, o programa volta
novamente a executar o bloco de instruções do do-while, isto é, volta à linha 8 e imediatamente à linha
9 onde vai imprimir para o ecrã o valor 3. De seguida, na linha 10, volta a incrementar o valor da
variável i numa unidade, passando este a ser 4. De seguida, a condição do while é avaliada e, uma vez
que ela agora é falsa (pois i=4), o programa sai do ciclo, passando para a linha 12 e em seguida para a
linha 13, terminando áı o programa. Como todas as instruções referidas anteriormente são executadas
muito rapidamente, o utilizador apenas verá no ecrã o resultado final obtido, que neste caso é: “1 2 3
”. Através desta análise, percebemos que o objetivo do primeiro programa é, na verdade, escrever os n
primeiros números naturais.

Para reforçar a importância da instrução ++i presente na linha 9, experimentemos executar o pro-
grama sem ela. A variável i é inicializada com o valor 1 na linha 7. Se a linha 10 não existir no
programa, o valor da variável i nunca será alterado. Isto significa que a condição i<=n será sempre
verdadeira e por isso o programa executará indefinidamente o bloco de instruções do do-while, isto é, o
programa escreverá indefinidamente o valor de i (que é 1) no ecrã, entrando por isso num ciclo infinito.

Vejamos agora o segundo programa. O objetivo deste programa é pedir sucessivamente números
inteiros positivos ao utilizador até que este insira um número inteiro negativo ou nulo. No final do
programa, é apresentada uma mensagem com o número total de números positivos introduzidos pelo

26

utilizador. Em cada iteração do ciclo, o programa pede ao utilizador que insira um valor (linhas 9 e 10).
Caso o valor introduzido seja positivo (linha 11), o programa incrementa a variável conta numa unidade
(linha 12). Esta variável é usada para contar os números positivos introduzidos. Após executar o bloco
de instruções, o programa avalia a condição do while, isto é, verifica se o último número introduzido
pelo utilizador é positivo. Em caso afirmativo, o programa volta a executar todas as instruções do
bloco de instruções. Caso contrário, o programa sai do ciclo, passando imediatamente para a linha 15 e
escrevendo a mensagem final.

Existem neste programa alguns aspetos que é importante realçar. Em primeiro lugar, a inicialização
obrigatória da variável conta feita na linha 6. Uma vez que na linha 12 a variável conta está a ser
incrementada, isto é, ela passa a assumir o seu valor anterior mais uma unidade, é essencial que esta
variável tenha de facto um valor inicial bem definido. Neste caso, esse valor é zero, pois inicialmente
(quando o programa está na linha 6) ainda não foi inserido qualquer número positivo. O segundo aspeto
a realçar é a utilização do if na linha 11. Será esse if mesmo necessário? Uma vez que o objetivo do
programa é contar quantos números positivos foram introduzidos pelo utilizador, a utilização deste if é
fundamental. Caso este if não existisse, quando o utilizador introduzisse um número negativo ou nulo
para parar o ciclo, ele seria também contado pela variável conta, uma vez que o incremento da variável
conta é feito antes da condição do while ser avaliada. Uma última observação é o facto da variável
conta ter que ser declarada fora do ciclo, sendo por isso o seu âmbito a função main. Se a variável
fosse declarada dentro do ciclo, além do programa não dar o resultado pretendido, não seria posśıvel
aceder-lhe na linha 15 para imprimir o seu valor.

2.3.3 Estrutura for

A última estrutura de controlo que vamos apresentar é a estrutura for . Qualquer ciclo for pode ser
convertido num ciclo while (ou do-while) e vice-versa. A sintaxe geral de um for é:

for (Inicializaç~ao; Condiç~ao; Incremento){
Bloco de instruç~oes

}

O ciclo for agrega a declaração e inicialização da variável de controlo do ciclo, a condição de execução
do ciclo e o incremento da variável de controlo num só lugar.

Vejamos o seguinte exemplo em que é apresentado o programa para imprimir no ecrã os números de
1 a 10 utilizando um ciclo while e um ciclo for :

1. #include <iostream>

2. using namespace std;

3.

4. int main(){
5. int i = 1;

6. while(i <= 10){
7. cout << i << " ";

8. ++i;

9. }
10.

11. return 0;

12. }

1. #include <iostream>

2. using namespace std;

3.

4. int main(){
5. for(int i = 1; i <= 10; ++i){
6. cout << i << " ";

7. }
8.

9. return 0;

10. }

27

Como se pode ver neste exemplo, as linhas 5, 6 e 8 do primeiro programa foram de certa forma juntas
numa só linha (linha 5) no segundo programa. Vejamos então qual o esquema de fluxo seguido por um
ciclo for .

Ao encontrar um ciclo for , o programa começa por inicializar a variável de controlo do ciclo e, em
seguida, avaliar a expressão lógica que define a condição. Enquanto a referida condição for satisfeita, o
programa, por esta ordem, executa o bloco de instruções do for , incrementa a variável de controlo do
ciclo e avalia novamente a condição. Este processo é sucessivamente repetido até que a condição seja
avaliada como falsa.

Foram apresentadas três estruturas ćıclicas diferentes, que podem ser convertidas umas nas outras.
No entanto, em algumas situações, a utilização de um ciclo é mais recomendada do que a de outros.
Ciclos while e do-while são geralmente usados quando não se sabe à partida quantas iterações irão efetuar.
Por exemplo, no programa em que se está sucessivamente a pedir valores positivos ao utilizador, não
se sabe à partida quantos valores serão introduzidos, pelo que neste caso faz mais sentido a utilização
de um ciclo while ou do-while. Nos casos em que se sabe exatamente quantas iterações serão efetuadas,
é prefeŕıvel a utilização do ciclo for , pois toda a informação do ciclo (variável de controlo, condição e
incrementação) está agregada na sua primeira linha. Por exemplo, se se quiser efetuar a soma dos 30
primeiros números naturais, já se sabe à partida que será necessário efetuar 30 iterações, sendo por isso
aconselhada a utilização de um ciclo for .

2.3.4 Ciclos encadeados

Muitas vezes, a utilização de um único ciclo é insuficiente para programar determinados algoritmos,
havendo a necessidade de usar ciclos encadeados . Isto é, usar ciclos em que eles próprios têm no seu
bloco de instruções outros ciclos. Vejamos o seguinte exemplo:

28

1. #include <iostream>

2. using namespace std;

3.

4. int main(){
5. int n = 5;

6.

7. for(int i = 1; i < n; ++i)

8. for(int j = i + 1; j < n; ++j)

9. cout<<"("<<i<<","<<j<<") ";

10.

11. return 0;

12. }

i = 1

j = 2

Escreve no ecr~a "(1,2) "

j = 3

Escreve no ecr~a "(1,3) "

j = 4

Escreve no ecr~a "(1,4) "

j = 5 (Fim do segundo ciclo)

i = 2

j = 3

Escreve no ecr~a "(2,3) "

j = 4

Escreve no ecr~a "(2,4) "

j = 5 (Fim do segundo ciclo)

i = 3

j = 4

Escreve no ecr~a "(3,4) "

j = 5 (Fim do segundo ciclo)

i = 4

j = 5 (Fim do segundo ciclo)

i = 5 (Fim do primeiro ciclo)

Este programa inclui um ciclo for principal (que começa na linha 7 e termina na linha 11) que inclui
no seu bloco de instruções um segundo ciclo for (que começa na linha 8 e termina na linha 10). A
variável de controlo do primeiro ciclo é a variável i e a do segundo ciclo é a variável j. O processo de
execução do programa é então o que é apresentado no lado direito.

Ao chegar à linha 7, o programa declara e inicializa a variável i com o valor 1. De seguida, verifica
se a condição i<n é satisfeita, o que neste caso é verdade, pois 1 < 5. Assim sendo, o programa entra
no bloco de instruções do primeiro for , que é um novo ciclo for , e executa-o até ao fim. Neste segundo
ciclo, o programa declara e inicializa a variável j com o valor i+1 que neste caso é 2. De seguida, é
avaliada a condição j<n que, neste caso, é verdadeira. Desta forma, o programa executa o bloco de
instruções do segundo for , isto é escreve no ecrã “(1,2) ”. O passo seguinte é o incremento da variável
j, isto é, ++j, ficando esta variável com o valor 3. Uma vez que 3 ainda é menor que n, o programa volta
a executar o bloco de instruções do segundo for , isto é, escreve no ecrã “(1,3) ”. Posto isto, a variável
j é novamente incrementada, ficando com o valor 4 que é ainda menor que n. Isto significa que o bloco
de instruções do segundo for é novamente executado e por isso o programa escreve no ecrã “(1,4) ”. O
valor de j é novamente incrementado, passando a ser 5. Uma vez que 5 já não é menor que n, o segundo
ciclo termina e o programa volta ao primeiro ciclo. Assim sendo, a variável i é incrementada passando
a ter valor 2. Uma vez que 2 é menor que n, o programa volta a executar o segundo for inicializando a
variável j com o valor de i+1 que é 3. O processo continua até que a condição do primeiro for não seja
satisfeita. O output final do programa é então “(1,2) (1,3) (1,4) (2,3) (2,4) (3,4) ”.

Através deste exemplo conseguimos perceber que, no caso de ciclos encadeados, o ciclo interior será
executado cada vez que uma iteração do ciclo exterior for efetuada. É também importante referir que a
inicialização da variável de controlo do segundo ciclo depende da variável de controlo do primeiro ciclo.
Contudo, o inverso não seria posśıvel pois o âmbito da variável j é entre as linhas 8 e 10.

29

2.3.5 As instruções break e continue

Independentemente da estrutura usada para implementar um ciclo (do-while, while ou for) esse ci-
clo terminará apenas quando a respetiva condição deixar de ser verificada. No entanto, em algumas
situações, pode ser útil terminar um ciclo antes que tal aconteça. Para isso, poderemos usar a instrução
break dentro do bloco de instruções do ciclo. Ao encontrar esta instrução, o programa abandona ime-
diatamente o ciclo. Contudo, em ciclos encadeados, a instrução break permite apenas terminar um dos
ciclos (dependendo do local onde está colocada) e não todos. Vejamos o seguinte exemplo:

1. #include <iostream>

2. using namespace std;

3.

4. int main(){
5. int n = 5;

6.

7. for(int i = 1; i < n; ++i) {
8. for(int j = i + 1; j < n; ++j) {
9. cout<<"("<<i<<","<<j<<") ";

10. if (j % i == 0)

11. break;

12. }
13. }
14.

15. return 0;

16. }

i = 1

j = 2

Escreve no ecr~a "(1,2) "

break (pois 2%1==0)

i = 2

j = 3

Escreve no ecr~a "(2,3) "

j = 4

Escreve no ecr~a "(2,4) "

break (pois 4%2==0)

i = 3

j = 4

Escreve no ecr~a "(3,4) "

j = 5 (Fim do segundo ciclo)

i = 4

j = 5 (Fim do segundo ciclo)

i = 5 (Fim do primeiro ciclo)

Este programa difere do anterior pelo facto de conter a instrução break , que apenas afeta o ciclo
interior (o ciclo do j). O uso desta instrução neste programa faz com que o segundo ciclo possa terminar
por duas razões: (i) quando j ≥ n; ou (ii) quando j é múltiplo de i. O esquema de execução do
programa é apresentado do lado direito.

A instrução continue permite parar uma iteração de um ciclo (while, do-while ou for) sem terminar
o ciclo por completo. Mais precisamente, a instrução continue faz com que o programa “salte” da linha
onde essa instrução está para o fim do ciclo em que está inserida. Vejamos o seguinte exemplo:

1. #include <iostream>

2. using namespace std;

3.

4. int main(){
5. for(int i = 1; i <= 9; ++i) {
6. if(i % 4 == 0) {
7. continue;

8. }
9. cout << i << endl;

10. }
11. return 0;

12. }

1

2

3

5

6

7

9

30

O programa apresentado do lado esquerdo imprime todos os números de 1 a 9 que não sejam diviśıveis
por 4. Assim, o ciclo for percorre todos os números de 1 e 9 e, quando estes forem diviśıveis por 4,
“salta” para o fim do ciclo for, não executando a instrução que imprime os números no ecrã (linha
9). Consideremos que a variável i tem valor 3. Neste caso, a condição do if é avaliada como falsa e o
programa não entra no if. Desta forma, a próxima instrução a ser executada é a da linha 9, sendo o valor
3 impresso no ecrã. De seguida, a variável de controlo de ciclo i é incrementada para 4 sendo a condição
do if avaliada como verdadeira e a instrução continue executada, o que faz com que o programa “salte”
da linha 7 para a linha 10, onde termina a iteração do ciclo for, não imprimindo o valor 4 no ecrã. O
resultado da execução do programa é o apresentado do lado direito.

É preciso ter cuidado ao usar a instrução continue em ciclos while e do-while uma vez que, nestes
ciclos, o valor da variável de controlo do ciclo é atualizado dentro do corpo do ciclo e, como o uso da
instrução continue faz com que o programa “salte” instruções, a atualização da variável de controlo de
ciclo pode não ser efetuada, resultando num ciclo infinito. Considere-se o seguinte programa:

1. #include <iostream>

2. using namespace std;

3.

4. int main(){
5. int i = 1;

6. while(i <= 9) {
7. if(i == 5) {
8. continue;

9. }
10. cout << i << endl;

11. ++i;

12. }
13.

14. return 0;

15. }

O programa anterior deveria imprimir no ecrã os números inteiros de 1 a 9, contudo, apenas imprime
os números de 1 a 4 entrando depois num ciclo infinito. Quando a variável de controlo i toma o valor
5, a condição do if da linha 7 é avaliada como verdadeira e a instrução continue da linha 8 é executada
fazendo com que o programa “salte” para a linha 12. Significa isto que a variável de controlo de ciclo i
nunca mais é incrementada, originando assim um ciclo infinito.

31

Caṕıtulo 3

Variáveis indexadas - Vetores

Um vetor é um tipo de dados não primitivo que permite armazenar uma sequência de variáveis do
mesmo tipo, por exemplo, várias variáveis do tipo int . Cada uma das variáveis é um elemento do vetor e
é identificada por um número inteiro não negativo designado por ı́ndice. O ı́ndice do primeiro elemento
é zero, pelo que um vetor cujo último ı́ndice seja n terá n+1 elementos. A figura abaixo representa um
vetor de inteiros v com 6 elementos (́ındices de 0 a 5).

 v[0] v[1] v[2] v[3] v[4] v[5]

 5 7 8 -2 1 9

 5 7 8 -2 1 9 5 7 8 -2 1 9

 5 7 8

 5 7 8 -2

 5 7 8 -2 1

 5 7

 5

 5 7 8 -2 1 9

 5 7 8

 5 7 8 -2

 5 7 8 -2 1

 5 7

 5

(Linha 6)

(Linha 7)

(Linha 9)

(Linha 10)

(Linha 11)

(Linha 12)

(Linha 13)

(Linha 14)

 v:

v:

 v:

 v:

 v:

 v:

 v:

 v:

 v:

 v:

v:

 v:

 v:

 v:

v:

 v:

Os elementos de um vetor não têm nome e são identificados pelo seu ı́ndice. Por exemplo, a variável
que contém o valor 5, e que ocupa a primeira posição do vetor v, é identificada como v[0] enquanto
que a variável que contém o valor -2 é identificada como v[3]. Intuitivamente, um vetor pode ser visto
como um armário composto por várias gavetas onde cada gaveta contém um e um só elemento.

3.1 Declaração de vetores

A utilização de vetores em C++ requer a inclusão do pacote vector 1, pelo que será necessário escrever
a instrução: #include<vector>, sempre que quisermos usar vetores. Existem duas formas principais
de declarar um vetor: com dimensão e sem dimensão.

3.1.1 Declaração de vetor com dimensão

Esta forma de declaração é usada quando sabemos quantos elementos terá o vetor a criar, sendo feita
de uma das seguintes formas:

vector<Tipo_de_dados> nome_vetor(n);

ou

vector<Tipo_de_dados> nome_vetor(n, x);

Ambas as instruções criam uma vetor com o nome nome vetor com n posições (desde 0 até n-1) para
armazenar elementos do tipo Tipo de dados. A diferença entre elas é que a primeira inicializa todos

1Ver https://cplusplus.com/reference/vector/vector/ para mais informações sobre o pacote vector .

32

https://cplusplus.com/reference/vector/vector/

os seus elementos com o valor default do tipo Tipo de dados do vetor e a segunda inicializa todos os
elementos do vetor com o valor x.

Considerando que o Tipo de dados é int e que o nome vetor é u, a figura que se segue representa o
que a primeira instrução faz.

u[0] u[1] u[n-2] u[n-1]

u: 0 0 ... 0 0

Tal como já foi dito, o vetor u tem n elementos mas cada um dos elementos do vetor terá o valor default
do tipo int, que é o valor 0. Para construir o vetor apresentado anteriormente v = (5, 7, 8,−2, 1, 9) é
necessário atribuir valores espećıficos a cada um dos elementos do vetor, o que é feito no seguinte excerto
de código:

1. #include <vector>

2. using namespace std;

3.

4. int main(){
5. vector<int> v(6); //Declaraç~ao

6.

7. v[0] = 5; //ou v.at(0) = 5;

8. v[1] = 7; //ou v.at(1) = 7;

9. v[2] = 8; //ou v.at(2) = 8;

10. v[3] = -2; //ou v.at(3) = -2;

11. v[4] = 1; //ou v.at(4) = 1;

12. v[5] = 9; //ou v.at(5) = 9;

13.

14. return 0;

15. }

3.1.2 Declaração de vetor sem dimensão

O C++ permite também a criação de vetores sem que seja especificada a sua dimensão no momento
da criação. Para tal, pode ser usada a seguinte instrução:

vector<Tipo_de_dados> nome_vetor;

No entanto, há que ter em conta que esta instrução por si só é inútil uma vez que apenas declara o
vetor, isto é, cria um vetor sem posições. Assim sendo, caso se pretenda armazenar elementos no vetor,
teremos primeiro que criar as posições necessárias para os colocar. Estas posições podem ser criadas
todas de uma só vez fazendo um redimensionamento do vetor através da instrução resize ou podem
ser criadas uma por uma usando a instrução push back, conforme mostrado a seguir.

33

1. #include <vector>

2. using namespace std;

3.

4. int main(){
5. vector<int> v; //Declaraç~ao

6. v.resize(6); //Redimensionar

7.

8. v[0] = 5; //Preenchimento

9. v[1] = 7;

10. v[2] = 8;

11. v[3] = -2;

12. v[4] = 1;

13. v[5] = 9;

14.

15. return 0;

17. }

1. #include <vector>

2. using namespace std;

3.

4. int main(){
5. vector<int> v;

6.

7. //Cria nova posiç~ao e preenche-a

8. v.push back(5);

9. v.push back(7);

10. v.push back(8);

11. v.push back(-2);

12. v.push back(1);

13. v.push back(9);

14.

15. return 0;

17. }

 v[0] v[1] v[2] v[3] v[4] v[5]

 5 7 8 -2 1 9

 5 7 8 -2 1 9 5 7 8 -2 1 9

 5 7 8 0 0 0

 5 7 8 -2 0 0

 5 7 8 -2 1 0

 5 7 0 0 0 0

 5 0 0 0 0 0

 5 7 8 -2 1 9

 5 7 8

 5 7 8 -2

 5 7 8 -2 1

 5 7

 5

(Linha 6)

(Linha 5)

(Linha 6)

(Linha 8)

(Linha 9)

(Linha 10)

(Linha 11)

(Linha 12)

(Linha 13)

 0 0 0 0 0 0

 v:

v:

 v:

 v:

 v:

 v:

 v:

 v:

 v:

 v:

v:

 v:

 v:

 v:

v:

 v:

No programa à esquerda é criado um vetor sem posições (linha 5) e logo depois é redimensionado
(linha 6), passando a ter 6 posições. Neste redimensionamento, é atribúıdo automaticamente o valor
default do tipo de dados do vetor (zero no caso dos tipos numéricos) a todos os elementos do vetor.
Uma vez criadas as posições, estas são então preenchidas nas linhas 8-13. No programa à direita, o
vetor é também declarado sem posições. No entanto, cada vez que se pretende adicionar um elemento
ao vetor, é primeiro criada a posição para esse elemento, sendo depois preenchida com o elemento em
causa. Tudo isto é feito internamente pela instrução push back.

Em termos de eficiência computacional, o primeiro excerto de código com a instrução resize é mais
eficiente que o segundo onde é usada a instrução push back. Assim sendo, de entre estas duas instruções
devemos privilegiar a escolha da primeira sempre que posśıvel.

A dimensão de um vetor pode ser alterada várias vezes no decorrer do programa através do método
resize verificando-se o seguinte: i) se a nova dimensão do vetor for superior à anterior, todos os

34

elementos do vetor são preservados e são criadas as posições em falta, sendo que os elementos nessas
posições assumirão o valor default do tipo de dados do vetor (0 no caso de tipos numéricos); ii) se a
nova dimensão do vetor for inferior à dimensão atual, então o vetor é simplesmente “cortado”, sendo
as últimas posições eliminadas. Importa ainda salientar que o método resize pode ainda ser chamado
com dois argumentos, isto é,

v.resize(n,x);

neste caso, n será a nova dimensão do vetor e x será o valor de todos os elementos colocados nas novas
posições criadas. Por exemplo, se tivermos v = (1, 2, 3), a instrução v.resize(5,10) altera o vetor para
v = (1, 2, 3, 10, 10).

Tal como acontece com outros tipos de dados, é posśıvel inicializar um vetor no momento da sua
declaração. No entanto, tal inicialização terá que ser feita através de uma lista de elementos. Assim, no
exemplo que estamos a considerar bastaria escrever:

1. #include <vector>

2. using namespace std;

3.

4. int main(){
5. vector<int> v = {5, 7, 8, -2, 1, 9};
6. return 0;

7. }

Esta seria a forma mais simples de criar o vetor pretendido, no entanto, este tipo de criação nem
sempre é posśıvel uma vez que frequentemente os valores a colocar no vetor (bem como a dimensão do
vetor) não são conhecidos quando o vetor é declarado.

3.2 Método .at() vs operador []

Para aceder/preencher uma posição de um vetor, pode ser usado tanto o operador [] como o método
.at(). A principal diferença entre eles é o facto do método .at() fazer a validação da posição do vetor
que se pretende aceder, isto é, verifica se essa posição existe no vetor. Vejamos o seguinte exemplo:

1. #include <vector>

2. using namespace std;

3.

4. int main(){
5. vector<int> v(2);

6. v[0] = 5; //ou v.at(0) = 5;

7. v[1] = 7; //ou v.at(1) = 7;

8. v[2] = 8; //ERRO (o programa pode n~ao terminar)

9. v.at(2) = 8; //ERRO (o programa termina imediatamente)

10. //...

11. return 0;

12. }

35

O vetor v declarado na linha 5 tem apenas duas posições (posição 0 e posição 1). Assim sendo, o
acesso a estas posições pode ser feito através do operador [] ou do método .at() (linhas 6 e 7). Quando
tentamos aceder a uma posição do vetor que não existe (posição 2, por exemplo) usando o operador [],
o programa não nos informa que tal posição não existe e acede a uma qualquer localização da memória
do computador, devolvendo-nos o valor lixo áı existente. Dependendo do contexto, o programa pode
terminar imediatamente sem apresentar qualquer mensagem de erro ou pode continuar a ser executado
ficando o erro “camuflado”. Neste último caso, o erro acaba por ser propagado ao longo do programa sem
que nos apercebamos dele. Ao utilizarmos o método .at() para tentar aceder a uma posição do vetor
que não existe, o programa terminará imediatamente e apresentará a mensagem de erro out of range.

Mas então, porque não usar sempre o método .at() uma vez que é mais seguro? A principal razão
é a eficiência. Como o método .at() faz sempre a validação da posição a que se está a tentar aceder,
o seu esforço computacional é maior, o que poderá ter grande impacto na eficiência computacional do
programa. Além disso, o operador [] é mais simples de escrever. Assim sendo, cada opção tem as suas
vantagens e desvantagens, pelo que ambas as formas podem ser usadas nesta cadeira.

3.3 Manipulação de vetores

Um vetor v pode ser visto como um conjunto de variáveis indexadas v[i] em que i é a posição
da variável no vetor. Significa isto que cada uma dessas variáveis pode ser manipulada através dos
operadores/métodos definidos para o seu tipo, como por exemplo os cin, cout, +, == para objetos do
tipo string . No entanto, é necessário ter sempre presente que estes operadores não estão definidos para
vetores. Isto é, sendo v e u dois objetos do tipo vector não é posśıvel fazer, por exemplo, v+u. Significa
isto que, para já, um vetor será sempre manipulado posição a posição e não como um todo como a seguir
se explica.

3.3.1 Preenchimento de vetores

Já vimos anteriormente como preencher um vetor com valores espećıficos, conhecidos à priori. Su-
ponhamos agora que pretendemos criar um vetor v de inteiros com dimensão 3, sendo os seus valores
pedidos ao utilizador. Sabemos já que a instrução cin permite pedir valores ao utilizador, mas esta
instrução não está definida para vetores, pelo que não é posśıvel fazer algo como “cin>>v”. No entanto,
é posśıvel fazer “cin>>v[0]”, “ cin>>v[1]” e “cin>>v[2]” uma vez que v[·] é uma variável do tipo
int. Como estamos a repetir várias vezes o procedimento de pedir valores ao utilizador, podemos usar
uma estrutura de controlo ćıclica para preencher o vetor. Além disso, dado que sabemos exatamente
quantos valores vão ser pedidos, devemos utilizar o for . Nos excertos de código abaixo é feita a criação
e preenchimento do vetor v com valores pedidos ao utilizador com e sem a utilização de um ciclo for.

36

1. #include <iostream>

2. #include <vector>

3. using namespace std;

4.

5. int main(){
6. vector<int> v(3);

7.

8. //cin >> v; //ERRO

9. cin >> v[0]; //ou cin>>v.at(0);

10. cin >> v[1];

11. cin >> v[2];

12.

13. return 0;

14. }

1. #include <iostream>

2. #include <vector>

3. using namespace std;

4.

5. int main(){
6. vector<int> v(3);

7.

8. for(int i = 0; i < v.size(); ++i){
9. cin >> v[i]; //ou cin>>v.at(i);

10. }
11.

12.

13. return 0;

14. }

O código da direita permite preencher o vetor de forma automática uma vez que percorre sucessiva-
mente cada posição do vetor (desde 0 até 2) pedindo um valor ao utilizador para essa posição. O método
size() devolve a dimensão do vetor (neste caso 3). A manipulação de vetores requer frequentemente a
utilização de um ciclo for como o que se apresenta na linha 8 do código da direita para percorrer todas
as posições do vetor (desde 0 até size()-1).

Quando a dimensão do vetor não é conhecida, aconselha-se a utilização de um ciclo while para
preenchê-lo. Suponhamos que se pretende pedir sucessivamente valores numéricos ao utilizador até ser
introduzido um valor não numérico. Neste caso, não sabemos à partida quantos valores numéricos o
utilizador vai introduzir, pelo que devemos definir um vetor sem especificar a sua dimensão e usar a
instrução push back para criar uma nova posição no vetor cada vez que for inserido um valor numérico.
Este procedimento é efetuado no código abaixo.

1. #include <iostream>

2. #include <vector>

3. using namespace std;

4.

5. int main(){
6. vector<double> v;

7.

8. double x;

9. while(cin >> x){ //Enquanto forem lidos valores numéricos

10. v.push back(x);

11. }
12.

13. return 0;

14. }

Cada vez que o ciclo while começa, a instrução cin>>x irá tentar atribuir à variável x (que é do tipo
double) o valor inserido pelo utilizador. Caso esse valor seja numérico, a atribuição é bem sucedida e por
isso o programa entra no ciclo while, cria uma nova posição no vetor e coloca nela o valor da variável x.

37

Caso o utilizador insira um valor não numérico, esse valor não consegue ser atribúıdo à variável x e a
instrução cin>>x devolve false, fazendo com que o ciclo while termine imediatamente. Além disso, o
cin entra no estado com erro e não pode ser utilizado até que o seu estado “seja limpo” (ver a Secção
10.3 para mais informações).

3.3.2 Impressão de vetores

Tal como o preenchimento de um vetor, também a sua impressão deve ser feita posição a posição
uma vez que o método cout não está definido para vetores. Assim sendo, como o vetor que queremos
imprimir tem dimensão conhecida (uma vez que já está criado), a forma mais comum de o imprimir é
utilizando um ciclo for conforme mostrado no excerto de código abaixo.

1. #include <iostream>

2. #include <vector>

3. using namespace std;

4.

5. int main(){
6. vector<int> v = {5, 7, 8, -2, 1, 9};
7.

8. cout << "(";

9. for(int i = 0; i < v.size(); ++i){
10. if(i < v.size() - 1)

11. cout << v[i] << ", "; //Para todos os elementos que n~ao o último

12. else

13. cout << v[i] << ")"; //Para o último elemento

14. }
15. return 0;

16. }

Note-se que o ciclo for tem exatamente a mesma estrutura do que aquele que é usado para preencher
o vetor, dado que é necessário percorrer todas as posições do vetor. O if presente no interior do ciclo
for tem como objetivo distinguir a impressão do último elemento da dos restantes. Isto porque, após
a escrita do último elemento do vetor, deve ser escrito um parêntesis e não uma v́ırgula como acontece
para os restantes elementos. O output do programa será então

(5, 7, 8, -2, 1, 9).

3.3.3 Ordenação de vetores

A ordenação de vetores é essencial para simplificar tarefas que habitualmente realizamos com vetores,
tais como a pesquisa de elementos ou a obtenção de estat́ısticas descritivas. Existem vários algoritmos
de ordenação, como o Bubble Sort , o Insertion Sort , o Sequencial Sort , etc. O C++ dispõe já de um
método de ordenação, o método sort , que iremos usar nesta cadeira sempre que precisarmos de ordenar
vetores. Este método pertence ao pacote algorithm, pelo que a sua utilização requer a inclusão da
instrução #include<algorithm> no preâmbulo. No código abaixo é exemplificada a ordenação de um
vetor por ordem crescente e decrescente.

38

1. #include <vector>

2. #include <algorithm>

3. using namespace std;

4.

5. int main(){
6. vector<int> v = {5, 7, 8, -2, 1, 9};
8.

9. //Ordenar vetor v por ordem crescente

10. sort(v.begin(), v.end());

11.

12. //Ordenar vetor v por ordem decrescente

13. sort(v.begin(), v.end(), greater <>());

14.

15. return 0;

16. }

Na linha 6 temos, por exemplo, v[0] = 5. A partir da linha 10, o vetor v passa a estar ordenado
por ordem crescente, pelo que, v[0] = -2. A partir da linha 13, o vetor passa a estar ordenado por
ordem decrescente, pelo que v[0] = 9.

3.4 Vetores de vetores - Matrizes

Como vimos no ińıcio deste caṕıtulo, um objeto do tipo vetor armazena variáveis de um determinado
tipo. Em particular, pode armazenar variáveis também do tipo vetor, o que origina um vetor de vetores.
Esta estrutura de dados é a forma mais natural de representar uma matriz em C++. Esquematicamente,
uma matriz pode ser representada da seguinte forma:

5 2 1

7 2 3

1 3 1

5 6 7

 0 1 2

1

2

3

4

5 2 1

7 2 3

1 3 1

5 6 7

0

1

2

3

4

 0 1 2

1

2

3

4

m

m[4]

5 2 1

7 2 3

1 3 1

 0 1 2

1

2

3

4

m

m[3]

8 0 6

m[0]

m[1]

m[2]

m[3]

m[4]

8 0 6

m[0][0] = 5 m[0][1] = 2 m[0][2] = 1

m[1][0] = 8 m[1][1] = 0 m[1][2] = 6

m[2][0] = 7 m[2][1] = 2 m[2][2] = 3

m[3][0] = 1 m[3][1] = 3 m[3][2] = 1

m[4][0] = 5 m[4][1] = 6 m[4][2] = 7

8 0 6

0

1

2

3

m[0][0] = 5 m[0][1] = 2 m[0][2] = 1

m[1][0] = 8 m[1][1] = 0 m[1][2] = 6

m[2][0] = 7 m[2][1] = 2 m[2][2] = 3

m[3][0] = 1 m[3][1] = 3 m[3][2] = 1

O vetor m é composto por 4 elementos, sendo que cada elemento é um novo vetor de dimensão 3.
O vetor m pode então ser visto como uma matriz de dimensão 4×3, isto é, uma matriz com 4 linhas
e 3 colunas. Cada elemento da matriz é identificado por m[i][j], sendo i o ı́ndice no vetor principal
m (linha) e j o ı́ndice no vetor secundário m[i] (coluna). Sendo uma matriz um vetor de vetores, é
necessário definir as dimensões de todos os vetores envolvidos antes de preencher a matriz. A criação
da matriz do exemplo acima pode ser feita da seguinte forma:

39

1. #include <vector>

2. using namespace std;

3. int main(){
4. //Opç~ao 1: Declarar e preencher a matriz

5. vector<vector<int>> m = { {5, 2, 1}, {8, 0, 6}, {7, 2, 3}, {1, 3, 1} };
6.

7. //Opç~ao 2: Criar matriz sem dimens~oes e depois redimensionar

8. vector<vector<int>> m; //ou vector<vector<int>> m(4); e eliminar a linha 9

9. m.resize(4); //Definir número de linhas (dimens~ao do vetor principal)

10.

11. //Definir número de colunas (dimens~ao de cada vetor secundário)

12. for(int i = 0; i < m.size(); ++i)

13. m[i].resize(3);

14.

15. //Preencher matriz

16. m[0][0] = 5;

17. //...

18. m[3][2] = 1;

19.

20. return 0;

21. }

A primeira opção de criação da matriz é claramente a forma mais simples de o fazer. No entanto, esta
opção é apenas posśıvel no caso em que quer as dimensões quer os elementos da matriz são conhecidos
no momento da sua criação, o que frequentemente não acontece. Quando as dimensões da matriz e os
seus elementos não são conhecidos no momento da criação da matriz - o que acontece por exemplo se
essa informação for pedida ao utilizador durante a execução do programa - teremos de usar a segunda
opção. É importante também realçar que o número de linhas da matriz pode ser definido aquando
da sua declaração, conforme descrito no comentário da linha 8. No entanto, não podemos escrever
vector<vector<int>> m(4,3) para criar uma matriz 4 × 3, uma vez que se espera que o segundo
argumento do construtor do tipo de dados vector<vector<int>> seja um vector<int> e não um int.
Para criar uma matriz 4 × 3 matrix (4 linhas e 3 colunas) inicializada com todas as entradas a zero,
podemos escrever

vector<vector<int>> m(4, vector<int>(3, 0));

Isto constrói um vetor externo com quatro posições, onde cada posição é um vector<int> interno de
tamanho 3, com todos os seus elementos iguais a zero.

No exemplo apresentado o vetor de vetores foi usado para representar uma matriz, e para que tal
aconteça, os vetores secundários devem ter todos a mesma dimensão. Contudo, seria posśıvel definir um
vetor de vetores onde os vetores secundários teriam dimensões diferentes.

Tal como no caso dos vetores simples, também as matrizes são manipuladas entrada a entrada e
não como um todo. Significa isto que para manipular uma matriz é necessário percorrer todas as suas
entradas, isto é, todas as suas linhas e colunas. A forma mais simples de o fazer é utilizar dois ciclos
for encadeados, sendo que o primeiro irá percorrer “as linhas” da matriz e o segundo “as colunas”. O
código abaixo mostra como se pode imprimir uma matriz em C++.

40

1. #include <iostream>

2. #include <vector>

3. using namespace std;

4.

5. int main(){
6. vector<vector<int>> m = { {5, 2, 1}, {8, 0, 6}, {7, 2, 3}, {1, 3, 1} };
7.

8. for(int i = 0; i < m.size(); ++i){ //Linha i

9. for(int j = 0; j < m[i].size(); ++j){ //Coluna j

10. cout << m[i][j] << " ";

11. }
12. cout << endl; //Muda de linha após escrever uma linha completa

13. }
14.

15. return 0;

16. }

Note-se que usamos o método cout aplicado a cada entrada da matriz e não à matriz em si. Fazer
algo como “cout << m” não é posśıvel pois o comando cout não está definido para objetos do tipo
vector<vector<int>>. O preenchimento de uma matriz é feito de modo semelhante, isto é, através da
utilização de dois ciclos for , pelo que não será aqui apresentado.

41

Caṕıtulo 4

Funções

O termo função remete-nos intuitivamente para a área da matemática onde uma função é caracte-
rizada por um domı́nio, um contradomı́nio e uma expressão anaĺıtica. Por exemplo, a função f

f : Z× Z −→ R

(x, y) −→ f(x, y) =
x

y2 + 1

recebe dois argumentos inteiros (x e y) e devolve uma valor real que é o resultado da divisão de x por
y2 + 1. Em programação é importante distinguir três conceitos associados a uma função: declaração,
definição e chamada. A declaração de uma função consiste em indicar o seu nome, o tipo dos seus
argumentos (tipo de dados que recebe - domı́nio) e o tipo de retorno (tipo de dados que devolve -
contradomı́nio). A definição de uma função consiste em explicitar o que é que a função faz (expressão
anaĺıtica). Por fim, a chamada da função consiste em executar a função para valores concretos dos seus
argumentos. No exemplo em causa temos:

f : Z× Z −→ R (declaração)

(x, y) −→ f(x, y) =
x

y2 + 1
(definição)

f(2, 3), f(52,−8) ... (chamadas)

Em C++, para este mesmo exemplo teŕıamos:

//declaraç~ao

double f(int, int);

//declaraç~ao e definiç~ao

double f(int x, int y){
return x / (y * y + 1);

}

//chamadas

cout << f(2,3); //chamada 1

double z1 = 5 * f(1,7); //chamada 2

int a = 6, b = 1;

double z2 = f(a,b); //chamada 3

42

No primeiro bloco de código, é feita apenas a declaração da função. Isto é, é indicado que a função f
recebe dois argumentos do tipo int e devolve um resultado do tipo double. No segundo bloco de código,
é feita simultaneamente a declaração e a definição da função. A definição da função corresponde ao
bloco de código que aparece dentro das chavetas {...}. Finalmente, no último bloco de código, são feitas
três chamadas da função. Note-se que nestes casos, tal como em matemática, apenas necessitamos de
colocar os valores nos argumentos da função sem indicar o seu tipo uma vez que tal já ficou expĺıcito na
declaração/definição da função.

Neste caso, a função f devolve um valor real que tanto pode ser diretamente impresso no ecrã
(chamada 1), como usado para definir o valor de uma variável (chamadas 2 e 3). Na primeira chamada
da função, o primeiro argumento x assumirá o valor 2 e o segundo argumento y o valor 3. Na terceira
chamada da função, x assumirá o valor da variável a (que é 6), y o valor da variável b que é 1 e o valor
devolvido pela função será armazenado na variável z2.

É importante notar que o nome dos argumentos de uma função é apenas usado internamente na
função, sendo por isso independente do nome das variáveis usadas na chamada dessa função. Além
disso, uma vez que esta função foi declarada com 2 argumentos do tipo int , ela terá sempre que ser
chamada com 2 argumentos do tipo int , pelo que, por exemplo, f(1), f(1, 8, 5), f(‘j’, 5) e f não são
chamadas válidas para esta função.

4.1 Sintaxe geral de uma função

A estrutura geral da declaração e definição de uma função em C++ é a seguinte:

Tipo_retorno nome(Tipo_a1 nome_a1, ..., Tipo_an nome_an){
//...

return ... ; //Se "Tipo" for diferente de "void"

}

nesta declaração e definição:

- nome é o nome dado à função;

- Tipo retorno é o tipo de dados devolvido pela função. Caso a função não devolva qualquer
resultado o tipo de retorno será void ;

- nome v1, ..., nome an são os nomes dos argumentos da função;

- Tipo a1, ..., Tipo an são os tipos de dados dos argumentos da função.

Quando a instrução return é executada, o programa sai da função imediatamente e o valor de retorno
da função é devolvido/retornado (através de uma cópia) para o programa onde esta foi chamada. Assim
sendo, esta instrução não precisa de ser usada em funções do tipo void , uma vez que estas nada devolvem.
As funções do tipo void são frequentemente usadas para imprimir algo no ecrã, não devolvendo por isso
qualquer resultado que possa ser usado no programa onde a função foi chamada, contrariamente ao
que acontecia com a função f apresentada anteriormente. De seguida é apresentado um exemplo da
declaração e definição de duas funções, uma com o tipo de retorno int e outra com o tipo de retorno
void . No entanto, é importante chamar a atenção para o facto de que as funções não têm necessariamente
de ter argumentos, como é o caso da função main que sempre temos usado.

43

Exemplo 1

Suponhamos que se pretende implementar uma função que devolva o máximo entre dois números
inteiros e outra que escreva dois números inteiros por ordem crescente. Ambas as funções recebem os
mesmos argumentos: dois números inteiros que internamente serão denotados por n1 e n2. Uma vez
que a primeira (linhas 4-9) tem como objetivo calcular o máximo entre dois números inteiros, o seu
tipo de retorno é também um número inteiro. Por outro lado, a segunda função (linhas 11-16) apenas
escreve no ecrã os dois números inteiros recebidos por ordem crescente e por isso não devolve qualquer
resultado para o programa onde for chamada. Assim sendo, esta função é do tipo void e por isso não
existe qualquer instrução return no seu interior.

1. #include <iostream>

2. using namespace std;

3.

4. int maximo(int n1, int n2){
5. int max = n1;

6. if(max < n2)

7. max = n2;

8. return max;

9. }
10.

11. void ordem(int n1, int n2){
12. if(n1 < n2)

13. cout << n1 << " <= " << n2;

14. else

15. cout << n2 << " <= " << n1;

16. }
17.

18. int main(){
19. int a;

20. int b;

21. cout << "Introduza a e b: ";

22. cin >> a >> b;

23.

24. //Chamadas das funç~oes

25. int x = maximo(5,7);

26. int y = maximo(a,b) - 6;

27. cout << "O maximo entre 2 e 8 é " << maximo(2,8) << endl;

28. int z = maximo(maximo(7,8) , maximo(1,6));

29

30. cout << "Ordem: ";

31. ordem(7,5);

32. cout << "\n Ordem: ";

33. ordem(maximo(1,8) , 3);

34. return 0;

35. }

44

Dado que um programa em C++ inicia sempre a sua execução pela função main, todas as restantes
funções terão de ser declaradas antes dela, por isso é que as funções maximo e ordem estão declaradas/-
definidas nas linhas 4-16. Como referido anteriormente, ao chamar uma função, é obrigatório escrever
o seu nome e todos os seus argumentos (sem especificar o seu tipo). Ao chamar a função maximo na
linha 25, indicamos que o valor dos seus argumentos n1 e n2 (linha 4) é respetivamente 5 e 7. Assim
sendo, quando o programa chega à linha 25, irá saltar para a linha 4 e executará as instruções da função
maximo considerando n1=5 e n2=7. Ao chegar à linha 8, o programa devolve o valor da variável max (que
será 7) para o local onde a função foi chamada, isto é, para a linha 25, sendo por isso o valor da variável
x igual a 7.

Ao chamar a função maximo na linha 26, os valores das variáveis a e b (anteriormente pedidos ao
utilizador) são passados como argumento à função, definindo por isso os valores de n1 e n2. A execução
da função maximo termina com o retorno do máximo entre os valores de a e b para a linha 26. A esse
máximo, é subtráıdo o valor 6, sendo o resultado final guardado na variável y.

O valor devolvido por uma função não tem necessariamente que ser guardado numa variável como
nas linhas 25 e 26. Uma vez que a função maximo devolve um int, ele pode ser diretamente impresso
no ecrã, como é feito na linha 27.

Uma função pode ainda ser chamada com argumentos que são eles próprios funções desde que os tipos
de retorno das funções interiores estejam de acordo com o tipo dos argumentos das funções exteriores, tal
como acontece na linha 28. A chamada das funções maximo(7,8) e maximo(1,6) resulta, respetivamente,
nos valores 8 e 6, que são do tipo int pois é esse o tipo de retorno da função maximo. Estes valores serão
então os argumentos da função exterior, pelo que a linha 28 é equivalente a int z = maximo(8,6);.
Assim sendo, o valor da variável z será 8.

Contrariamente à função maximo, a função ordem não devolve qualquer resultado para o programa
principal, apenas escreve informação no ecrã, sendo por isso uma função do tipo void . Assim sendo, esta
função terá de ser chamada de forma isolada (linhas 31 e 33), não podendo ser usada nem para definir
valores de variáveis nem dentro de um cout . A função ordem recebe dois argumentos do tipo int e por
isso pode ser chamada como na linha 33, uma vez que a chamada da função maximo(1,8) tem como
resultado um valor do tipo int que será o primeiro argumento da função ordem.

No código abaixo são apresentados vários exemplos de chamadas incorretas das duas funções ante-
riores.

int maximo(int n1, int n2){...}
void ordem(int n1, int n2){...}

//Chamadas incorretas das funç~oes

int w = maximo; //Faltam argumentos

int a = 9, b = 4;

int r = maximo(int a , int b); //N~ao colocar os tipos

int s = maximo(c, d); //Variáveis c e d n~ao declaradas

int t = maximo("A", 3); //Argumento n~ao do tipo int

int y = maximo(n1, n2); //Argumento n~ao definidos

int u = maximo(5); //Faltam argumentos

cout << "O maximo é " << maximo; //Faltam argumentos

int h = ordem(2,8); //Funç~ao ordem n~ao devolve um int

cout << "Ordem: " << ordem(7,5); //Funç~ao ordem nada devolve

ordem; //Faltam argumentos

cout << maximo(ordem(1,6), 5); //Funç~ao ordem n~ao devolve um int

45

Exemplo 2

Uma função pode ter como argumento qualquer tipo de dados, em particular pode ter argumentos
do tipo vector. No programa abaixo (lado esquerdo) está declarada e definida uma função print que
recebe como argumento um vetor de inteiros e devolve esse vetor escrito como string .

1. #include <iostream>

2. #include <vector>

3. using namespace std;

4.

5. string print(vector<int> x){
6. string s = "(";

7. for(int i = 0; i<x.size(); ++i){
8. if(i < x.size() - 1)

9. s+=to_string(x[i]) + ", ";

10. else

11. s+=to_string(x[i]) + ")";

12. }
13. return s;

14. }
15.

16. int main(){
17. vector<int> v = {2, 3, 1, 7};
18. vector<int> u = {3, 5, 1, 1};
19. vector<int> w(4);

20.

21. for(int i = 0; i<v.size(); ++i)

22. w[i] = v[i] + u[i];

23.

24. cout << print(v) << "+";

25. cout << print(u);

26. cout << "=" << print(w);

27.

28. return 0;

29. }

}

1. #include <iostream>

2. #include <vector>

3. using namespace std;

4.

5. int main(){
6. vector<int> v = {2, 3, 1, 7};
7. vector<int> u = {3, 5, 1, 1};
8. vector<int> w(4);

9.

10. for(int i = 0; i<v.size(); ++i)

11. w[i] = v[i] + u[i];

12.

13. string s1 = "(";

14. for(int i = 0; i<v.size(); ++i){
15. if(i < v.size() - 1)

16. s1+=to_string(v[i]) + ", ";

17. else

18. s1+=to_string(v[i]) + ")";

19. }
20.

21. string s2 = "(";

22. for(int i = 0; i<u.size(); ++i){
23. if(i < u.size() - 1)

24. s2+=to_string(u[i]) + ", ";

25. else

26. s2+=to_string(u[i]) + ")";

27. }
28.

29. string s3 = "(";

30. for(int i = 0; i<w.size(); ++i){
31. if(i < w.size() - 1)

32. s3+=to_string(w[i]) + ", ";

33. else

34. s3+=to_string(w[i]) + ")";

35. }
36.

37. cout<< s1 << "+" << s2 << "=" << s3;

38. return 0;

39. }

46

Na função print , o vetor recebido é sempre designado por x. Significa isto, que cada vez que a função
print for chamada com um determinado vetor (u, v ou w como nas linhas 24, 25 e 26), será criada uma
cópia desse vetor (designada por x) que será o argumento da função.

Este exemplo tem como objetivo mostrar duas das grandes utilidades das funções: a não repetição
de código e a simplificação do programa onde a função é chamada (função main). Ambos os excertos
de código acima produzem o mesmo output, isto é,

(2, 3, 1, 7) + (3, 5, 1, 1) = (5, 8, 2, 8).

No entanto, o código da direita não utiliza funções e por isso, cada vez que se pretende imprimir um
vetor é necessário replicar as linhas 13-19 para o vetor em causa. Note-se que o processo efetuado nas
linhas 21-27 e 29-35 é o “mesmo” das linhas 13-19, só que para vetores diferentes. Além de originar um
código mais extenso, a repetição de excertos de código também é mais proṕıcia a erros. Definir uma
função para imprimir um (qualquer) vetor x, como é feito no código da esquerda, permite que sempre que
se pretenda imprimir um vetor de inteiros (independentemente da sua dimensão) apenas seja necessário
chamar a função para esse vetor, tal como é feito nas linhas 24, 25 e 26 do código à direita. Note-se que
a função main do lado esquerdo é muito mais simples de ler do que a do lado direito.

4.2 Vantagens das funções

As funções são extremamente úteis em programação. Como ilustrado no exemplo anterior, as funções
evitam repetições de código uma vez que são implementadas de forma bastante genérica, podendo depois
ser chamadas várias vezes com argumentos diferentes.

Outra das grandes vantagens das funções é o facto de permitirem a modularidade do código. Isto é,
com as funções é posśıvel dividir o código em pedaços mais pequenos que são mais fáceis de organizar,
testar e usar. Desta forma, as funções facilitam a divisão de tarefas em programas que envolvem várias
pessoas, uma vez que são estruturas completamente independentes.

Uma vez definidas, as funções podem ser usadas por várias pessoas em diversos programas. Do ponto
de vista do utilizador, apenas é necessário saber como é que uma determinada função foi declarada e
não como foi definida, isto é, saber o seu nome, argumentos e tipo de retorno. Note-se que, sem que
talvez tenhamos dado conta disso, já usamos várias funções que não sabemos como foram definidas.
Alguns exemplos dessas funções são as funções size, resize e at para objetos do tipo vector e a função
de conversão de valores numéricos para string (to string).

4.3 Passagem por valor, por referência e por referência cons-

tante

Os argumentos de uma função podem ser passados por valor , por referência ou por referência cons-
tante, sendo a forma de o fazer a seguinte:

Tipo nome(Tipo argumento argumento){...} //Passagem por valor

Tipo nome(Tipo argumento& argumento){...} //Passagem por referência

Tipo nome(const Tipo argumento& argumento){...} //Passagem por referência constante

47

Na passagem por valor , é passado como argumento à função uma cópia do valor do argumento usado
no momento da chamada da função. Significa isto que todas as alterações que ocorram dentro da função
serão aplicas a essa cópia e não à variável passada como argumento.

Na passagem por referência, o que é passado como argumento à função não é uma cópia do valor da
variável mas sim o endereço de memória onde a variável está guardada. Assim sendo, a função consegue
“ver” e “alterar” diretamente o valor dessa variável. Significa isto, que qualquer alteração que ocorra
dentro da função será aplicada à variável que foi passada como argumento na chamada da função.

A passagem por referência constante é semelhante à passagem por referência no sentido em que o
que chega como argumento à função é também o endereço de memória da variável. No entanto, ao usar
uma referência constante, a função apenas consegue “ver”a variável não conseguindo fazer alterações.

Vejamos o seguinte exemplo:

1. #include <iostream>

2. using namespace std;

3.

4. void f(int a, int& b, const int& c){
5. a += 10 + c;

6. b += 10 + c;

7. //c += 10; ERRO!

8. cout << a << " " << b << " " << c; //a=12, b=12, c=1

9. }
10.

11. int main(){
12. int x = 1;

13. int y = 1;

14. int z = 1;

15. f(x, y, z);

16. cout << x << " " << y << " " << z; //x=1, y=12, z=1

17.

18. return 0;

19. }

A função f é chamada na linha 15 com os argumentos x, y e z. Esta função recebe três argumentos,
sendo o primeiro passado por valor , o segundo por referência e o terceiro por referência constante.
Assim sendo, na chamada da função na linha 15 é passado como argumento o valor da variável x (que é
1), o endereço de memória da variável y e o endereço de memória da variável z. Significa isto que a=1,
b é exatamente a variável y e c é exatamente a variável z. Assim sendo:

- alterar a variável a dentro da função não altera a variável x, uma vez que a é uma cópia de x e
não a variável x. Note-se que no final da execução da função temos a=12 e x=1.

- alterar a variável b é o mesmo que alterar a variável y e por isso no final da execução da função
temos b=y=12.

- c é uma referência constante para a variável z, pelo que o valor de c não pode ser alterado pela
função (linha 7) e por isso temos c=z=1.

48

Que tipo de passagem usar?

A utilização do tipo de passagem correta de um argumento numa função depende primeiramente da
necessidade da função alterar ou não permanentemente esse argumento. Alterar permanentemente um
argumento, significa que se esse argumento for alterado dentro da função se manterá alterado fora dela.
Para que tal seja posśıvel, é necessário que a função receba o argumento por referência, independente-
mente do tipo de dados do argumento.

Quando uma função não modifica permanentemente o argumento que recebe, o tipo de passagem a
usar depende do tipo de dados desse argumento. Tipos de dados primitivos como int , double, char e bool
estão associados a objetos considerados “pequenos”, enquanto que tipos de dados não primitivos como
vetores , strings e classes (que iremos ver mais adiante) estão associados a objetos “grandes”. O tempo e o
esforço computacional requeridos para criar cópias de objetos de tipos primitivos é desprezável e por isso
estes tipos de objetos são geralmente passados por valor às funções. O mesmo não acontece com objetos
de tipos não primitivos onde a criação de cópias pode ser demorada, dado que esses objetos podem ter
dimensões muito elevadas. Assim, objetos não primitivos que não são alterados permanentemente pela
função devem ser passados por referência constante.

O esquema abaixo ilustra o processo de decisão referente ao tipo de passagem de argumentos a usar.

A função modifica
permanentemente o argumento?

O argumento é do
tipo primitivo?

Passagem por
valor

Passagem
por referência

constante

Passagem por
referência

Sim Não

Sim Não

Suponhamos que se pretende implementar uma função que receba um vetor e o imprima. A função
em causa apenas necessita de aceder aos elementos do vetor (sem os alterar) e, uma vez que os vetores
são tipos de dados não primitivos, esta função deve receber uma referência constante para um vetor. O
uso de referências constantes é também uma segurança para o programador uma vez que garante que
um determinado objeto não é alterado dentro de uma função.

Como já sabemos, uma função pode apenas retornar um objeto. Contudo, as referências não constan-
tes podem ser usadas como forma “artificial” de retornar um ou mais objetos. Note-se que no exemplo
da secção anterior embora a função f sendo do tipo void não devolva qualquer valor, o novo valor da
variável b (que é 12) é “devolvido” para a função main, devido ao facto de ter sido usada uma referência
não constante.

49

Caṕıtulo 5

Tratamento de erros

Para ser robusto, um programa deve ter a capacidade de lidar eficazmente com todos os tipos de
erros que possam ocorrer durante a sua execução. Existem várias formas de lidar com erros sendo que a
escolha da mais adequada depende do erro em causa. Os erros comprometem a execução do programa e,
por isso, devem ser identificados. Um programa deve ter mecanismos para corrigir os erros identificados
de modo a que possa continuar a sua execução. A não correção dos erros pode levar à interrupção
imediata do programa ou à propagação de erros que comprometam o funcionamento do programa.

Um dos mecanismos mais comuns no tratamento de erros é o uso de exceções . Exceções são situações
anómalas que ocorrem durante a execução de um programa. Assim sendo, um programa deve estar
preparado para sinalizar todas as exceções que possam ocorrer. Sinalizar uma exceção significa identificar
um problema que pode ocorrer durante a execução do programa e informar o sistema da sua existência -
a isto chama-se lançar uma exceção. Para lançar uma exceção, usamos a instrução throw . O lançamento
de uma exceção faz com que o programa termine imediatamente, a não ser que seja usado um mecanismo
que permita apanhar (e eventualmente tratar) a exceção lançada. Para apanhar uma exceção lançada
para o sistema, usamos um bloco try...catch. A instrução try procura por exceções lançadas no seu
bloco de instruções. A instrução catch permite definir ações para lidar com a exceção lançada e assim
continuar a execução do programa. Estas ações podem ser meramente informativas, isto é, podem
apenas informar o utilizador da existência do erro sem o corrigir, ou podem de facto corrigir o erro
existente. O fluxograma abaixo resume o que acontece ao programa em função dos mecanismos usados
para apanhar/tratar uma exceção.

Ocorrência

de erro
Apanhar exceção

(try…catch) O programa continua

após o bloco

try…catch Lançar exceção

(throw)

O programa termina

imediatamente

Não apanhar

exceção

Tratar

exceção

Não tratar

exceção

Erro não é corrigido

50

A sintaxe geral das estruturas throw e try...catch são as seguintes:

//Bloco_de_instruç~oes_1

if(condiç~ao_de_erro)

throw Exceç~ao_a_lançar;

//Bloco_de_instruç~oes_2

//Bloco_de_instruç~oes_3

try{

//Bloco_de_instruç~oes_1

if(condiç~ao_de_erro)

throw Exceç~ao_a_lançar;

//Bloco_de_instruç~oes_2

}catch(Exceç~ao_a_apanhar){
//Lidar com a exceç~ao

}

//Bloco_de_instruç~oes_3

O lançamento de exceções é geralmente feito dentro de instruções condicionais, uma vez que apenas
acontece se determinada condição de erro se verificar. No excerto de código da esquerda, o programa
começa por executar o Bloco de instruç~oes 1. Se a condiç~ao de erro se verificar, é lançada uma
exceção e o programa termina imediatamente. Caso contrário, o programa executará os dois blocos de
instruções seguintes.

Para uma exceção ser apanhada pelo bloco catch, esta terá que ser lançada dentro do bloco try asso-
ciado ao bloco catch. No bloco catch, é especificado o que deve ser feito no caso da Exceç~ao a apanhar

ter sido lançada dentro do bloco try . No excerto de código da direita, o programa entra diretamente no
bloco try e começa por executar o Bloco de instruç~oes 1. De seguida, verifica se a condiç~ao de erro

é verdadeira e em caso afirmativo lança uma exceção. Após lançar a exceção, o programa salta o
Bloco de instruç~oes 2 passando imediatamente para o bloco catch. Ao chegar ao bloco catch, o pro-
grama verifica se a exceção que foi lançada é do mesmo tipo da Exceç~ao a apanhar. Caso não seja,
o programa termina imediatamente. Caso contrário, são executadas as instruções do bloco catch para
lidar com a exceção e o programa continua a sua execução passando para o Bloco de intruç~oes 3.

No código da direita, se após entrar no bloco try e executar o Bloco de instruç~oes 1 não se verificar
a condiç~ao de erro, o que significa ausência de erro, o programa executará o Bloco de instruç~oes 2

e em seguida o Bloco de instruç~oes 3, ignorando o bloco catch.

A uma única instrução try podem estar associados vários blocos catch, um para cada exceção que se
pretenda apanhar. Se uma exceção for lançada no bloco try e o bloco catch não estiver preparado para
lidar com ela, a exceção não será apanhada, fazendo com que o programa termine imediatamente. Para
evitar que tal aconteça, o último bloco catch associado ao try deve ser um bloco geral que permita apa-
nhar todas as exceções que não foram apanhadas pelos blocos catch anteriores. Para apanhar qualquer
exceção, devemos usar reticências (...) no argumento do catch. No exemplo abaixo é apresentado um
bloco try com três blocos catch associados, sendo o primeiro e o segundo para duas exceções espećıficas
(Exceç~ao 1 e Exceç~ao 2) e o último um bloco geral para qualquer outra exceção que não estas. Note-se
que quando a instrução throw é executada dentro do bloco try, o programa salta imediatamente para o
bloco catch e, como apenas uma exceção foi lançada, apenas um dos blocos catch (Exceç~ao 1, Exceç~ao 2

ou ...) será executado.

51

try{

//...

}catch(Exceç~ao_1){
//Lidar_com_exceç~ao_1

}catch(Exceç~ao_2){
//Lidar_com_exceç~ao_2

}catch(...){
//Lidar_com_exceç~oes_restantes

}

As exceções são objetos de um determinado tipo (int, string, entre outros). Contudo, para se
conseguirem identificar claramente as exceções lançadas e lidar com elas de modo diferente, iremos
definir uma classe para cada exceção. As classes apenas serão introduzidas em detalhe no Caṕıtulo 7.
Assim sendo, basta para já ter a noção de que uma classe é um tipo de dados não primitivo criado pelo
utilizador. De seguida será explicado como podemos utilizar uma classe definida por nós para lançar
uma exceção e como podemos utilizar classes já existentes na biblioteca standard para o fazer.

5.1 Classes vazias

A utilização de classes vazias para lidar com exceções é particularmente útil quando são lançadas
exceções diferentes ao longo do programa e as queremos tratar separadamente. Quando este método é
usado, devemos começar por declarar uma “classe vazia” para cada tipo de exceção que possa ocorrer.
Estas declarações devem ser feitas antes das funções onde as exceções vão ser lançadas. No exemplo
que se segue, as declarações são feitas antes da função main, que é a função que lançará as exceções.
Neste exemplo, são criadas duas classes vazias, cada uma associada a uma condição de erro diferente.
O bloco try apresentado neste exemplo tem dois blocos catch associados para lidar com duas exceções
diferentes. É de referir ainda a utilização de referências constantes nos argumentos da instrução catch,
o que se justifica por estarmos a lidar com objetos de tipos de dados não primitivos (classes).

52

//Preâmbulo

class Nome_exceç~ao_1{};
class Nome_exceç~ao_2{};

int main{

//...

try{
if(condiç~ao_de_erro_1)

throw Nome_exceç~ao_1();

//...

if(condiç~ao_de_erro_2)

throw Nome_exceç~ao_2();

//...

}catch(const Nome_exceç~ao_1&){
//Lidar com a exceç~ao_1

}catch(const Nome_exceç~ao_2&){
//Lidar com a exceç~ao_2

}catch(...){
//Lidar com outras exceç~oes

}

//...

return 0;

}

No exemplo abaixo são pedidos ao utilizador os valores das variáveis n e m, e é criada uma nova
variável result cujo valor é a divisão inteira de n por m. Caso algum dos valores de n ou de m não
seja lido corretamente, por exemplo, se tiver sido introduzido um valor não numérico, é lançada uma
exceção do tipo Leitura Incorreta e a divisão entre n e m não é efetuada uma vez que o programa
passa diretamente para o primeiro bloco catch. Nesse bloco, a exceção é tratada atribuindo o valor 1
à variável result e o programa continua a ser executado passando para o último cout onde é impresso
o valor 2 no ecrã. Note-se que a verificação do sucesso da leitura de um valor de uma determinada
variável é feita através da instrução if(!cin), que significa “se não foi lido o tipo de dados correto no
cin anterior”, uma vez que a instrução cin assume valor false caso a leitura falhe.

Caso a leitura dos valores de n e m seja feita com sucesso mas o valor de m seja zero, é lançada uma
exceção do tipo Valor Nulo e o programa não faz a divisão entre n e m. Neste caso, o programa passa
imediatamente para o último bloco catch onde apenas apresenta uma mensagem de erro. Este é por isso
um exemplo em que lidamos com a exceção (apresentando uma mensagem de erro) mas em que não a
tratamos, ou seja, o programa continua a ser executado mas o erro é ignorando. Neste caso, a variável
result continuará com o seu valor inicial (zero) e o último cout escreve no ecrã o valor 1.

53

Note-se que quando tratámos a exceção Leitura Incorreta atribúımos o valor 1 à variável result,
sendo este um valor arbitrário. A questão que se põe é: qual é o valor que devemos atribuir à divisão
inteira quando um dos operandos é um valor não numérico? A resposta a esta questão não é clara,
sendo esta a razão principal pela qual normalmente não tratamos as exceções e apenas lidamos com elas
produzindo uma mensagem de erro.

//Preâmbulo

class Valor_Nulo{};
class Leitura_Incorreta{};

int main(){
int n, m, result = 0;

try{
cout << "Valor de n: ";

cin >> n;

if(!cin)

throw Leitura_Incorreta();

cout << "Valor de m: ";

cin >> m;

if(!cin)

throw Leitura_Incorreta();

if(m == 0)

throw Valor_Nulo();

result = n/m;

}catch(const Leitura_Incorreta&){
result = 1;

}catch(const Valor_Nulo&){
cout << "Atencao! o valor de m e zero...";

cout << "... mas o programa vai continuar a executar";

}

cout << result + 1;

return 0;

}

54

5.2 Classes da biblioteca standard

No C++ existem várias classes predefinidas para o tratamento de erros 1. Dentre elas, salientamos a
classe runtime error e a classe out of range que iremos explorar de seguida.

5.2.1 Classe runtime error

A classe runtime error da biblioteca standard é uma das que mais iremos usar no tratamento de
erros. Esta classe tem como argumento um objeto do tipo string onde se pode colocar uma mensagem
de erro apropriada. Assim sendo, esta é a opção mais simples para fazer o tratamento de erros quando
se pretende apenas escrever mensagens de erro espećıficas para cada tipo de erro.

Qualquer exceção do tipo runtime error que seja lançada mas não seja apanhada causa a interrupção
imediata do programa, como acontecia anteriormente com a instrução throw. Assim, caso queiramos
lidar com a exceção, deve ser usado um bloco try...catch. A estrutura geral de um bloco try...catch para
lidar com exceções do tipo runtime error é a seguinte:

try{
//...

if(condiç~ao_de_erro_1)

throw runtime_error("Mensagem_de_erro_1");

//...

if(condiç~ao_de_erro_2)

throw runtime_error("Mensagem_de_erro_2");

//...

}catch(const runtime_error& e){
cout << e.what();

}

Em função do erro em causa, é passada como argumento à classe runtime error uma mensagem
espećıfica. Quando uma exceção do tipo runtime error é lançada, é depois apanhada pelo catch. Dentro
do bloco catch é usado o método .what(), que devolve a mensagem que foi passada como argumento
no lançamento da exceção. Essa mensagem é então escrita no ecrã. O método .what() tem que estar
associado a um objeto do tipo runtime error. Neste caso, esse objeto foi guardado na variável chamada
e. No código abaixo é exemplificado o uso da classe runtime error no tratamento de erros do programa
apresentado na secção anterior.

s

1Mais informações sobre estas classes em https://cplusplus.com/reference/exception/exception/.

55

int n, m, result = 0;

try{
cout << "Valor de n: ";

cin >> n;

if(!cin)

throw runtime_error("Leitura incorreta do n");

cout << "Valor de m: ";

cin >> m;

if(!cin)

throw runtime_error("Leitura incorreta do m");

if(m == 0)

throw runtime_error("O valor de m e zero");

result = n/m;

}catch(const runtime_error& x){
cout << x.what();

}

Como este exemplo é muito semelhante ao anterior, vamos apenas analisar as principais diferenças.
Comecemos por reparar nas mensagens de erro existentes nos vários runtime error. Caso o valor de n
seja um valor não numérico, a mensagem de erro é “Leitura incorreta de n”. Caso seja o valor de m que
é não numérico, temos a mensagem de erro “Leitura incorreta de m”. Note-se que aqui, contrariamente
ao exemplo anterior, conseguimos saber pela mensagem de erro qual dos valores introduzidos é o não
numérico. Por fim, caso o valor de m seja 0, a mensagem de erro é “O valor de m e zero”. Apenas temos
um bloco catch, onde a exceção será guardada na variável x e a mensagem de erro será impressa para o
ecrã com o método .what().

5.2.2 Classe out of range

A classe out of range é utilizada no tratamento de erros relacionados com acessos a posições ine-
xistentes. Dos tipos de dados que conhecemos, os únicos que têm posições a eles associadas são o tipo
string e o tipo vector. A análise seguinte é válida para os tipos de dados referidos.

Como vimos anteriormente, para aceder a elementos de vetores podemos usar tanto o operador []
como o método .at(), sendo a principal diferença entre eles o facto do método .at() fazer a validação da
posição a que estamos a tentar aceder. Ao tentar aceder a uma posição do vetor que não exista através
do método .at(), é lançada uma exceção do tipo out of range, que pode ou não ser apanhada através
do uso de um bloco try...catch.

Vejamos o seguinte exemplo:

56

vector<int> v(2);

try{
v.at(0) = 7;

v.at(1) = 2;

v.at(2) = 5; // É lançada uma exceç~ao

}catch(const out_of_range& e){
cout << "Erro: Posicao inexistente";

// ou cout << e.what();

}

Neste exemplo é criado um vetor de dimensão 2 (com posições 0 e 1). Ao tentar aceder à posição
2, que não existe, é lançada uma exceção do tipo out of range que é apanhada pelo catch. Para lidar
com a exceção, pode ser impressa uma mensagem de erro personalizada (como no primeiro caso) ou
utilizado o método .what() que devolve informação sobre qual a dimensão do vetor e qual a posição a
que se está a tentar aceder. Por fim, é importante ressalvar que não é necessário verificar a condição de
erro através de um if porque isto já é feito na implementação do método .at().

57

Caṕıtulo 6

Separação de um projeto em ficheiros

À medida que um programa se torna maior, é pertinente dividir o código em diferentes ficheiros, cada
um contendo partes independentes das outras, de forma a tornar o código mais modular . Os ficheiros
criados podem ser compilados individualmente, o que permite adicionar novas funcionalidades ao pro-
grama sem ser necessário compila-lo todo novamente. Assim sendo, novos erros que possam surgir serão
mais facilmente detetados, uma vez que estarão, provavelmente, associados às novas funcionalidades do
programa, estando assim circunscritos a um ficheiro.

Uma das grandes vantagens da modularidade é também o facto de permitir que cada um dos dife-
rentes ficheiros criados possa ser usado em vários programas, evitando assim repetir implementações de
processos. Por exemplo, os pacotes da biblioteca standard estão implementados num único módulo, que
não podemos alterar mas que podemos consultar. Assim, cada vez que queiramos usar uma funcionali-
dade já existente na biblioteca standard , basta fazer a sua inclusão no preâmbulo de cada programa e
chamar diretamente os métodos lá existentes. Conforme explicado mais adiante, nós também podemos
definir módulos, que podem ser partilhados por vários programas.

Para separar um projeto em ficheiros, devemos começar por criar um projeto e adicionar-lhe dois
ficheiros: um ficheiro cabeçalho (ou header ou .h) e um ficheiro corpo (ou .cpp). Para adicionar o ficheiro
cabeçalho, clicamos com o botão direito do rato no projeto criado, selecionamos Add new , selecionamos
depois C/C++ Header File e finalmente definimos o nome do módulo. Para adicionar o ficheiro corpo,
repetimos o mesmo processo, selecionando C/C++ Source File e atribuindo o mesmo nome que foi
usado para o ficheiro cabeçalho. Este processo é ilustrado na Figura 6.1.

Figura 6.1: Como adicionar um ficheiro cabeçalho e um ficheiro corpo a um projeto.

58

Após a criação do ficheiro cabeçalho e do ficheiro corpo, a estrutura do projeto será a que se apre-
senta na Figura 6.2. Neste caso, o módulo criado tem o nome Vetores . O ficheiro cabeçalho tem
a estrutura apresentada na figura, sendo que o nosso código é escrito no local indicado na imagem.
As instruções #ifndef VETORES H e #define VETORES H servem para definir o conteúdo do ficheiro
cabeçalho caso ainda não tenha sido definido. Caso já tenha sido definido (através da instrução #include
"Vetores.h"), o conteúdo deste ficheiro é ignorado. O ficheiro corpo é criado vazio.

Figura 6.2: Estrutura do projeto com ficheiros cabeçalho e corpo.

O ficheiro cabeçalho deve conter apenas as declarações dos métodos, o que se justifica por duas
principais razões: reduzir o tempo de compilação, e permitir que o utilizador identifique facilmente
quais as componentes do módulo. Assim, o ficheiro cabeçalho pode ser visto como um “́ındice” de um
livro. O “conteúdo” do livro, que no nosso caso corresponde ao conjunto das definições dos métodos,
encontra-se no ficheiro corpo. Vejamos o exemplo seguinte.

Ficheiro Cabeçalho

#ifndef VETORES_H

#define VETORES_H

#include <iostream>

#include <vector>

using namespace std;

void print(const vector<int>&);

#endif // Vetores_H

Ficheiro Corpo

#include "Vetores.h"

void print(const vector<int>& v){
for(int i = 0; i<v.size(); ++i){

if(i == 0)

cout << "(" << v[i];

else if(i == v.size() - 1)

cout << ", " << v[i] << ")";

else

cout << ", " << v[i];

}
}

59

Programa Principal

#include "Vetores.h"

int main(){
vector<int> u = {1, 2, 3};
print(u);

return 0;

}

Neste exemplo, é criado um módulo (Vetores) que contém, no ficheiro cabeçalho, a declaração de
uma função print com tipo de retorno void que recebe como argumento uma referência constante para
um vetor. A definição desta função é feita no ficheiro corpo. A instrução #include "Vetores.h" é
necessária no topo deste ficheiro para estabelecer ligação entre os ficheiros cabeçalho e corpo. Uma
vez definido o módulo, este pode ser usado em qualquer programa, bastando para isso a sua inclusão
no programa através da instrução #include "Vetores.h". Note-se que não é necessário incluir no
programa principal os pacotes já inclúıdos no ficheiro cabeçalho, pois ao incluirmos o ficheiro cabeçalho
estamos automaticamente a incluir todos os pacotes nele inclúıdos. Depois da inclusão do módulo,
todos os métodos que lhe pertencem podem ser chamados diretamente, tal como é exemplificado com
a instrução print(u). A modularidade torna o programa principal muito mais compacto e leǵıvel,
conforme foi ilustrado neste exemplo.

6.1 Espaços de nomes

Programas mais complexos requerem muitas vezes a inclusão de vários módulos, que podem ser
criados por pessoas diferentes de forma independente. Isto pode fazer com que existam elementos
declarados com o mesmo nome emmódulos diferentes, por exemplo, duas funções com o mesmo nome. Ao
fazer include de vários ficheiros cabeçalho no programa principal, corremos o risco de haver declarações
repetidas, o que não é aceite pelo compilador por existir um conflito de nomes. Uma das formas de
evitar este problema é através do uso de espaços de nomes - namespaces .

Um namespace é um âmbito com nome no qual podem ser declarados vários elementos. Quando
usamos namespaces , o acesso aos seus elementos é feito indicando explicitamente a que namespace eles
pertencem. Assim, mesmo que haja dois elementos com o mesmo nome em módulos diferentes, o acesso
a cada um deles será feito de forma diferente, evitando assim conflitos de nomes.

Consideremos os seguintes módulos M1 e M2 onde é declarada uma função print . A primeira função
pertence ao namespace X e a segunda ao namespace Y. Desta forma, para definir estas funções nos
ficheiros corpo respetivos, é necessário especificar a que namespace pertencem usando as instruções X::
e Y:: antes do seu nome.

60

Ficheiro Cabeçalho M1

#ifndef M1_H

#define M1_H

#include <iostream>

#include <vector>

using namespace std;

namespace X{
void print(const vector<int>&);

}

#endif // M1_H

Ficheiro Cabeçalho M2

#ifndef M2_H

#define M2_H

#include <iostream>

#include <vector>

using namespace std;

namespace Y{
void print(const vector<int>&);

}

#endif // M2_H

Ficheiro Corpo M1

#include "M1.h"

void X::print(const vector<int>& v){
// ...

}

Ficheiro Corpo M2

#include "M2.h"

void Y::print(const vector<int>& v){
// ...

}

Programa Principal

#include "M1.h"

#include "M2.h"

int main(){
vector<int> u = {1, 2, 3};
print(u); // ERRO!

X::print(u); // OK!

Y::print(u); // OK!

return 0;

}

No programa principal, onde são inclúıdos os dois ficheiros cabeçalho, podemos então chamar ambas
as funções especificando a que namespace pertencem. Desta forma, fica inequivocamente identificada a
função que queremos usar.

Indicar sempre o namespace a que pertence determinado elemento torna o programa mais extenso e

61

dif́ıcil de ler, mas é fundamental caso existam elementos com o mesmo nome pertencentes a namespaces
diferentes. No entanto, quando esta questão não se coloca, podemos simplificar a escrita através da
instrução using . Adicionar ao preâmbulo a instrução using namespace X; permite aceder aos elementos
do namespace X diretamente sem ter que usar X:: em cada um deles, uma vez que já indicámos que
estamos a usar os elementos do namespace X. Note-se que isto é o que fazemos com os elementos do
namespace std quando usamos a instrução using namespace std;. Deste namespace fazem parte, por
exemplo, os elementos cout , cin, string e vector . Assim, para escrever algo como

vector<string> v;

// ...

cout << v[0];

sem usar a instrução using namespace std; teŕıamos de escrever

std::vector<std::string> v;

// ...

std::cout << v[0];

o que torna claramente o programa mais dif́ıcil de ler. A utilização da instrução std:: tem apenas a
vantagem de identificar claramente a que namespace os elementos pertencem.

No mesmo ficheiro cabeçalho podemos definir vários namespaces . Além disso, podemos ainda definir
namespaces dentro de outros namespaces , conforme ilustrado no exemplo abaixo.

Ficheiro Cabeçalho M1

#ifndef M1_H

#define M1_H

#include <iostream>

#include <vector> using namespace std;

namespace X{
void print1(const vector<int>&);

namespace Z{
void print2(const vector<int>&);

}
}

namespace W{
void print3(const vector<int>&);

}

#endif // M1_H

Programa Principal

#include "M1.h"

int main(){
vector<int> u = {1, 2, 3};
X::print1(u);

X::Z::print2(u);

W::print3(u);

return 0;

}

Note-se que as funções print1, print2 e print3 poderiam ter o mesmo nome por estarem associadas
a namespaces diferentes. Além disso, todas estas funções poderiam estar definidas no mesmo ficheiro

62

corpo, sendo a identificação de cada uma deles feita de forma semelhante à que é feita no programa
principal, isto é, usando as instruções X::, X::Z:: e W::.

6.2 Redefinição de tipos de dados - type alias

Em C++, a instrução using permite definir um nome alternativo (um pseudónimo ou alias), nor-
malmente mais simples, para um determinado tipo de dados. Esse pseudónimo pode depois ser utilizado
em todo o código em vez do tipo de dados original. A sintaxe geral da palavra-chave using para definir
pseudónimos é:

using nome_alternativo = tipo_de_Dados;

No exemplo abaixo, apresentamos um exemplo de um ficheiro cabeçalho que contém a declaração
de duas funções para manipular matrizes. A primeira (do tipo void) imprime uma matriz, enquanto a
segunda devolve uma matriz que é a soma das duas matrizes que recebe como argumento. No primeiro
código, não é usado um type alias , pelo que é necessário escrever vector<vector<int>> sempre que nos
referirmos a esse tipo de dados. No segundo código, é definido um alias para criar o pseudónimo matriz

para o tipo de dados vector<vector<int>>. O segundo excerto de código é claramente menos extenso
e mais leǵıvel que o primeiro, sendo esta a principal vantagem do uso de pseudónimos - type aliases .

Ficheiro Cabeçalho M1 - Sem type alias

#ifndef M1_H

#define M1_H

#include <iostream>

#include <vector>

using namespace std;

void print(const vector<vector<int>>&);

vector<vector<int>> soma(const vector<vector<int>>&; const vector<vector<int>>&);

#endif // M1_H

Ficheiro Cabeçalho M1 - Com type alias

#ifndef M1_H

#define M1_H

#include <iostream>

#include <vector>

using namespace std;

using matriz = vector<vector<int>>; // Definir "vector<vector<int>>" como "matriz"

void print(const matriz&);

matriz soma(const matriz&; const matriz&);

#endif // M1_H

63

Caṕıtulo 7

Classes

Como sabemos, existem em C++ vários tipos de dados primitivos como int , double, char , etc. Devido
à sua simplicidade, estes tipos de dados não permitem representar objetos com que frequentemente nos
deparamos, tais como vetores, frações, números complexos, carros, livros, etc. Estes objetos têm: (i)
atributos (por exemplo, matŕıcula, cor e número de portas, no caso de um carro); e (ii) funcionalidades
(arrancar, travar, etc.), que podem ser representadas em C++ através de classes . Uma classe é um
novo tipo de dados definido pelo utilizador para representar e manipular objetos que não são posśıveis
de representar e manipular através de tipos de dados primitivos. As classes tornam mais claro qual
é o objeto ao qual estamos a aplicar a sua funcionalidade, sendo assim a base de qualquer linguagem
de programação orientada a objetos. As classes não vêm substituir o que aprendemos até agora, vêm
dar-nos uma ferramenta adicional para lidar com a complexidade do código, permitindo que o código
seja escrito de forma mais modular.

Um exemplo de uma classe que tão bem já conhecemos é a classe vector . Esta classe foi criada
para representar vetores e contém por isso métodos para aceder às suas propriedades, como é o caso do
método size(), e funcionalidades para os manipular, como o método push back().

Suponhamos que queremos fazer um programa que lide com números complexos. Embora a biblioteca
standard do C++ disponibilize um tipo de dados para representar números complexos1 , iremos definir
a nossa própria classe, Complexo, para representar e manipular números complexos. Esta classe servirá
como exemplo ao longo deste caṕıtulo.

Uma classe deve ser declarada num ficheiro cabeçalho e definida num ficheiro corpo, de forma a ser
reutilizada facilmente. Assim, para criar uma classe, clicamos com o botão direito do rato em cima do
projeto e de seguida selecionamos Add New , tal como ilustrado na Figura 6.1 apresentada no caṕıtulo
anterior. Depois disso, selecionamos a opção C++ Class (ver Figura 6.1) e damos um nome à classe.
Os excertos de código abaixo ilustram a estrutura dos ficheiros cabeçalho e corpo criados para a classe
Complexo.

1Para mais informações, ver https://en.cppreference.com/w/cpp/numeric/complex.html.

64

Ficheiro Cabeçalho

1. #ifndef COMPLEXO_H

2. #define COMPLEXO_H

3.

4. class Complexo{
5.

6. public:

7. Complexo();

8. };
9.

10. #endif // COMPLEXO_H

Ficheiro Corpo

1. #include "complexo.h"

2.

3. Complexo::Complexo(){
4.

5. }

Note-se que a declaração da classe contém um “;”no final (ver linha 8 do ficheiro cabeçalho) e que,
ao criar uma Class C++, o ficheiro corpo começa com o include do ficheiro cabeçalho.

Qualquer novo tipo de dados criado pelo utilizador tem por base outros tipos de dados. Um número
complexo tem a forma a+bi , sendo a a parte real e b a parte imaginária. Assim, um número complexo
pode ser representado por duas variáveis do tipo double que correspondem a essas partes real e ima-
ginária. Numa classe, as variáveis usadas para representar um objeto são os atributos da classe, que
podem ter qualquer tipo, incluindo outras classes.

Na classe podemos ter também vários métodos que permitam manipular o objeto da classe. Além
disso, uma classe tem sempre pelo menos um construtor , cujo propósito é inicializar os seus atributos
quando um novo objeto é criado. O construtor tem o mesmo nome da classe, podendo ou não ter
argumentos. Assim, um construtor pode ser visto como uma “função” sem tipo de retorno. Os atributos,
construtor(es) e métodos de uma classe são designados por membros da classe.

Numa classe podemos ter membros públicos (public) e privados (private). Os membros públicos
podem ser acedidos dentro e fora da classe, enquanto que os membros privados apenas podem ser
acedidos dentro dela, isto é, em métodos da classe. A declaração de um membro da classe como
público ou privado depende da sua finalidade. No entanto, por serem os elementos estruturais da classe,
os atributos devem ser privados para impedir que sejam diretamente modificados pelo utilizador. Para
visualizar e modificar os atributos privados será então necessário criar métodos públicos, como é ilustrado
no código abaixo.

65

Ficheiro Cabeçalho

#ifndef COMPLEXO_H

#define COMPLEXO_H

//Colocar os includes necessários

class Complexo

{
private:

//Atributos

double Real;

double Im;

public:

//Construtores

Complexo();

Complexo(double , double);

//Métodos

void AlterarReal(double);

void AlterarIm(double);

double VerReal() const;

double VerIm() const;

};

#endif // COMPLEXO_H

Ficheiro Corpo

#include "complexo.h"

// Construtor por omiss~ao

Complexo::Complexo(){
Real = 0;

Im = 0;

}

// Outro construtor

Complexo::Complexo(double a, double b){
Real = a;

Im = b;

}

//Métodos

void Complexo::AlterarReal(double x){
Real = x;

}

void Complexo::AlterarIm(double x){
Im = x;

}

double Complexo::VerReal() const{
return Real;

}

double Complexo::VerIm() const{
return Im;

}

A classe Complexo contém como atributos privados duas variáveis do tipo double, uma com o nome
Real e outra com o nome Im que guardam, respetivamente, a parte real e a parte imaginária do número
complexo. Note-se que os atributos de uma classe aparecem no QT Creator a cor vermelha. Sendo
os atributos privados, a classe dispõe de dois métodos públicos que permitem alterar cada um des-
ses atributos, os métodos AlterarReal e AlterarIm. Existem também dois outros métodos públicos
(VerReal e VerIm) que permitem aceder ao valor dos atributos da classe. É importante referir que
estes dois métodos, tais como todos os que não alterem os atributos da classe, devem ser definidos
como constantes. Para definir um método como constante, escrevemos a palavra const a seguir aos seus
argumentos.

Nesta classe estão presentes dois construtores, o construtor por omissão, que não tem argumentos, e
um outro, que recebe dois argumentos do tipo double. O primeiro construtor não recebe argumentos e,
por isso, foi programado para inicializar os atributos da classe com o seu valor default , o valor zero. O
segundo construtor recebe dois argumentos e utiliza-os para inicializar os atributos da classe. Os dois

66

construtores referidos podem ser alternativamente implementados através da listagem dos atributos da
classe da seguinte forma:

Ficheiro Corpo

// Construtor por omiss~ao

Complexo::Complexo(): Real(0), Im(0){ }

// Outro construtor

Complexo::Complexo(double a, double b): Real(a), Im(b){ }

sendo o significado de, por exemplo, Real(a) semelhante a Real=a. O propósito dos construtores é
inicializar os atributos do objeto aquando da sua criação. Como pudemos ver no exemplo, uma classe
pode ter vários construtores, desde que tenham argumentos diferentes.

Vejamos agora como é que esta classe pode ser usada no programa principal, na função main.

Programa Principal

1. #include "complexo.h"

2.

3. int main(){
4. Complexo z1;

5. Complexo z2(3, 2);

6.

7. z1.Real = 1; //ERRO

8. z1.Im = 5; //ERRO

9. z1.AlterarReal(7);

10. z1.AlterarIm(0);

11.

12. //Imprimir z2

13. cout << z2.VerReal() << "+" << z2.VerIm() << "i";

14.

15. return 0;

16. }

Para usar uma classe num programa é necessário fazer o include do seu ficheiro cabeçalho. Na linha
4, é criado um objeto z1 do tipo Complexo. Neste momento, é implicitamente chamado o construtor por
omissão, pelo que a parte real e a parte imaginária de z1 serão inicializadas com o valor zero. Na linha
5, é criado um novo objeto z2 do tipo Complexo. No entanto, neste caso, uma vez que são recebidos
dois argumentos, é implicitamente chamado o segundo construtor, sendo por isso z2=3+2i;

Para aceder aos métodos públicos de uma classe usamos um ponto (“.”) depois do nome do objeto
da classe, seguido do nome do método, tal como é feito nas linhas 9 e 10. Na linha 9, é chamado o
método AlterarReal com o argumento 7, que permite alterar a parte real do complexo z1 para 7. Uma
vez que os atributos da classe são privados, não é posśıvel aceder-lhes fora da classe, tal como é ilustrado
nas linhas 7 e 8. Na linha 13 é impresso no ecrã o número complexo z2 na forma a+bi , sendo por isso
usados os métodos VerReal() e VerIm() para aceder aos seus atributos.

É importante ressalvar que os métodos de uma classe, quando chamados fora da classe, estão sempre
associados a um objeto dessa classe, pelo que nunca poderão ser chamados sem serem aplicados a um

67

objeto da classe. Por exemplo, a única forma de utilizar o método VerReal é escrevendo x.VerReal(),
onde x é um qualquer objeto do tipo Complexo. Assim, escrever algo como .VerReal() ou VerReal()

fora da classe não é posśıvel.

Uma classe pode conter métodos para manipular o tipo de objeto que representa. No caso da classe
Complexo, faz sentido ter, por exemplo, um método público que permita imprimir um número complexo
na forma a+bi . Nesta classe podemos ter ainda incluir métodos públicos para calcular o módulo de um
número complexo, para verificar se um número complexo é um imaginário puro, entre outros. Estes
métodos podem ter como argumentos e tipo de retorno objetos da própria classe. No código abaixo
é ilustrada a inclusão de quatro funções (Imprime, ImPuro, Simetrico e Soma) na classe Complexo.

68

Ficheiro Cabeçalho

#ifndef COMPLEXO_H

#define COMPLEXO_H

//Colocar os includes necessários

class Complexo{
private:

//Atributos

double Real;

double Im;

public:

//Construtores

Complexo();

Complexo(double , double);

//Métodos

void AlterarReal(double);

void AlterarIm(double);

double VerReal() const;

double VerIm() const;

void Imprime() const;

bool ImPuro() const;

Complexo Simetrico() const;

Complexo Soma(const Complexo&) const;

};

#endif // COMPLEXO_H

Ficheiro Corpo

#include "complexo.h"

// ...

// Restantes definiç~oes

// ...

void Complexo::Imprime() const{
cout << Real;

if (Im >= 0)

cout << " + " << Im << "i";

else

cout << Im << "i";

}

bool Complexo::ImPuro() const{
if (Real == 0 and Im != 0)

return true;

else

return false;

}

Complexo Complexo::Simetrico() const{
Complexo z;

z.Real = -1*real;

z.Im = -1*Im;

//ou

Complexo z(-1*Real, -1*Im);

return z;

}

Complexo Complexo::Soma(const Complexo& z) const{
Complexo zSoma(Real + z.Real, Im + z.Im);

return zSoma;

}

A função Imprime, tal como o nome indica, imprime o objeto do tipo Complexo na forma “a+bi”.
O método ImPuro verifica se o número complexo é um imaginário puro. A função Simetrico calcula
um novo complexo que é o simétrico do objeto da classe. Por fim, o método Soma devolve um número
complexo que é a soma do objeto da classe com outro Complexo.

Estas funções não alteram os atributos da classe e, por isso, são definidas como constantes. A função
Simetrico devolve um objeto z do tipo Complexo que é o simétrico do objeto que lhe deu origem.
Nesta função, o Complexo z é criado usando o construtor da classe e é depois devolvido. A função Soma

tem como argumento uma referência constante para um objeto do tipo Complexo, por se tratar de um

69

tipo de dados não primitivo que não é alterado pela função. Esta função cria um novo objeto do tipo
Complexo, que resulta da soma do objeto da classe com o Complexo z, e devolve-o.

No programa principal abaixo é exemplificada a utilização dos métodos Imprime, Simetrico e Soma.
Inicialmente, é usado o construtor para criar o Complexo z1 que é impresso no ecrã como 3+2i . De
seguida, é criado um novo Complexo z2 que é o simétrico do Complexo z1. Este novo Complexo é depois
impresso na forma -3-2i . Por fim, é criado um novo objeto z3 do tipo Complexo, que resulta da soma
de z1 com z2 e que é impresso no ecrã.

Programa Principal

#include "complexo.h"

int main(){
Complexo z1(3, 2);

z1.Imprime();

Complexo z2 = z1.Simetrico();

z2.Imprime();

Complexo z3 = z1.Soma(z2);

z3.Imprime();

return 0;

}

Como a soma é comutativa, obteŕıamos o mesmo resultado no programa anterior fazendo Complexo

z3 = z2.Soma(z1);. Uma função Soma mais intuitiva receberia dois números complexos e devolveria
a sua soma, podendo ser chamada da seguinte forma Complexo z3 = Soma(z1, z2);. Isto é posśıvel,
criando funções globais, isto é, funções declaradas nos ficheiros da classe que não são membros da classe.

Ficheiro Cabeçalho

#ifndef COMPLEXO_H

#define COMPLEXO_H

//Colocar os includes necessários

class Complexo{
//Classe complexo definida anteriormente sem a funç~ao soma

};

Complexo Soma(const Complexo&, const Complexo&);

#endif // COMPLEXO_H

70

Ficheiro Corpo

#include "complexo.h"

// ...

// Definiç~oes dos membros da classe

// ...

Complexo Soma(const Complexo& z1, const Complexo& z2){
Complexo zSoma(z1.VerReal()+z2.VerReal(), z1.VerIm()+z2.VerIm());

return zSoma;

}

Dado que a função Soma não é um membro da classe, a sua declaração é feita fora da classe, não
sendo por isso necessário incluir o identificador “Complexo::”antes do seu nome no ficheiro corpo. Por
esta mesma razão, o acesso aos atributos da classe (definidos como privados) tem que ser feito usando
as funções Ver. A chamada da função Soma no programa principal é feita da seguinte forma:

Complexo z3 = Soma(z1, z2);.

Para terminar, considere-se uma nova classe cujo propósito é representar uma pessoa. Esta classe
tem como atributos o nome da pessoa e a sua idade. Para além do construtor por omissão, a classe
Pessoa tem um construtor com atributos e funções para aceder aos seus atributos.

Ficheiro Cabeçalho

#ifndef PESSOA_H

#define PESSOA_H

//Colocar os includes necessários

class Pessoa{
private:

string Nome;

int Idade;

public:

//Construtores

Pessoa();

Pessoa(const string&, int);

//Métodos

const string& VerNome() const;

int VerIdade() const;

};

#endif // PESSOA_H

Ficheiro Corpo

#include "pessoa.h"

Pessoa::Pessoa(): Nome(" "), Idade(-1){ }

Pessoa::Pessoa(const string& nome, int id):

Nome(nome), Idade(id){ }

const string& Pessoa::VerNome() const{
return Nome;

}

int Pessoa::VerIdade() const{
return Idade;

}

71

Na análise deste exemplo vamos apenas focar as principais diferenças em relação aos exemplos an-
teriores. Comecemos por reparar na definição do método VerNome, mais especificamente no seu tipo de
retorno. Este método devolve uma referência constante para uma string , uma vez que a função deve
devolver o atributo Nome e não uma cópia dele (que seria o que aconteceria se o tipo de retorno fosse
apenas string em vez da referência constante). Assim, os atributos de tipos não primitivos devem ser
retornados como referências constantes, de forma a evitar cópias desnecessárias. Note-se que o atributo
Idade sendo do tipo int (que é um tipo de dados primitivo) não necessita de ser devolvido na função
VerIdade através de referências.

Para sumarizar, no contexto das classes, a palavra reservada const pode aparecer em três situações
distintas:

i. nos argumentos dos métodos, sendo a sua função semelhante à que vimos no Caṕıtulo 4;

ii. associada aos métodos, sendo o seu propósito indicar que o método não irá alterar os atributos da
classe;

iii. no tipo de retorno de métodos que devolvam atributos da classe cujo tipo não seja um tipo de
dados primitivo, de forma a retornar esses atributos sem que possam ser alterados e evitando a
criação de cópias.

72

Caṕıtulo 8

Sobrecarga de operadores

A maioria dos operadores que vimos no Caṕıtulo 1 apenas estão definidos para tipos de dados
primitivos. De facto, já usámos os operadores “+”, “=”, “==” e “<<” para, por exemplo, variáveis do
tipo int . Como uma classe é um novo tipo de dados criado pelo utilizador, os operadores usuais não
estão definidos para objetos dessas classes. Contudo, é posśıvel definir “versões” dos operadores que
permitam que eles funcionem quando aplicados a objetos de uma determinada classe. A isso chamamos
sobrecarga de operadores.

Tomemos como exemplo a classe Complexo criada no caṕıtulo anterior que inclui o método Simetrico.
A utilização deste método fora da classe é feita com a seguinte instrução:

Complexo w = z.Simetrico();

sendo z um objeto do tipo Complexo e w o seu simétrico. Ora, o operador simétrico “-” já existe para
tipos de dados numéricos, mas não para o tipo de dados Complexo, embora possa ser sobrecarregado
para tal. Após fazer a sobrecarga do operador, será posśıvel escrever

Complexo w = -z;

tornando assim o código mais leǵıvel e intuitivo. O mesmo acontece, por exemplo, para o método
Imprime, que também integra a classe Complexo. A alternativa direta a este método é o operador de
output << que, após ser sobrecarregado, permite imprimir um objeto Complexo utilizando a segunda
forma de escrita apresentada abaixo.

// Usando o método Imprime

z.Imprime();

// Usando o operador <<

cout << z;

Existem vários operadores que podem ser sobrecarregados em C++, sendo alguns deles apresentados
na tabela seguinte.

Operadores Unários Operadores Binários
Incremento ++ Aritméticos Simples +, -, *, /,%
Decremento -- Aritméticos Compostos +=, -=, *=, /=, %=
Simétrico - Relacionais <, >, <=, >=, !=, ==
Negação ! Escrita e Leitura <<, >>

Acesso e Parêntesis [], ()

73

Os operadores podem ser unários ou binários. Os operadores unários têm um único operando, que
será um objeto da classe. Já os operadores binários atuam sobre dois operandos, sendo pelo menos
um deles um objeto da classe. Vejamos então como fazer a sobrecarga de alguns destes operadores
tomando como exemplo a classe Complexo. É importante referir que, também no caso dos operadores,
as declarações devem ser feitas no ficheiro cabeçalho e as definições no ficheiro corpo. No código abaixo
é ilustrado um posśıvel ficheiro cabeçalho da classe Complexo onde são declarados vários operadores.

Ficheiro Cabeçalho

//Colocar instruç~oes para definir o ficheiro cabeçalho e includes necessários

class Complexo {
private:

double Real;

double Im;

public:

Complexo();

Complexo(double , double);

void AlterarReal(double);

void AlterarIm(double);

double VerReal() const;

double VerIm() const;

//Operador simétrico: para escrever -z

Complexo operator-() const;

//Operador soma/atribuiç~ao: para escrever z1+=z2

Complexo& operator+=(const Complexo&);

//Operador incremento (de prefixo): para escrever ++z

Complexo& operator++();

//Operador incremento (de sufixo): para escrever z++

Complexo operator++(int);

//Operador parêntesis: para escrever z(a)

double operator()(double a) const;

//Operador negaç~ao: para escrever !z

bool operator!() const;

};

//Operador soma: para escrever z1+z2

Complexo operator+(const Complexo& , const Complexo&);

//Operador relacional: para escrever z1==z2

bool operator==(const Complexo& , const Complexo&);

//Operador de escrita: para escrever cout << z

ostream& operator<<(ostream& , const Complexo&);

//Operador de leitura: para escrever cin >> z

istream& operator>>(istream& , Complexo&);

74

Note-se que alguns operadores são membros da classe e outros não. Existem operadores que podem
ser definidos tanto fora como dentro da classe, sendo a forma como são declarados e definidos dependente
da opção escolhida. Contudo, para não tornar este caṕıtulo demasiado moroso, adotaremos a seguinte
lógica:

• operadores aritméticos simples, relacionais, de escrita e de leitura serão definidos fora da classe;

• operadores aritméticos compostos, de incremento/decremento, simétrico, de negação, de acesso e
parênteses serão definidos dentro da classe.

Vejamos então como definir cada um destes operadores no ficheiro corpo da classe.

Operador simétrico

O simétrico de um número complexo é um número complexo e por isso o operador simétrico tem
como tipo de retorno um objeto do tipo Complexo. Este operador está definido dentro da classe, pelo
que é necessário usar o identificador Complexo::. Ao escrever z1=-z2, sendo z1 e z2 objetos do tipo
Complexo, estamos a aplicar o operador “-” a z2. O resultado de -z2 é guardado em z1, mas o valor de
z2 não é alterado. Assim sendo, ao implementar o operador simétrico, devemos criar um novo Complexo
cuja parte real e imaginária são o simétrico da parte real e imaginária, respetivamente, do objeto ao
qual foi aplicado o operador.

Ficheiro Corpo

Complexo Complexo::operator-() const{
Complexo novo;

novo.Real = -1*Real;

novo.Im = -1*Im;

return novo;

//ou

Complexo novo = Complexo(-1*Real, -1*Im);

return novo;

//ou simplesmente...

return Complexo(-1*Real, -1*Im);

}

Operador de soma/atribuição

Contrariamente ao operador simétrico, o operador aritmético composto da soma/atribuição requer
dois operandos, sendo que um deles é alterado e o outro se mantém. Por exemplo, ao escrevermos a+=b
estamos a adicionar b a a e, por isso, apenas o valor de a é alterado. Assim, este operador recebe
como argumento uma referência constante para o objeto que não será alterado (operando b) e devolve
uma referência (não constante) para o objeto que foi alterado (objeto a). A instrução return *this;

significa “devolve uma referência para este”, sendo “este” o objeto sobre o qual o operador foi aplicado,
o objeto a.

75

Ficheiro Corpo

Complexo& Complexo::operator+=(const Complexo& b){
Real += b.VerReal();

Im += b.VerIm();

return *this;

}

A declaração e definição dos restantes operadores aritméticos compostos é semelhante à que foi aqui
apresentada para o operador += e por isso será omitida da sebenta. Note-se, no entanto, que o resto da
divisão não é uma operação válida para números complexos uma vez que os seus atributos são do tipo
double, pelo que a sobrecarga do operador %= não faz sentido para este tipo de dados.

Operadores de incremento

Como vimos anteriormente, o operador de incremento pode ser usado como prefixo ou sufixo. Quando
usado como prefixo (++a), o objeto é primeiro incrementado e depois devolvido. Quando usado como
sufixo (a++), é primeiro feita uma cópia do objeto e apenas depois o objeto é incrementado, sendo por
fim devolvida a cópia do objeto (que não foi incrementada). Conforme ilustrado no código abaixo, o que
distingue a declaração dos operadores de incremento é o argumento int no operador sufixo. Note-se que
o argumento int apenas serve para distinguir qual o operador que queremos sobrecarregar e não para
indicar que o operador de sufixo necessita de um argumento do tipo int .

Contrariamente ao que acontece com outros tipos de dados, o significado dos operadores de incre-
mento para objetos do tipo Complexo não é claro e poderá nem fazer sentido. Contudo, para explicar
como deve ser feita a declaração e definição destes operadores, consideramos que eles aumentam em uma
unidade a parte real e a parte imaginária do Complexo.

Ficheiro Corpo

//Operador de incremento prefixo (++a)

Complexo& Complexo::operator++(){
++Real;

++Im;

return *this;

}

//Operador de incremento de sufixo (a++)

Complexo Complexo::operator++(int){
Complexo aux(Real,Im);

++Real;

++Im;

return aux;

}

A implementação dos operadores de decremento é semelhante e por isso não será apresentada na
sebenta.

76

Operadores aritméticos simples

Os operadores aritméticos efetuam uma operação aritmética entre dois objetos da classe, que recebem
como argumento, e devolvem um novo objeto da classe. Uma vez que estes operadores não alteram os
objetos que recebem como argumento, tais objetos devem ser passados por referência constante. É
importante ainda notar que, sendo estes operadores definidos fora da classe, o identificador Complexo::
deixa de ser necessário. No código abaixo, é definido o operador soma, sendo a definição dos restantes
operadores aritméticos simples semelhante.

Ficheiro Corpo

Complexo operator+(const Complexo& z1, const Complexo& z2){
double novo real = z1.VerReal() + z2.VerReal();

double novo im = z1.VerIm() + z2.VerIm();

Complexo aux(novo real, novo im);

return aux;

// ou simplesmente...

return Complexo(z1.VerReal()+z2.VerReal(), z1.VerIm()+z2.VerIm());

}

Operadores relacionais

Os operadores relacionais permitem comparar dois objetos da classe e devolvem um resultado do
tipo bool . Tal como os operadores aritméticos simples, também os relacionais não alteram os objetos
sobre os quais operam. Assim, esses objetos devem ser passados por referência constante. No código
abaixo é definido o operador == para objetos do tipo Complexo. A definição dos restantes operadores
relacionais seria feita de forma semelhante. No entanto, é importante referir que os operadores <, >, <=
e >= não têm um significado claro para objetos do tipo Complexo.

Ficheiro Corpo

bool operator==(const Complexo& z1, const Complexo& z2){
if (z1.VerReal()==z2.VerReal() && z1.VerIm()==z2.VerIm())

return true;

else

return false;

}

Para avaliar se dois objetos do tipo Complexo são diferentes, não podemos usar a instrução z1 !=

z2, pois não sobrecarregámos o operador !=. Contudo, como o resultado desse operador é a negação do
resultado do operador ==, podeŕıamos usar o operador == para fazer essa verificação da seguinte forma:
!(z1 == z2).

Operador de escrita

O operador de escrita (<<) é um operador binário que recebe dois argumentos, nomeadamente uma
referência para um objeto ostream e uma referência constante para um objeto da classe, e devolve uma

77

referência para um objeto ostream. O ostream é uma classe da biblioteca standard e significa output
stream. Esta classe permite escrever e formatar sequências de carateres. Note-se que a definição do
operador de escrita é bastante semelhante à definição da função Imprime, sendo a única diferença a
utilização do objeto do tipo ostream em vez do tradicional cout .

Ficheiro Corpo

ostream& operator<<(ostream& output, const Complexo& z){
if (z.VerIm() >= 0)

output << z.VerReal() << "+" << z.VerIm() << "i";

else

output << z.VerReal() << z.VerIm() << "i";

return output;

}

Tendo em conta o que aprendemos sobre funções, a questão que se coloca é: porque é que o operador
<< não é void dado que recebe um argumento como referência? A resposta é simples, o operador <<

devolve uma referência para que possamos encadear instruções, isto é, para podermos fazer, por exemplo,
cout << z << endl;, sendo z um objeto do tipo Complexo. Se o tipo de retorno do operador fosse void
ficaŕıamos com void << endl;, sendo isto algo que o computador não sabe interpretar. Ao devolvermos
a referência do objeto ostream ficamos com cout << endl;, algo que o computador já conhece.

Operador de leitura

O operador de leitura (>>) é também um operador binário que recebe dois argumentos, nomeada-
mente uma referência para um objeto istream e uma referência para um objeto da classe, e devolve uma
referência para um objeto istream. O istream é uma classe da biblioteca standard e significa input
stream. Esta classe permite ler sequências de carateres. No código abaixo, é definido o operador de
leitura para objetos do tipo Complexo, assumindo que esses objetos são introduzidos pelo utilizador na
forma a± bi. De acordo com esse formato, o utilizador deve começar por inserir a parte real do número
complexo, que é guardada na variável a. De seguida, introduz um carater que se espera que seja ou o
sinal + ou o sinal -, e que fica armazenado em c1. Por fim, é inserida a parte imaginária do número
complexo (armazenada na variável b) e um caracter, que se espera que seja ‘i ’ e que é armazenado em
c2.

78

Ficheiro Corpo

istream& operator>>(istream& input, Complexo& z){
char c1, c2;

double a, b;

input >> a >> c1 >> b >> c2;

if(c1 == ‘-’)

b = -b;

if(!input || (c1!=‘-’ && c1!=‘+’) || c2!=‘i’)

//lançar exceç~ao

z.AlterarReal(a);

z.AlterarIm(b);

return input;

}

A declaração do operador de leitura >> é bastante semelhante à do operador de escrita <<, as únicas
diferenças são a utilização da classe istream em vez da ostream e o objeto Complexo ser passado como
referência em vez de referência constante. Foquemos-nos na parte da passagem por referência. Isto
acontece porque o operador de leitura vai modificar o objeto do tipo Complexo, uma vez que altera os
valores da sua parte real e imaginária para os valores introduzidos pelo utilizador.

Operador Parêntesis

O operador parêntesis () pode receber um qualquer número de argumentos e retornar um qualquer
tipo de dados. Esta sua flexibilidade permite que seja usado em muitas situações, sendo duas delas
ilustradas no exemplo abaixo para a classe Complexo considerada anteriormente.

Ficheiro Corpo

double Complexo::operator()(double a) const{
return Real*a + Im;

}

Complexo Complexo::operator()(double a, double b) const{
return Complexo(Real*a , Im*b);

}

No primeiro exemplo, que corresponde ao apresentado no ficheiro cabeçalho, o operador () recebe
apenas um argumento do tipo double e devolve o resultado obtido através da soma da multiplicação da
sua parte real pelo valor recebido com a parte imaginária do objeto do tipo Complexo, sendo por isso
o tipo de retorno double. No segundo caso, o operador () é usado para calcular um novo objeto do
tipo Complexo que terá como partes real e imaginária os valores do objeto original multiplicados por
constantes reais. Assim, recebe dois doubles que são multiplicados pelas partes real e imaginária do
Complexo original, dando origem a um novo Complexo.

79

Operador de negação

O operador de negação ! não recebe qualquer argumento e tem como tipo de retorno o tipo bool. No
exemplo abaixo, é definido operador de negação da classe Complexo.

Ficheiro Corpo

bool Complexo::operator!() const{
if (Real == 0 and Im == 0)

return true;

else

return false;

}

No exemplo apresentado, o operador de negação é usado para indicar se um Complexo é ou não nulo,
ou seja, se tem as suas partes real e imaginária iguais a zero.

Após a sobrecarga dos operadores anteriores, a sua utilização pode ser feita como é ilustrado abaixo.

Programa Principal

#include "complexo.h"

int main(){
Complexo z1(3,2), z2;

cout << "z2: ";

cin >> z2; //Operador de leitura

Complexo z3 = z1 + z2; //Operador soma

cout << z1 << " + " << z2 << " = " << z3; //Operador de escrita

++z1; //Operador de incremento

Complexo z4 = -z1; //Operador simétrico

z4 += z2; //Operador soma e atribuiç~ao

if(z1 == z2) //Operador de igualdade

cout << "Sao iguais";

else

cout << "Sao diferentes";

double a = z1(2); //Operador parêntesis exemplo 1

Complexo z5 = z2(2, 3); //Operador parêntesis exemplo 2

if (!z1) //Operador negaç~ao

cout << "Complexo nulo";

else

cout << "Complexo nao nulo";

return 0;

}

80

Operador de acesso

Habitualmente, usamos o operador [] para aceder a elementos de vetores e, por isso, a sobrecarga
deste operador é particularmente útil quando na classe existe um atributo do tipo vector . Para ilustrar
a sobrecarga do operador de acesso, consideremos então uma classe fict́ıcia VetorLP que tem como
atributo privado um vetor de strings e cujo ficheiro cabeçalho é mostrado de seguida.

Ficheiro Cabeçalho

#ifndef VETORLP_H

#define VETORLP_H

//Colocar os includes necessários

class VetorLP {
private:

vector<string> V;

public:

//Construtor e outros membros públicos

//Operador acesso - vers~ao n~ao constante

string& operator[](int);

//Operador acesso - vers~ao constante

const string& operator[](int) const;

};

#endif // VETORLP_H

Tal como já foi referido, a sobrecarga do operador [] é feita dentro da classe. Nessa sobrecarga, são
usualmente consideradas duas suas versões: a versão constante e a versão não constante. Comecemos por
analisar a versão não constante. Esta versão recebe como argumento um valor inteiro, que corresponde a
uma posição do vetor, e devolve uma referência para o elemento do vetor que está nessa posição. Assim
sendo, esta versão do operador permite a alteração dos elementos do vetor, sendo a sua definição feita
como indicado abaixo.

//vers~ao n~ao constante

string& VetorLP::operator[](int i){
return V[i];

}

É importante reforçar que o uso de referência no tipo de retorno desta versão do operador não está
relacionado com o facto de estarmos a retornar uma string (tipo não primitivo), mas sim com o facto
de querermos que o objeto devolvido possa ser alterado. Assim sendo, esta versão do operador devolve
sempre uma referência, mesmo que o tipo de retorno seja um tipo de dados primitivo.

O operador [], após sobrecarregado, é muitas vezes usado na definição de outros métodos/operadores.
Alguns desses métodos recebem como argumento objetos constantes, isto é, referências constantes para

81

objetos da classe. Objetos constantes só podem ser manipulados por métodos/operadores também
constantes e, por isso, tais objetos não podem ser manipulados pela versão não constante do operador [].
Para contornar esta situação, é necessário implementar a versão constante do operador []. Essa versão -
apresentada abaixo - devolve uma referência constante para um elemento do vetor, pelo que não permite
a alteração desse elemento.

//vers~ao constante

const string& VetorLP::operator[](int i) const{
return V[i];

}

Por fim, é importante referir que não é necessário fazer na implementação das versões do operador []
qualquer validação do argumento i, uma vez que esse operador não faz essa validação, tal como vimos
no caso dos vetores. Note-se que, na implementação de um operador, devemos sempre manter as suas
propriedades originais.

Operador de acesso para matrizes

Como já vimos, uma matriz é um vetor de vetores, isto é, um vetor em que cada um dos seus
elementos é um vetor. Por exemplo, a matriz

m =


5 2 1
8 0 6
7 2 3
1 0 1


pode ser definida em C++ como

vector<vector<int>> m = { {5, 2, 1}, {8, 0, 6}, {7, 2, 3}, {1, 0, 1} }

Significa isto que m é na verdade um vetor “principal” com quatro elementos (m[0] = {5, 2, 1},
m[1] = {8, 0, 6}, m[2] = {7, 2, 3} e m[3] = {1, 0, 1}) sendo cada um desses elementos um vetor
“secundário” de dimensão 3. A sobrecarga do operador [] para um objeto de uma classe que tenha
como atributo uma matriz apenas permite aceder ao vetor principal dessa matriz, pelo que o operador
terá como tipo de retorno um vetor de elementos com o mesmo tipo que o vetor secundário, tal como é
ilustrado no próximo exemplo.

Nos ficheiros cabeçalho e corpo do exemplo, é criada uma classe XPTO que tem como atributo uma
matriz de doubles e é definido o operador de acesso [] na sua versão constante e não constante. A
definição desse operador permite aceder diretamente ao atributo Matriz de um objeto do tipo XPTO,
tal como é ilustrado na definição do operador de escrita. Note-se que x é um objeto do tipo XPTO e
não um vetor ou uma matriz, pelo que, sem a sobrecarga do operador [], não seria posśıvel escrever
algo como x[i]. Contudo, após a definição do operador de acesso, passa a ser posśıvel escrever x[i]
e, consequentemente, x[i][j]. Ao escrever x[i][j], é primeiramente chamado o operador [] definido
na classe, o qual devolve um vetor de doubles, isto é, devolve x[i]. Sendo x[i] um vetor de doubles, o
acesso aos seus elementos pode ser feito diretamente usando o operador de acesso [] já predefinido na
biblioteca standard para vetores e que permite então obter o elemento que está na posição j do vetor
x[i], isto é, x[i][j]. Assim sendo, não é necessária a sua implementação.

82

Ficheiro Cabeçalho

#ifndef XPTO_H

#define XPTO_H

//Colocar os includes necessários

class XPTO {
private:

vector<vector<double>> Matriz;

public:

//Construtor e outros membros públicos

//Operador acesso - vers~ao n~ao constante

vector<double>& operator[](int);

//Operador acesso - vers~ao constante

const vector<double>& operator[](int) const;

};

ostream& operator<<(ostream& , const XPTO&);

#endif // XPTO_H

Ficheiro Corpo

//Operador acesso - vers~ao n~ao constante

vector<double>& XPTO::operator[](int i){
return Matriz[i];

}

//Operador acesso - vers~ao constante

const vector<double>& XPTO::operator[](int i) const{
return Matriz[i];

}

//Operador de escrita

ostream& operator<<(ostream& output, const XPTO& x){
for(int i = 0; i < x.N_linhas(); ++i){ //Definir método N_linhas()

for(int j = 0; j < x[i].size(); ++j){
output << x[i][j] << " ";

}
output << endl;

}
return output;

}

83

Caṕıtulo 9

Herança e polimorfismo

A herança é a capacidade de criar novas classes (classes derivadas ou filhas) a partir de classes já
existentes (classes base ou mãe), sendo os membros das classes mãe herdados pelas classes derivadas.
Numa classe mãe podemos ter membros públicos (public), privados (private) ou protegidos (protected).
Membros protegidos, tal como membros privados, não podem ser acedidos fora da classe onde foram
definidos. A diferença entre membros privados e protegidos apenas existe no contexto da herança: as
classes derivadas têm acesso aos membros protegidos da classe mãe, mas não aos seus membros privados.

A indicação de que uma classe (classe derivada) herda de outra classe (classe mãe) é feita da seguinte
forma:

Ficheiro Cabeçalho

#ifndef CLASSE_DERIVADA_H

#define CLASSE_DERIVADA_H

class Classe Derivada: tipo de acesso Classe Mae {
//...

};

#endif // CLASSE_DERIVADA_H

O tipo de acesso define o acesso aos membros da classe mãe e pode ser public, private ou protected .
Membros privados da classe mãe nunca podem ser acedidos pelas classes derivadas, independentemente
do tipo de acesso usado. Assim sendo, a diferença entre os três tipos de acesso diz apenas respeito aos
membros públicos e protegidos da classe mãe:

i) private: a classe derivada herda todos os membros públicos e protegidos da classe mãe, mas esses
membros são definidos como privados na classe derivada.

ii) protected : a classe derivada herda todos os membros públicos e protegidos da classe mãe, mas
esses membros são definidos como protegidos na classe derivada.

iii) public: a classe derivada herda todos os membros públicos e protegidos da classe mãe e o seu tipo
de acesso não é alterado. Ou seja, membros públicos da classe mãe são também públicos na classe
derivada e membros protegidos da classe mãe são também protegidos na classe derivada.

Tomemos como exemplo uma classe Poligono para representar e manipular um poĺıgono. Como
existem carateŕısticas comuns a todos os poĺıgonos, podemos implementar uma classe mãe que represente

84

essas carateŕısticas. Por exemplo, todos os poĺıgonos podem ser definidos através de um vetor que
contenha o comprimento de cada um dos seus lados, pelo que esse vetor pode ser o único atributo da
classe. O cálculo do peŕımetro de um poĺıgono corresponde à soma de todos os seus lados, sendo também
independente do poĺıgono em causa. O mesmo não acontece com a área, cujo cálculo depende do tipo
de poĺıgono. A classe mãe Poligono poderia então ser implementada como mostrado abaixo.

Ficheiro Cabeçalho

#ifndef POLIGONO_H

#define POLIGONO_H

//Colocar os includes necessários

class Poligono{

protected:

//atributos

vector<double> Lados;

public:

//Construtor

Poligono(const vector<double>&);

//Métodos

double Perimetro() const;

double Area() const;

};

#endif // POLIGONO_H

Ficheiro Corpo

#include "poligono.h"

Poligono::Poligono(const vector<double>& v){
Lados = v;

}

double Poligono::Perimetro() const{
double p = 0;

for(int i = 0; i<Lados.size(); ++i){
p += Lados[i];

}
return p;

}

double Poligono::Area() const{
throw runtime error("ERRO!");

}

Suponhamos que queremos criar duas novas classes para representar triângulos e quadrados. Quer
o triângulo quer o quadrado são poĺıgonos e, por isso, partilham as carateŕısticas da classe Poligono.
Estas carateŕısticas podem ser herdadas da classe mãe Poligono em vez de voltarem a ser definidas nas
classes Triangulo e Quadrado, evitando assim repetições de código. Além dos membros herdados da
classe mãe, as classes derivadas podem ainda incluir outros membros espećıficos.

Vejamos então a declaração e a definição destas duas classes. Para simplificar, apresentamos apenas
o ficheiro cabeçalho das classes, onde inclúımos as definições (que deveŕıamos incluir no ficheiro corpo).
Note-se que, o cálculo da área está bem definido para um qualquer quadrado e triângulo, pelo que as
respetivas classes podem conter um método para o fazer.

85

Ficheiro Cabeçalho

#ifndef QUADRADO_H

#define QUADRADO_H

//Colocar os includes necessários

class Quadrado: public Poligono{

public:

//Construtor

Quadrado(double x): Poligono(vector<double>(4,x)){ }

//Métodos

double Area() const{ return Lados[0]*Lados[0]; }
};

#endif // QUADRADO_H

Ficheiro Cabeçalho

#ifndef TRIANGULO_H

#define TRIANGULO_H

//Colocar os includes necessários

class Triangulo: public Poligono{

private:

double Base;

double Altura;

public:

//Construtor

Triangulo(double a, double b, double c): Poligono({a,b,c}){
Base = a;

double s = (a+b+c)/2; //fórmula de Heron

Altura = 2*sqrt(s*(s-a)*(s-b)*(s-c))/Base;

}

//Métodos

double Area() const{ return Base*Altura/2; }
};

#endif // TRIANGULO_H

Ambas as classes herdam publicamente da classe Poligono e têm definido um método espećıfico
para calcular a área. A classe Quadrado apresentada, não inclui atributos extra. Nesta classe, existe
um construtor que recebe como argumento a medida do lado do quadrado. O construtor de uma classe

86

derivada é sempre definido através do construtor da classe mãe. Ora, o construtor da classe mãe recebe
como argumento um vetor, pelo que é necessário criar um vetor com quatro posições sendo o valor de
cada uma delas igual ao lado do quadrado (x). A classe Triangulo tem dois atributos espećıficos além
dos atributos gerais herdados da classe Poligono. Assim, qualquer objeto do tipo Triângulo terá três
atributos: a base e a altura definidas na classe Triângulo e o vetor com as medidas dos lados herdado
da classe Poligono. O construtor da classe Triangulo recebe as três medidas dos lados do triângulo e
com elas preenche os seus atributos espećıficos (base e altura) e o vetor Lados através do construtor da
classe Poligono.

Apesar do método Perimetro não estar implicitamente declarado nestas duas classes, é herdado da
classe Poligono, pelo que pode ser usado pelos objetos do tipo Quadrado e do tipo Triangulo, conforme
ilustrado no exemplo abaixo

//includes necessários

int main(){
Poligono P({3, 1, 3, 5, 7});

cout << "PerimetroP: " << P.Perimetro();

Quadrado Q(3);

cout << "\nPerimetroQ: " << Q.Perimetro();

cout << "\nAreaQ: " << Q.Area();

Triangulo T(3, 4, 5);

cout << "\nPerimetroT: " << T.Perimetro();

cout << "\nAreaT: " << T.Area();

return 0;

}

sendo obtido o output esperado, isto é,

PerimetroP: 19

PerimetroQ: 12

AreaQ: 9

PerimetroT: 12

AreaT: 6

Consideremos agora o programa abaixo. Neste programa é criada uma função global f que recebe
como argumento uma referência constante para um Poligono. Ora, um Quadrado e um Triangulo,
sendo classes derivadas da classe Poligono, são também do tipo Poligono e, por isso, podem também
ser argumentos da função f . A chamada do método Perimetro, por ser definido na classe Poligono,
não levanta qualquer problema, independentemente da função f receber um Poligono, um Quadrado

ou um Triangulo. Contudo, o mesmo não acontece com o método Area. Apesar das classes Quadrado
e Triangulo terem o seu próprio método Area, ao passar um objeto de um desses tipos para a função
f , o método Area chamado será sempre o da classe Poligono, sendo por isso lançada uma exceção, que
é o que o método Area da classe Poligono faz.

87

//includes necessários

void f(const Poligono& P){
cout << "\nPerimetro: " << P.Perimetro();

cout << "\nArea: " << P.Area();

}

int main(){
Quadrado Q(3);

f(Q);

Triangulo T(3, 4, 5);

f(T);

}

O que se pretende seria que para objetos do tipo Quadrado e Triangulo fosse chamado o método
Area definido nas respetivas classes. Para que isso aconteça, o método Area na classe Poligono deve ser
declarado como um método virtual ou puramente virtual . Isto é, como um método que será redefinido
nas classes derivadas. Ao chamar um método virtual para um objeto da classe derivada através da
classe mãe, será usado o método da classe derivada (se existir) em vez do da classe mãe. A declaração e
definição do método virtual ou puramente virtual Area no ficheiro cabeçalho da classe Poligono pode ser
feita como apresentado abaixo, sendo que nenhuma alteração precisa de ser feita nas classes derivadas.

//Declaraç~ao como método virtual

virtual double Area() const { };

//Declaraç~ao como método puramente virtual

virtual double Area() const = 0;

A principal diferença entre métodos virtuais e puramente virtuais é a possibilidade de criar objetos
da classe em que são definidos. Caso o método Area seja declarado como um método puramente virtual,
deixa de ser posśıvel criar objetos do tipo Poligono, sendo apenas posśıvel a criação de objetos do tipo
das classes derivadas. Isto é, se a função Area for puramente virtual temos:

Poligono P({1, 4, 7, 3}) //ERRO!

Quadrado Q(3) //OK

Triangulo T(3, 4, 5) //OK

O mesmo não acontece com um método que seja apenas virtual. Neste caso, a criação de obje-
tos do tipo Poligono é também posśıvel. Além disso, um método puramente virtual tem que estar
implementado em todas as classes derivadas enquanto que um método virtual não.

A definição do método Area como virtual ou puramente virtual, permite que a função f anterior
funcione corretamente, isto é, que o Poligono recebido como argumento seja visto como um Quadrado

quando a função é chamada com um Quadrado e que esse Poligono seja visto como um Triangulo

quando a função é chamada com um Triangulo. A esta capacidade de um objeto se comportar como
se fosse de outro tipo chama-se polimorfismo.

88

Caṕıtulo 10

Escrita e leitura de ficheiros

A utilização de ficheiros é essencial para importar e exportar grandes quantidades de informação
de um programa. O pacote fstream da biblioteca standard do C++ - cujo significado é file stream -
contém métodos para manipular ficheiros, pelo que é necessária a sua inclusão no preâmbulo através da
instrução

#include <fstream>

Este pacote contém as classes ofstream e ifstream que permitem, respetivamente, a escrita e a
leitura de ficheiros, sendo o seu significado output file stream e input file stream, respetivamente.

10.1 Escrita de ficheiros

Para escrever um ficheiro, é necessário criar um objeto da classe ofstream, que cria um canal para
enviar informação para um ficheiro. Para tal, devemos usar a instrução:

ofstream nome(Caminho, modo de abertura);

ou as instruções:

ofstream nome;

nome.open(Caminho, modo de abertura);

onde nome é o nome do objeto ofstream que queremos associar ao ficheiro, Caminho é a localização
do ficheiro onde se pretende escrever, incluindo o seu nome, e modo de abertura é a opção que indica
o que queremos fazer com o conteúdo já existente no ficheiro (caso exista). Para o modo de abertura

existem duas opções: ios base::out e ios base::app. Ambas as opções criam um ficheiro caso ainda
não exista, no entanto, no caso do ficheiro já existir, a primeira opção apaga o seu conteúdo, enquanto
que com a segunda o conteúdo do ficheiro é preservado, sendo a nova informação adicionada no final do
ficheiro. Se o modo de abertura não for especificado, é assumido o modo ios base::out.

O Caminho é uma string que indica o caminho completo1 até ao ficheiro e que inclui o seu nome.

1Para aceder à localização de um ficheiro em Windows, devemos ir à pasta onde está o ficheiro, carregar no ficheiro com
o botão direito do rato e selecionar Propriedades. De seguida basta copiar o caminho completo que lá aparece substituindo
cada barra de separação (“\”) por duas barras (“\\”). Em Mac, é usado como separador a barra invertida (“/”) em vez
das duas barras.

89

Quando no Caminho apenas é indicado o nome do ficheiro, é assumida a localização default , que é a
pasta build do projeto.

Após criar o objeto ofstream nome, devemos verificar se o ficheiro foi aberto com sucesso. Para tal,
podemos usar o método is open (nome.is open()) ou o operador de negação (!nome). Tendo a garantia
de que o ficheiro está aberto, podemos então escrever no ficheiro usando a variável nome. O processo de
escrita no ficheiro é semelhante ao da escrita para o ecrã, mas em vez de usar a instrução cout usamos
a variável nome. Vejamos o exemplo abaixo.

#include <iostream>

#include <fstream>

using namespace std;

int main(){
ofstream file("C:\\Users\\A\\Novo.txt", ios_base::out);

if(!file) //ou if(!file.is_open())

throw runtime_error("ERRO: Nao foi possivel abir o ficheiro.");

file << "Texto";

file.close();

return 0;

}

Neste exemplo é criado um objeto ofstream com o nome file para enviar informação para o ficheiro
com o nome Novo.txt e cuja localização é “C:\Users\A”. O modo de abertura é ios base::out, pelo
que todo o conteúdo que existir no ficheiro - se existir - é apagado. De seguida, verificamos se o ficheiro
foi aberto com sucesso e caso não tenha sido lançamos uma exceção. Caso não seja lançada a exceção -
o que significa que o ficheiro foi aberto com sucesso - é então escrita no ficheiro a palavra “Texto”. Por
fim, o canal de escrita para o ficheiro é fechado através do método close().

10.2 Leitura de ficheiros

Para ler um ficheiro, é necessário criar um objeto da classe ifstream, que cria um canal de informação
para ler de um ficheiro. Para tal, devemos usar a instrução:

ifstream nome(Caminho)

onde, tal como anteriormente, nome é o nome do objeto ifstream e Caminho é a localização do ficheiro
que se pretende ler (incluindo o seu nome). Após criar o objeto ifstream nome, devemos também verificar
se o ficheiro foi aberto com sucesso, tal como no caso da escrita de ficheiros. A leitura do conteúdo do
ficheiro é semelhante à leitura de informação do ecrã, mas usamos a variável nome, em vez da instrução
cin. Vejamos o exemplo abaixo.

90

#include <iostream>

#include <fstream>

using namespace std;

int main(){
ifstream file;

file.open("Dados.txt");

//ou simplesmente: ifstream file("Dados.txt");

if(!file) //ou if(!file.is_open())

throw runtime_error("ERRO: Nao foi possivel abir o ficheiro.");

string s;

file >> s;

file.close();

return 0;

}

Neste exemplo é criado um objeto ifstream com o nome file que irá ler informação do ficheiro com
o nome Dados.txt localizado na pasta build do projeto, dado que não foi especificada uma localização.
De seguida, verificamos se o ficheiro foi aberto com sucesso e, em caso afirmativo, é lida a primeira
sequência de carateres do ficheiro, que é guardada na variável s. Por fim, o canal de informação para
ler o ficheiro é fechado através do método close(). Note-se que apenas a primeira sequência de carateres
do ficheiro é lida uma vez que a leitura de uma string termina após ser encontrado um espaço ou uma
mudança de linha. Por exemplo, se o conteúdo do ficheiro Dados.txt for

Dados.txt

Amanha vai chover muito.

Hoje nao chove.

apenas a palavra Amanha é lida e guardada na variável s. Para ler uma linha completa, ou seja, ler até
encontrar uma mudança de linha, podemos usar a função getline que tem dois ou três argumentos. No
caso de três argumentos, a sua sintaxe é a seguinte:

getline(InputStream, guardaInformacao, delimitador)

onde InputStream é um objeto do tipo ifstream (por exemplo, o cin) que é usado para indicar o
canal de onde será lida a informação (consola, ficheiro, etc.). O segundo argumento é a variável string
(chamada guardaInformacao) onde queremos guardar a informação lida. O terceiro argumento é o
caráter delimitador do tipo char que indica até onde deve ser lida a string. Se o caráter especificado
não existir na linha que se pretende ler, a leitura continua para as linhas seguintes até que o caráter
delimitador seja encontrado ou, no caso de ficheiros, até que se chegue ao final do ficheiro. Na sintaxe
da função getline com dois argumentos, é removido o último argumento (caráter delimitador), que por
defeito se assume ser a mudança de linha. Vejamos o exemplo abaixo:

91

int main(){
ifstream file("Dados.txt");

if(!file)

throw runtime_error("ERRO: Nao foi possivel abir o ficheiro.");

string s1;

getline(file, s1, ‘i’);

string s2;

getline(file, s2);

file.close();

string s3, s4;

getline(cin, s3);

getline(cin, s4, ‘/’);

return 0;

}

O conteúdo da string s1 é lido do ficheiro Dados.txt . Assim, o primeiro getline irá ler a primeira
linha do ficheiro até encontrar o caráter ‘i’, ou seja, lê “Amanha va”, sendo este o conteúdo de s1.
O segundo getline também irá ler do ficheiro Dados.txt . A leitura do segundo getline começa onde
terminou a leitura anterior, isto é, após o primeiro caráter ‘i’ na primeira linha. Uma vez que neste
caso não é especificado o caráter delimitador, a leitura terminará no final da primeira linha, pelo que
teremos s2 = “ chover muito.”.

Nos dois últimos getlines é usado o cin, pelo que o conteúdo das strings s3 e s4 será lido do ecrã. A
leitura da string s3 termina quando for inserida uma mudança de linha. De seguida, começa a leitura
da string s4, onde será armazenada toda a informação introduzida antes do caráter ‘/’.

Para ler toda a informação de um ficheiro podemos usar um ciclo while semelhante ao que usamos
para pedir sucessivamente valores ao utilizador. A instrução while(getline(file, s)) pode ser lida
como “enquanto houver linhas no ficheiro para ler”.

//ler linhas sucessivamente

int main(){
ifstream file("Dados.txt");

string s;

while(getline(file, s)){
//...

}

file.close();

return 0;

}

//ler palavras sucessivamente

int main(){
ifstream file("Dados.txt");

string s;

while(file >> s){
//...

}

file.close();

return 0;

}

92

10.3 Instruções clear() e ignore()

As instruções clear() e ignore() servem para manipular canais de leitura, sendo muito importantes
para garantir o bom funcionamento do programa. O cin é um canal de leitura do ecrã de onde é extráıda
informação e tem dois estados posśıveis: “com erro” e “sem erro”. Um dos motivos que pode levar a que
o canal cin fique com erro é a leitura de um tipo de dados diferente do da variável que o irá armazenar.
Uma vez com erro, o canal de leitura não voltará ao estado “sem erro” enquanto o programa não for
executado novamente ou enquanto o canal não for “limpo”, o que impossibilitará a utilização do canal
no resto da execução do programa. A instrução cin.clear() tem como finalidade “limpar” o canal,
restaurando o seu estado sem erro e permitindo assim que este continue a ser usado no decorrer do
programa. Consideremos o exemplo abaixo.

int n1;

int n2;

string s;

cout << "Primeiro numero: ";

cin >> n1;

cout << "Segundo numero: ";

cin >> n2;

cout << "Texto: ";

cin >> s;

cout << n1 << " "<< n2 << " " << s;

int n1;

int n2;

string s;

cout << "Primeiro numero: ";

cin >> n1;

cin.clear();

cin.ignore(10000, ‘\n’);

cout << "Segundo numero: ";

cin >> n2;

cout << "Texto: ";

cin >> s;

cout << n1 << " " << n2 << " " << s;

Consideremos primeiro o código do lado esquerdo. Suponhamos que aquando da leitura da variável
n1 (numérica) o utilizador introduz um caráter não numérico. Neste caso, a variável n1 ficará com um
valor lixo e o canal de leitura ficará com erro, não sendo por isso efetuada a leitura da segunda e terceira
variáveis (que ficarão também com um valor lixo).

No código da direita foram adicionadas as instruções cin.clear() e cin.ignore(10000, ‘\n’) ao
programa. Comecemos por analisar o que acontece se apenas tivermos a instrução cin.clear(). Ao
introduzir um valor não numérico, por exemplo ‘g’, aquando da leitura de n1, o canal do cin passará a
estar com erro. Ao chegar à instrução cin.clear(), o programa altera o estado do canal de leitura cin
para sem erro, pelo que pode ser lida novamente informação a partir desse canal. Ora, a informação que
neste momento existe no canal é o caráter que foi introduzido aquando da leitura de n1 e uma mudança
de linha acrescentada automaticamente no momento em que se carregou na tecla enter após inserir g
na consola, isto é, “g\n”. Uma vez que existe ainda essa informação no canal pois não foi lida para
nenhuma variável, o utilizador não terá possibilidade de introduzir novos valores no canal. Significa isto
que o programa irá tentar associar o conteúdo já existente no canal à variável n2, causando novamente
o problema anterior. Note-se que no caso da leitura da variável s (do tipo string) ser feita primeiro do
que a leitura da variável n2 não iria existir qualquer problema com o canal de leitura pois a informação
nele contida seria associada à variável s, isto é, teŕıamos s=‘‘g’’ e o utilizador teria a possibilidade de

93

introduzir um novo valor para n2.
Podemos então concluir que alterar apenas o estado do canal de leitura para sem erro pode não

ser suficiente para resolver problemas de leitura uma vez que a informação existente no canal não
é removida até que seja guardada numa variável. Para apagar todo o conteúdo existente no canal de
leitura, devemos usar a instrução cin.ignore(10000, ‘\n’). Esta instrução tem como objetivo apagar
todos os carateres (até ao máximo de 10000) que foram introduzidos antes de ter sido efetuada uma
mudança de linha (causada por carregar na tecla enter).

No código do lado direito, quando o utilizador introduz erradamente um caráter não numérico na
leitura da variável n1, o canal cin fica com erro sendo depois o seu estado alterado para sem erro
pela instrução cin.clear(). De seguida, a instrução cin.ignore(10000,‘\n’) apaga todo o conteúdo
existente no canal de leitura. Assim sendo, uma vez que o canal de leitura não está em erro e não tem
conteúdo, é pedido um novo valor ao utilizador para a variável n2 e depois para a variável s, caso não
tenha havido erro na leitura de n2.

Uma outra situação em que utilização da instrução cin.ignore() pode ser necessária é em progra-
mas onde sejam usadas conjuntamente as instruções cin >> e getline(cin, ...). Consideremos os
seguintes exemplos:

int n1;

string s;

cout << "Nome: ";

getline(cin, s);

cout << "Numero: ";

cin >> n1;

cout << n1 << " " << s;

int n1;

string s;

cout << "Numero: ";

cin >> n1;

cin.clear();

cin.ignore(10000, ‘\n’);

cout << "Nome: ";

getline(cin, s);

cout << n1 << " " << s;

Como já sabemos, a leitura do getline termina quando for encontrada uma mudança de linha que,
no caso deste exemplo, será implicitamente inserida ao carregar na tecla enter, sendo essa mudança de
linha também lida mas ignorada. Assim sendo, no código do lado esquerdo, após a leitura da string
s, o canal do cin estará sem erro e vazio, pelo que o utilizador pode introduzir nova informação no
canal aquando da leitura da variável n1. Significa isto que aqui não serão necessárias as instruções
cin.clear() ou cin.ignore().

No código do lado direito, é primeiramente lida a variável n1 e, aquando dessa leitura, a mudança
de linha "\n" inclúıda automaticamente através da tecla enter ficará armazenada no canal. Ao ser
colocado um getline logo de seguida, a informação existente no canal ("\n") é lida pelo getline, pelo que
teremos s="\n". A utilização da instrução cin.ignore(10000, ‘\n’) permite apagar todo o conteúdo
do canal incluindo a mudança de linha lá existente. Assim sendo, o utilizador terá a possibilidade de
voltar a introduzir informação que será guardada na variável s. É importante notar que neste exemplo o
cin.clear() apenas é necessário para prevenir o caso em que o utilizador coloca um valor não numérico
aquando da leitura do n1, pelo que não tem qualquer efeito se tal não acontecer.

94

Por fim, é importante reforçar que as instruções .clear() e .ignore() podem ser usadas exatamente
da mesma forma para outros canais de leitura que não o cin. Tais canais são, por exemplo, canais de
leitura para ficheiros ou para strings (string streams, que serão introduzidas na secção seguinte).

10.4 String streams

Um stream é um “canal” onde pode ser inserida informação ou de onde pode ser extráıda informação.
Como vimos nas secções anteriores, um objeto do tipo ofstream é um canal para inserir informação num
ficheiro enquanto um objeto do tipo ifstream é um canal para extrair informação de um ficheiro. Existem
também canais para inserir e extrair informação do ecrã, que são o cout e o cin, respetivamente. Nesta
secção veremos como inserir e extrair informação de strings.

Para usar uma string como um canal de leitura ou de escrita devemos utilizar objetos do tipo
istringstream e ostringstream, respetivamente, estando ambos dispońıveis no pacote sstream (string
stream) da biblioteca standard. Assim, é necessária a inclusão deste pacote no preâmbulo através da
instrução

#include <sstream>

Para criar um canal de leitura para uma string, usamos um objeto do tipo istringstream. Depois
disso, será então posśıvel usar o operador >> para extrair informação da string. Vejamos o exemplo
abaixo.

string s = "Amanha terei 30 anos";

istringstream iss(s);

string s1, s2, s3;

int n;

iss >> s1 >> s2 >> n >> s3;

Neste exemplo é criado um objeto do tipo istringstream com o nome iss, que é um canal de leitura
para a string s. Assim, será posśıvel extrair cada elemento da string s e armazená-lo numa variável
do tipo adequado, o que é ilustrado pela variável n do tipo int . Nessa variável ficará armazenado o
valor inteiro 30. Note-se que a leitura de uma string sem a utilização do getline termina assim que for
encontrado um espaço ou uma mudança de linha.

Um objeto do tipo ostringstream cria um canal de escrita para uma string ao qual podemos adi-
cionar informação facilmente com o operador <<. A grande vantagem da utilização de ostringstreams
é o facto de se tornar posśıvel concatenar facilmente objetos de diferentes tipos numa única string.
Recorde-se que, até aqui, para concatenar uma variável de um tipo numérico numa string era necessário
utilizar a função to string. Após construir o canal de informação para a string pretendida através do
objeto ostringstream, é necessário extrair a string criada, sendo para isso usado o método .str().
Vejamos o exemplo abaixo.

95

string s = "A Maria pesa ";

double x = 60.25;

ostringstream oss;

oss << s << x << "kg e mede " << 1.7 << ‘m’;

string nova = oss.str();

cout << nova;

Neste exemplo, é criado um objeto do tipo ostringstream com o nome oss que será usado para
concatenar informação, sendo essa informação resultante de diferentes tipos de dados, nomeadamente
strings, variáveis numéricas e carateres. O conteúdo da string criada é depois devolvido e guardado
numa nova variável do tipo string (chamada nova) através do método str(), sendo essa variável escrita
no ecrã.

96

Bibliografia

[1] Stroustrup, B. (2014). Programming: principles and practice using C++. Pearson Education.
[2] Stroustrup, B. (2018). A Tour of C++. Addison-Wesley Professional.
[3] https://www.learncpp.com/

97

https://www.learncpp.com/

	Variáveis e operadores
	Tipos de variáveis
	Escrita de variáveis - Output
	 Atribuição de valores a variáveis - Input
	Variáveis constantes
	Operadores
	Operadores aritméticos
	Operadores relacionais
	Operadores lógicos
	Operador ternário (Informação complementar)

	Estruturas de controlo
	Estruturas de controlo condicionais
	Estrutura black if
	Estrutura black if else
	Estruturas condicionais encadeadas

	Uso de chavetas e de indentação
	Estruturas de controlo cíclicas
	Estrutura black while
	Estrutura black do-while
	Estrutura black for
	Ciclos encadeados
	As instruções break e continue

	Variáveis indexadas - Vetores
	Declaração de vetores
	Declaração de vetor com dimensão
	Declaração de vetor sem dimensão

	Método .at() black vs operador []
	Manipulação de vetores
	Preenchimento de vetores
	 Impressão de vetores
	Ordenação de vetores

	Vetores de vetores - Matrizes

	Funções
	Sintaxe geral de uma função
	Vantagens das funções
	Passagem por valor, por referência e por referência constante

	Tratamento de erros
	Classes vazias
	Classes da biblioteca standard
	Classe runtime_error
	Classe out_of_range

	Separação de um projeto em ficheiros
	Espaços de nomes
	Redefinição de tipos de dados - black type alias

	Classes
	Sobrecarga de operadores
	Herança e polimorfismo
	Escrita e leitura de ficheiros
	Escrita de ficheiros
	Leitura de ficheiros
	Instruções clear() e ignore()
	black String streams

