
Linguagens de Programação

Caderno de exercícios

Editado por

Filipe Rodrigues
Raquel Bernardino

Instituto Superior de Economia e Gestão

s

Guião 1
s

1. Hello world!

Escreva o seu primeiro programa em C++ que imprima no ecrã a mensagem: "Hello world!".

2. Output

Sem usar variáveis, escreva um programa que imprima no ecrã o seguinte:

Total = 100%
IVA = 17%
IRS = 15%

Liq. = 68%

3. Input e Output

Escreva um programa que peça ao utilizador o seu primeiro e último nome e a sua idade e escreva uma
mensagem com esses dados.

Exemplo: Se o primeiro nome do utilizador for "Pedro" e o último for "Costa" e se ele tiver "21" anos, o
programa deve apresentar a seguinte mensagem:

Ola Pedro Costa, bem-vindo.
Que bom que e ter 21 anos.

4. Primeira aritmética

Escreva um programa que peça ao utilizador um número inteiro e outro decimal. Crie três novas variáveis
para guardar a soma, subtração e multiplicação dos valores introduzidos e imprima no ecrã uma mensagem
com essas variáveis.

Exemplo: Ao introduzir os números 3 e 2.1 o programa deverá imprimir o seguinte output:

Soma: 3 + 2.1 = 5.1
Subtracao: 3 - 2.1 = 0.9
Multiplicacao: 3 * 2.1 = 6.3

5. Concatenação de strings

Escreva um programa que leia três nomes. Crie uma variável que contenha a concatenação dos três nomes
(com espaços entre os nomes) e imprima-a no ecrã.

1

6. Área e perímetro do retângulo

Escreva um programa que permita determinar a área e o perímetro de um retângulo. O programa deve pedir
ao utilizador a altura e o comprimento do retângulo e devolver a sua área e o seu perímetro.

Exemplo: Ao introduzir a altura 2 e o comprimento 3 o programa deverá imprimir o seguinte output:

O perimetro do retangulo e 10 e a sua area e 6.

7. Conversão de temperaturas

Escreva um programa que peça uma determinada temperatura ao utilizador em graus Celsius e a converta
para graus Fahrenheit. Nota: Fahrenheit = 1.8 Celsius + 32.

8. Média

Escreva um programa que leia 5 medições inteiras de uma distância e devolva a sua média.

Exemplo: Ao introduzir as medições 3, 2, 8, 9 e 5, o programa deverá imprimir o seguinte output:

A media das medicoes introduzidas e 5.4.

9. Nota de uma disciplina

Escreva um programa que leia as notas de 4 testes de avaliação e do exame final de um aluno numa disciplina
e que calcule a classificação final dessa disciplina. Assuma que cada um dos 4 testes vale 10% e o exame os
restantes 60%.

Exemplo: Ao introduzir as notas dos testes 17, 16, 15 e 18 e a nota de exame 17, o programa deverá imprimir
o seguinte output:

A sua nota final na disciplina e de 16.8 valores.

10. Operadores de divisão

Escreva um programa que receba dois inteiros a e b e escreva a sua divisão na forma “a=quociente*b+resto”.
O programa deve também mostra o resultado da divisão decimal.

Exemplo: Ao introduzir os valores a = 8 e b = 5, o programa deverá imprimir o seguinte output:

8 = 1 * 5 + 3 e 8/5 = 1.6

11. Converter segundos

Escreva um programa que converta segundos para horas/minutos/segundos.

Exemplo: 4000 segundos = 1h6m40s.

2

12. Ordem inversa

Escreva um programa que peça ao utilizador um número inteiro de 3 dígitos e escreva esse número pela
ordem inversa. Sugestão: Use os operadores de divisão para separar os algarismos das unidades, dezenas e
centenas.

Exemplo: Ao introduzir o número 135, o programa deverá imprimir o seguinte output:

O numero introduzido foi 135 e o numero pela ordem inversa e 531

3

s

Guião 2
s

13. IMC

Escreva um programa que receba como input o peso (em kg) e a altura (em metros) de uma pessoa, valide
esses dados (abortando o programa se algum dos dados introduzidos não for válido) e calcule o seu IMC,
classificando a pessoa segundo a escala:

IMC Classificação
≤ 18.5 Abaixo ou muito abaixo do peso

entre 18.5 e 24.9 Peso normal
≥ 25 Acima do peso ou obeso

Nota: IMC=peso/altura2

Exemplo: Ao introduzir o peso 59 e a altura 1.63, o programa deverá imprimir o seguinte output:

Peso normal (IMC=22.2063)

Ao introduzir o peso 59 e a altura -1.63, o programa deverá imprimir o seguinte output:

A altura introduzida não é válida

14. Ano bissexto

Escreva um programa que permita ao utilizador introduzir um ano e verificar se é bissexto. Um ano é
bissexto se e só se for divisível por 4 mas não por 100 ou se for divisível por 400.

Exemplo: Os anos 1700, 1800 e 1900 não foram bissextos mas os anos 1600, 2000 e 2012 foram.

15. Equações de segundo grau

Faça um programa que permita resolver equações de grau menor ou igual a dois que seja suficientemente
robusto para lidar com qualquer combinação de valores introduzida pelo utilizador. Sugestão: Comece por
fazer um fluxograma que explique como resolveria uma equação de grau menor ou igual a dois.

16. Data

Escreva um programa que peça uma data ao utilizador na forma dia/mês/ano e verifique se ela é válida.

Exemplo: A data 29/02/2022 não é válida e a data 03/02/1596 é válida.

4

17. Triângulo retângulo

Escreva um programa que receba 3 números reais e verifique se eles podem ser as medidas dos lados de um
triângulo retângulo. Sugestão: Utilize o Teorema de Pitágoras.

Exemplo: As medidas 2, 5 e 9 não podem ser as medidas dos lados de um triângulo retângulo mas as medidas
3, 4 e 5 podem.

18. Idade

Faça um programa que peça ao utilizador a sua data de nascimento e a data do dia de hoje e com esses
dados calcule a sua idade (em anos).

19. Nota de uma disciplina com exclusão da pior nota

Numa determinada disciplina existem 5 momentos de avaliação: 4 exercícios e um exame. Para o cálculo
da nota final de um aluno são contabilizados apenas os 3 melhores exercícios e o exame final, sendo que o
exame vale 50% e os exercícios os restantes 50%. Além disso, existe uma nota mínima de 7 valores no exame
para obtenção de aprovação à disciplina. Escreva um programa que permita determinar a classificação final
da disciplina e que valide todas as notas introduzidas.

Exemplo: Ao introduzir as seguintes classificações e1 = 15, e2 = 13, e3 = 16, e4 = 18 e exame = 18, o
programa deve dar o seguinte resultado:

A nota final da disciplina e 17.1667 valores.

Substituindo a nota do exame por exame = 6, o programa deve dar o seguinte resultado:

Nao obteve nota minima no exame por isso reprovou.

20. Introdução aos ciclos

Sem escrever o programa abaixo no computador, indique qual o output mostrado na consola para
n = 1 e para n = 6.

int main()
{

int n;
cout << "n: ";
cin >> n;

int b = 2;
string s = "..";

for(int i = 1; i<n; ++i){
cout << ".";
s+="A";
if(i%2 == 0)

--b;

5

if(i%3 == 0){
b+=i;
s ="B";

}else{
b=b*i;
s+="C";

}
}

cout << "\nb= " << b << "\ns= " << s << "\n\n";
return 0;

}

21. Introdução aos ciclos

Execute as seguinte instruções:

i. Imprima todos os números desde 1 até 15, conforme apresentado abaixo, usando um ciclo.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ii. Imprima todos os números desde 15 até 1 usando um ciclo.

iii. Faça um ciclo começado em i=3 que execute 12 iterações e que em cada iteração escreva um sinal "+"
no ecrã.

iv. Peça um número inteiro n1 ao utilizador. Se esse número for positivo, imprima todos os números desde
0 até n1. Caso contrário, imprima o número zero |n1| vezes. Exemplo: Para n1 = 5 o output esperado
é 0 1 2 3 4 5, e, para n1 = −5, o output esperado é 0 0 0 0 0.

v. Peça um número inteiro positivo n2 ao utilizador e imprima n2 asteriscos. Deve pedir sucessivamente
valores ao utilizador até que seja introduzido um valor válido.

vi. Imprima todos os números pares entre 10 e 50 (inclusivé) de duas formas distintas: a primeira usando
um ciclo e uma instrução if, e a segunda usando apenas um ciclo.

vii. Calcule a soma dos n3 primeiros números naturais usando um ciclo, sendo n3 pedido ao utilizador.
Exemplo: para n3 = 10, soma = 55.

viii. Peça dois valores inteiros a e b ao utilizador tais que a < b e calcule a soma dos números entre a e b
(inclusivé). Exemplo: Para a = 5 e b = 20, a soma é 200.

ix. Escreva os quadrados dos 10 primeiros números naturais.

x. Peça um número inteiro positivo menor que 10 ao utilizador e calcule o seu fatorial. Exemplo: 6! = 720.

xi. Calcule a soma dos números entre 1 e 100 que são múltiplos de 2 mas não de 4. Exemplo: A soma dos
múltiplos de 2 que não são múltiplos de 4 entre 1 e 100 é 1250.

22. Escrita de output

Peça um inteiro m ao utilizador e escreva o output abaixo. O output corresponde ao caso m = 6.

6

Inicio...
1 [0, 2]
2 [1, 3]
3 [2, 4]
4 [3, 5]
5 [4, 6]
6 [5, 7]
...Fim!

23. Ciclo for/while

Escreva um programa que peça um inteiro n e imprima todos os números pares contidos no intervalo [1, n[.
Use um ciclo for na implementação. Repita depois o exercício usando um ciclo while.

Exemplo: Ao introduzir o número inteiro 10, o programa deverá imprimir o seguinte output:

Os numeros pares contidos no intervalo [1,10[sao : 2 4 6 8

24. Soma dos n primeiros números

Escreva um programa que receba um número inteiro positivo n, valide esse número (pedindo sucessivamente
o valor de n ao utilizador enquanto não for introduzido um valor válido) e calcule a soma desde 1 até n. O
programa deve ainda escrever a soma dos números entre 1 e n múltiplos de 3.

Exemplo: Ao introduzir o valor n = 10, o programa deve dar o seguinte resultado:

Soma: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55
Soma dos multiplos de tres: 3 + 6 + 9 = 18

25. Soma da série

Escreva um programa que peça um inteiro positivo N ao utilizador e calcule a soma da série
∑N

k=1
k

k+1 .

Exemplo:
∑5

k=1
k

k+1 = 3.55.

26. Ciclos e critério de paragem

Escreva um programa que peça sucessivamente ao utilizador números inteiros positivos. O programa deve
terminar quando o utilizador introduzir um número inteiro não positivo e nessa altura deve apresentar o
mínimo, o máximo e a média dos valores positivos inseridos pelo utilizador.

Exemplo: Ao introduzir a sequência de números 5, 7, 3, 2, 20, 21 e -5, o programa deverá imprimir o output:

O valor minimo introduzido foi 2, o valor maximo foi 21 e a media foi 9.66667.

27. Número de divisores

Escreva um programa que receba um número inteiro positivo n, valide esse número (pedindo sucessivamente
o valor de n ao utilizador enquanto não for introduzido um valor válido) e indique o seu número de divisores.

7

Exemplo: O número de divisores de 12 é 6.

28. Número perfeito

Escreva um programa que receba um inteiro positivo n introduzido pelo utilizador e verifique se esse número
é perfeito. Nota: Um número é perfeito se for igual à soma dos seus divisores próprios (divisores diferentes
do próprio número).

Exemplo: 6 é um número perfeito pois os divisores próprios de 6 são 1, 2 e 3 e 1+2+3=6.

29. Número primo

Escreva um programa que receba um valor introduzido pelo utilizador e que verifique se esse número é primo
ou não.

30. Lista de números primos

Escreva um programa que receba um inteiro positivo n introduzido pelo utilizador e imprima todos os
números primos entre 1 e n.

Exemplo: Ao introduzir o número 10, o programa deverá imprimir o seguinte output:

Os numeros primos de 1 a 10 sao: 2 3 5 7.

31. Máximo divisor comum

Escreva um programa que permita determinar o máximo divisor comum entre dois inteiros pedidos ao
utilizador.

Exemplo: mdc(132, 80) = 4 e mdc(150, 50) = 50.

8

32. Ciclos encadeados 1

Peça um inteiro positivo k ao utilizador (fazendo a sua validação) e escreva o output abaixo. O output
corresponde ao caso k = 6.

Inicio...
1 -> 0
2 -> 1 0
3 -> 2 1 0
4 -> 3 2 1 0
5 -> 4 3 2 1 0
6 -> 5 4 3 2 1 0
...Fim!

33. Escrita de output 2

Peça um inteiro positivo k ao utilizador (fazendo a sua validação) e escreva o output abaixo. O output
corresponde ao caso k = 6.

Inicio...
1 -> Soma desde 1 ate 1 = 1
2 -> Soma desde 1 ate 2 = 3
3 -> Soma desde 1 ate 3 = 6
4 -> Soma desde 1 ate 4 = 10
5 -> Soma desde 1 ate 5 = 15
6 -> Soma desde 1 ate 6 = 21
...Fim!

34. Ciclos encadeados 2

Escreva um programa que imprima o seguinte output usando ciclos

5 4 3 2 1
4 3 2 1
3 2 1
2 1
1

35. Ciclos encadeados 3

Escreva um programa que imprima o output abaixo usando ciclos. De seguida, modifique o programa para
imprimir um output semelhante mas desta vez para um qualquer inteiro positivo n que não necessariamente 7.

1******
12*****
123****

9

1234***
12345**
123456*
1234567

36. Jogo hi-lo

Implemente o jogo do hi-lo. Primeiro, o programa deve gerar um número aleatório entre 1 e 100. Ao
utilizador são dadas 7 tentativas para adivinhar o número gerado pelo computador.

Se o utilizador não adivinhar o número correto, o programa deve dizer ao utilizador se o seu palpite está
abaixo ou acima do número correto. Se o utilizador acertou no número correto, o programa deve dizer
ao utilizar que ganhou. Se o utilizar não consegue adivinhar o número correto ao fim das 7 tentativas o
programa deve dizer-lhe que perdeu e indicar qual o número correto.

Nota: Para gerar um número inteiro aleatório entre 1 e 100 deve usar os seguintes comandos:

srand (time(NULL));.

int numeroAleatorio = rand() % 100 + 1;.

Exemplo: O programa deve apresentar o seguinte output:

Vamos jogar um jogo. Estou a pensar num numero de 1 a 100
e tem 7 tentativas para o adivinhar.

Tentativa #1: 50
O numero introduzido e muito baixo.

Tentativa #2: 75
O numero introduzido e muito baixo.

Tentativa #3: 87
O numero introduzido e muito alto.

Tentativa #4: 80
O numero introduzido e muito alto.

Tentativa #5: 77
O numero introduzido e muito baixo.

Tentativa #6: 79
Correto! Ganhou!

37. Calendário

Faça um programa que peça ao utilizador um determinado mês do ano e o dia da semana em que o mês
começa e imprima o calendário desse mês.

Exemplo: Ao introduzir o ano 2023, o mês 3 e o dia da semana quarta, o programa deverá imprimir o seguinte
output:

10

S	T	Q	Q	S	S	D
		1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30	31		

11

s

Guião 3
s

38. Construção de vetores

Escreva um programa que:

i) crie o vetor de inteiros v=(1, 2, 3) através de uma lista;

ii) crie um vetor de strings s de dimensão 2. Preencha a primeira posição com a string “AA” e a segunda
com a string “BB”;

iii) crie um vetor de números reais r sem especificar a dimensão. Redimensione o vetor para ter dimensão
3 e insira os valores 1.5, 5 e 0.6 nas posições já criadas;

iv) crie um vetor de carateres c sem especificar a dimensão. Sem usar o método resize, adicione ao vetor
os valores ‘a’, ‘*’, ‘+’ e ‘v’;

v) ao vetor v criado no ponto i) adicione o número 4;

vi) imprima para o ecrã os vetores criados nos pontos anteriores.

39. Construção de vetores 2

Escreva um programa que crie os seguintes vetores de forma automática:

i) v=(1, 2, 3, ..., 25);

ii) u=(2, 4, 6, ..., 50);

iii) z=(0, 1, 0, 1 ..., 1) (vetor com dimensão 30);

40. Norma de um vetor

Escreva um programa que peça um vetor ao utilizador e calcule a sua norma.

Exemplo: Ao introduzir o vetor (1, 3, 5, 7, 9) , o programa deverá imprimir o seguinte output:

||(1, 3, 5, 7, 9)|| = 12.8452.

41. Manipulação de vetores

Escreva um programa que peça sucessivamente valores ao utilizador e os guarde num vetor de inteiros. Após
receber o vetor, e sem nunca o ordenar, o programa deve:

i) imprimir o vetor por ordem inversa;

ii) calcular a soma dos valores introduzidos no vetor;

12

iii) indicar quantos números pares existem no vetor;

iv) verificar se existem valores negativos no vetor;

v) calcular o valor mínimo do vetor;

vi) determinar a posição do primeiro número par existente no vetor. Caso não existam números pares no
vetor, deverá ser indicada a posição -1.

vii) determinar a posição do último número par existente no vetor. Caso não existam números pares no
vetor, deverá ser indicada a posição -1.

viii) criar um novo vetor que contenha apenas os números ímpares presentes no vetor inicial;

ix) calcular o último índice do valor máximo do vetor;

x) verificar se existem elementos repetidos no vetor.

Exemplo: Ao introduzir o vetor v = (3, 4, 5, 7, 8,−2, 8, 4), temos o seguinte output:

i) O vector introduzido pela ordem inversa e: (4, 8, -2, 8, 7, 5, 4, 3)
ii) A soma dos valores introduzidos no vetor e 37.
iii) Foram introduzidos 5 valores pares.
iv) Existem valores negativos.
v) O valor minimo introduzido e -2.
vi) A posicao do primeiro numero par existente no vetor e 1.
vii) A posicao do ultimo numero par existente no vetor e 7.
viii)Os numeros impares presentes no vetor inicial sao: (3, 5, 7).
ix) A ultima posicao onde aparece o maximo do vetor e 6.
x) Existem numeros repetidos no vetor.

42. Produto interno

Escreva um programa que comece por pedir sucessivamente valores reais ao utilizador até que ele introduza
um valor não numérico e guarde-os num vetor v1. Repita o processo para criar um segundo vetor v2.
Verifique se os vetores têm a mesma dimensão e em caso afirmativo calcule o produto interno entre eles.

Exemplo: Ao introduzir o vetor (1, 2, 1) e o vetor (-1, 4, 6) o o programa deve escrever:

(1, 2, 1) * (-1, 4, 6) = 13

43. Vetor do triplo

Escreva um programa que peça um vetor de inteiros ao utilizador. Após receber o vetor, o programa deve
criar um novo vetor com a mesma dimensão do inicial e preenche-lo de modo que cada elemento seja o triplo
do elemento correspondente no vetor original.

Exemplo: Ao introduzir o vetor (1, 8, -2) o programa deve criar e escrever o vetor (3, 24, -6).

13

44. Vetor com números primos

Escreva um programa que peça um vetor de inteiros positivos ao utilizador. Após receber o vetor, o programa
deve indicar quantos e quais são os números primos existentes no vetor.

Exemplo: Ao introduzir o vetor v = (6, 9, 3, 5, 1, 8, 7), o programa deverá imprimir o seguinte output :

Existem 3 numeros primos no vetor.
Os numeros primos existentes no vetor sao: (3, 5, 7)

45. Vetor normalizado

Escreva um programa que peça um vetor de reais ao utilizador e que depois normalize o vetor, isto é, que
altere o vetor de modo a que cada entrada seja dividida pelo máximo dos números inseridos. Escreva o vetor
resultante para o ecrã.

Exemplo: Ao introduzir o vetor (3, 4, 1, 2), o programa deve criar e escrever o vetor (0.75, 1, 0.25, 0.50).

46. Vetor de strings

Escreva um programa que peça 7 strings ao utilizador e as guarde num vetor de strings. O programa deverá
depois alterar o vetor de strings criado de modo a que todas as strings com mais do que 5 carateres sejam
substituídas pela letra G e as strings com 5 ou menos carateres sejam substituídas pela letra P. Sugestão:
o método .length indica o número de carateres de uma strings.

Exemplo: Ao introduzir o vetor (pao, arroz, batata, farinha, massa, queijo, chocolate) o programa deve criar
e escrever o vetor (P, P, G, G, P, G, G).

47. Matrizes

Escreva um programa que leia uma matriz quadrada n × n, sendo o valor de n pedido ao utilizador. O
programa deve depois imprimir essa matriz e calcular o seu traço. Nota: O traço de uma matriz é a soma
dos elementos da sua diagonal.

Exemplo: Ao introduzir a matriz 1 7 7
9 2 4
5 11 3


o programa deverá imprimir o seguinte output:

A matriz introduzida foi :
1 7 7
9 2 4
5 11 3
O traco da matriz introduzida e 6.

14

48. Vetores e matrizes

Escreva um programa que leia uma matriz quadrada A de dimensão n× n, e um vetor v⃗ de dimensão n. O
programa deve depois imprimir o resultado da operação matricial Av⃗.

Exemplo:

A× v⃗ =

 1 3 5
7 8 9
13 4 2

×

11
1

 =

 9
24
19



49. Norma da matriz

Escreva um programa que peça uma matriz ao utilizador e que calcule a sua norma infinito. Nota: A norma
infinito de uma matriz é o máximo das soma dos valores absolutos dos elementos das linhas da matriz.

Exemplo:

A matriz introduzida tem norma 15 e e:
1 3 7

-9 2 4
3 -1 3

50. Operações com matrizes

Escreva um programa que permita fazer operações entre matrizes (soma, subtração, multiplicação). O
programa deve apresentar o seguinte menu interativo:

−−−−−−−−−−−−−−
Escolha uma das opões:

1. Soma de matrizes

2. Subtração de matrizes

3. Multiplicação de matrizes

4. Sair

−−−−−−−−−−−−−−
Opção:

Cada vez que o utilizador selecionar uma opção, terá que inserir duas matrizes (indicando primeiro as suas
dimensões). O programa deve verificar se as matrizes têm as dimensões corretas para que a operação matricial
escolhida seja feita e, em caso afirmativo, efetuar a operação matricial. A matriz resultante deve ser impressa
no ecrã.

15

51. Histograma

Escreva um programa onde comece por criar um vetor de dimensão 90 com o nome vetorAleatorio e preencha-
o com números inteiros aleatórios entre 0 e 20 (ver nota abaixo). Tendo por base o vetor criado, crie depois um
novo vetor histograma que na i-ésima posição contém o número de valores iguais a i do vetor vetorAleatorio.
Imprima o histograma no ecrã.

Nota: Para gerar um vetor de tamanho 90 com números inteiro aleatórios entre 0 e 20 deve usar os seguintes
comandos:

srand (0);
vector<int> vetorAleatorio(90);
for(int i = 0; i < 90; i++){

vetorAleatorio[i] = rand() % 21;
}

Exemplo: O programa deve imprimir o seguinte output :

Nota | Freq. rel. |
0 | 4 | ****
1 | 5 | *****
2 | 8 | ********
3 | 5 | *****
4 | 5 | *****
5 | 1 | *
6 | 6 | ******
7 | 8 | ********
8 | 5 | *****
9 | 0 |
10 | 4 | ****
11 | 3 | ***
12 | 3 | ***
13 | 5 | *****
14 | 5 | *****
15 | 6 | ******
16 | 2 | **
17 | 5 | *****
18 | 2 | **
19 | 2 | **
20 | 6 | ******

16

.

s

Guião 4
s

52. Funções

Implemente as seguintes funções que têm como argumentos 3 valores inteiros:

i) Uma função que devolva o máximo dos valores introduzidos;

ii) Uma função que devolva o mínimo dos valores introduzidos;

iii) Uma função que devolva a média dos valores introduzidos;

iv) Uma função que escreva os valores por ordem crescente;

v) Uma função booleana que verifique se algum dos três números é repetido.

vi) Uma função que devolva a diferença entre o valor máximo e mínimo introduzidos.

Na função main peça 3 valores inteiros ao utilizador e chame as funções implementadas.

Exemplo: Ao introduzir os valores 5, 3 e 3, o programa deverá imprimir o seguinte output :

O maximo dos valores introduzidos e 5.
O minimo dos valores introduzidos e 3.
A media dos valores introduzidos e 3.66667.
3 <= 3 <= 5
Existem numeros repetidos nos valores introduzidos.
A diferenca entre o maximo e o minimo e 2.

53. Potência

Crie uma função que receba dois valores positivos, uma base b (real) e um expoente a (inteiro), e que calcule
a potência ba. Nota: Não utilize a função pow do pacote cmath.

Exemplo: 211 = 2048.

54. Fatorial

Crie uma função que, dado um número inteiro positivo n, calcule o fatorial desse número (n!).

Exemplo: 7! = 5040.

55. Fibonacci

A sucessão de Fibonacci é dada por Fn = Fn−1 + Fn−2 para n > 1, com F0 = F1 = 1. Escreva uma função
que receba um inteiro positivo n e que determine o n-ésimo elemento da sequência de Fibonacci.

Exemplo: F7 = 21.

17

56. Passagem por referência versus passagem por valor

Implemente as seguintes funções:

double funcao1(double x){
x*=10;
return x;

}
double funcao2(double & x){

x*=10;
return x;

}
double funcao3(const double & x){

//x*=10; //ERRO!
double z = x*10;
return z;

}

De seguida, na sua função main, escreva o código abaixo.

double y = 1.0;
cout <<"valor: " << y << " | funcao1: " << funcao1(y) <<" | valor: " << y << endl;
cout <<"valor: " << y << " | funcao2: " << funcao2(y) <<" | valor: " << y << endl;
cout <<"valor: " << y << " | funcao3: " << funcao3(y) <<" | valor: " << y << endl;
cout <<"---" << endl;
cout <<"valor: " << y << " | funcao1(1.0): " << funcao1(1.0) << endl;
//cout <<"valor: " << y << " | funcao2(1.0): " << funcao2(1.0) << endl; //ERRO!

Execute o programa tal como está e analize o output obtido. De seguida, analise as duas linhas comentadas
e explique por que é que elas geram erros no programa.

57. Referências 1

Crie uma função Extremos do tipo void que receba (pelo menos) um vetor de inteiros e calcule o seu valor
máximo e mínimo. Use depois a função Extremos na função main para calcular a diferença entre o máximo
e mínimo de um vetor pedido ao utilizador.

Exemplo: A diferença entre o valor máximo e mínimo do vetor (20, 30, 26, 14, 19) é 16.

58. Referências 2

Crie uma função que receba 3 argumentos. Um desses argumentos deverá ser um ângulo, utilize referências
para retornar o valor do seno e do coseno desse ângulo.

Exemplo: Se o ângulo α = 90 temos sinα = 0.893997 e cosα = −0.44807.

59. Funções 2

Implemente uma função para cada um dos pontos i) - x) do Exercício 36. Na função main faça a leitura do
vetor pedido ao utilizador e chame cada uma das funções criadas de forma adequada.

18

60. Funcões 3

Implemente uma função que conte quantas vezes um dado número aparece num vetor de inteiros.

Exemplo: O número 5 aparece 3 vezes no vetor (2, 4, 1, 5, 4, 7, 5, 5, 9).

61. Funções 4

Implemente uma função que receba um vetor de inteiros e um número inteiro e devolva um novo vetor obtido
do original que não contenha esse número.

Exemplo: Dado o vetor (2, 6, 1, 8, 6, 6, 2, 4), o novo vetor obtido sem o elemento 6 é (2, 1, 8, 2, 4).

62. Estatística descritiva

Escreva um programa de estatística descritiva que receba N números reais. Crie funções para calcular
e retornar a média, a mediana, o desvio-padrão (a dividir por N − 1) e a moda (caso todos os valores
introduzidos tenham sido inteiros). Nota: No cálculo da moda deve utilizar uma função auxiliar que
verifique se todos os números introduzidos são ou não inteiros.

Exemplo: Ao introduzir a amostra (1, 3, 7, 8, 9, 5, 4, 7, 6, 6, 7), o programa deverá imprimir o seguinte output :

A media dos valores introduzidos e 5.72727.
A mediana dos valores introduzidos e 6.
O desvio-padrao dos valores introduzidos e 2.3277.
A moda dos valores introduzidos e 7.

63. Funções e matrizes

Execute as seguintes instruções:

1. Crie uma matriz de inteiros quadrada de ordem n, sendo o valor de n pedido ao utilizador.

2. Preencha essa matriz com valores pedidos ao utilizador.

3. Crie uma função, cujo tipo de retorno é void, que receba uma matriz e a imprima.

4. Crie uma função booleana que indique se uma matriz quadrada é ou não simétrica.

5. Crie n submatrizes quadradas de ordem k = 1,...,n de forma a que a submatriz de ordem k seja
constituída pelas primeiras k linhas e k colunas da matriz original. Após criar cada matriz, deve usar
as funções anteriores para as imprimir e verificar se são simétricas.

Exemplo: Ao introduzir a matriz 1 2 1
2 1 3
4 5 6


o programa deverá imprimir o seguinte output:

Matriz 1 :
1
A submatriz e simetrica.

19

Matriz 2 :
1 2
2 1
A submatriz e simetrica.

Matriz 3 :
1 2 1
2 1 3
4 5 6
A submatriz nao e simetrica.

64. Recursividade

Repita os Exercícios 53 (Potência), 54 (Fatorial) e 55 (Fibonacci) implementando funções recursivas.

65. Combinação

A combinação de n a k (n ≥ k) pode ser calculada de forma recursiva através da relação Cn
k = Cn−1

k +Cn−1
k−1 .

Escreva uma função recursiva que receba como argumento o valor de n e o valor de k e calcule a combinação
Cn

k .

Exemplo: C4
2 = 6.

66. Determinante de uma matriz

Crie uma função recursiva que calcule o determinante de uma matriz. Nota: Utilize a Regra de Laplace.

Exemplo: O determinante da matriz

2 3 2
5 6 5
7 8 9

 é -6.

20

.

s

Guião 5
s

67. Tratamento de erros - throw

Considere o código abaixo. Proteja a função raizQ contra a introdução de argumentos negativos lançando
uma exceção e terminando o programa sempre que tal acontecer.

#include <iostream>
#include <cmath>
using namespace std;

double raizQ (int n){
return sqrt(n);

}

int main(){
int n;
cout << "Valor de n: ";
cin >> n;

double x = raizQ(n);
cout << "O valor da raiz quadrada de " << n << " e " << x << "\n";

cout << "\nO programa chegou ao fim \n\n\n";
return 0;

}

68. Tratamento de erros - try...catch

Considere o código do exercício anterior. Crie uma nova exceção para o caso do utilizador inserir um valor
não numérico aquando da leitura do n na função main. Use um bloco try...catch na função main para lidar
com esta exceção e com a do exercício anterior apresentando uma mensagem de erro específica para cada
caso.

69. Tratamento de erros - classe runtime_error

Proteja o código do exercício 59 contra todos os erros que possam ocorrer utilizando a classe runtime_error
e o bloco try...catch. Deve apresentar mensagens de erro específicas para cada caso.

21

70. Tratamento de erros - classe out_of_range

Crie um vetor de zeros com 3 elementos (posições de 0 até 2) e imprima depois os elementos desse vetor entre
as posições 0 e 10. Use primeiro o operador [] e em seguida use o método .at() para aceder às posições do
vetor e veja o que acontece.

71. Tratamento de erros

Considere o seguinte código:

#include <iostream>
using namespace std;

double divisao (int numerador, int denominador){
return (double)(numerador)/denominador;

}

int main(){
int num, den;
cout<<"Introduza o valor do numerador e do denominador.\n";
cin >> num >> den;
double div = divisao (num, den);
cout<<"O resultado da divisao de "<< num << " por "<< den << " e "<< div << ".\n";
return 0;

}

Altere o programa de modo a lidar com todo o tipo de erros que possam ocorrer durante a sua execução.
Imprima mensagens de erro específicas para cada tipo de erro.

22

.

s

Guião 6
s

72. Módulos: vetores

Neste exercício vamos criar um módulo que contenha algumas funções úteis para manipular vetores. Crie
dois ficheiros extra no seu projeto, um ficheiro cabeçalho (onde se declaram funções) e um ficheiro corpo
(onde se definem as funções).

1. Declare e defina uma função X_norma neste módulo que permita calcular a norma de um vetor de
inteiros. A função deve ser declarada no ficheiro header e definida no ficheiro corpo.

2. Adicione uma nova função X_imprime ao módulo que permita imprimir um vetor. Esta função deve
retornar uma string. Exemplo: "(1,2,3)".

3. Adicione uma nova função booleana X_existe ao módulo, que verifique se um dado elemento pertence
ao vetor.

4. Adicione uma função X_ordenar que receba um vector de inteiros e retorne um vetor ordenado de
forma ascendente. Nota: Não pode utilizar o método sort.

5. Adicione uma função X_produtoInterno ao seu módulo que receba dois vetores de inteiros e retorne
o produto interno entre eles.

6. Adicione uma nova função do tipo void ao seu módulo chamada X_extremizar que receba um vetor de
inteiros e o altere de modo a que cada entrada passe a ser igual ao elemento com maior valor absoluto.

Na função main crie um vetor de inteiros e chame depois todas as funções criadas de forma apropriada. Não
se esqueça de fazer include do ficheiro header na função main.

Exemplo:

X = (2,7,5,3,11,1)
||X|| = 14.4568
u=5: Esta no vetor
u=4: Nao esta no vetor
O vetor X ordenado e (1,2,3,5,7,11)
X*Y = (2,7,5,3,11,1)*(1,-3,4,8,-1,9) = 23
O vetor extremo de X e (11,11,11,11,11,11)

73. Namespaces

No exercício anterior, defina um namespace apropriado ao qual as funções criadas devem pertencer. Modifique
a chamada das funções para que a função main as identifique de novo.

23

74. Árvore de âmbitos

Crie um novo ficheiro cabeçalho e dentro dele crie um namespace M_mat que contenha dois namespaces It e
Rec. Dentro do namespace It declare uma função com o nome Fatorial que permita calcular o fatorial de
um número de forma iterativa. Dentro do namespace Rec declare uma função também com o nome Fatorial
que permita calcular o fatorial de um número de forma recursiva. Defina as funções declaradas de forma
apropriada num ficheiro corpo e chame-as na função main.

75. Módulo: matrizes

Crie um módulo (com um namespace apropriado) que contenha funções para a manipulação de matrizes
quadradas de inteiros. Este módulo deverá conter uma função que:

1. Leia as entradas de uma matriz e a crie.

2. Imprima uma matriz.

3. Calcula o traço de uma matriz.

4. Faça a soma de duas matrizes.

5. Faça a subtração de duas matrizes.

6. Faça a multiplicação de duas matrizes.

Na função main chame todas as funções criadas de forma apropriada. Use um type alias para apelidar o
tipo de dados vector<vector<int>> como matriz.

24

.

s

Guião 7
s

76. Classes: Complexo

Crie uma classe Complexo que represente um número complexo. A classe deve ter:

i) Atributos privados que façam sentido e métodos públicos para alterar e visualizar esses atributos;

ii) Um construtor por omissão;

iii) Um construtor que permita definir a parte real e a parte imaginária de um número complexo;

iv) Um método Imprime para imprimir o complexo na forma a+bi;

v) Um método Modulo para retornar o módulo do complexo;

vi) Um método Simetrico para retornar o simétrico do complexo;

vii) Um método Conjugado para retornar o conjugado do complexo;

viii) Um método booleano IPuro que verifique se o complexo é um imaginário puro.

No ficheiro cabeçalho que criou, declare fora da classe funções que devolvam a soma, a subtração e a
multiplicação de dois complexos. Todas estas funções devem ser definidas no ficheiro corpo já existente.
Na função main teste tudo o que implementou através das seguintes instruções:

i) Crie um complexo z1 para representar o complexo 3+2i usando o segundo construtor que definiu e
imprima-o no ecrã usando o método Imprime;

ii) Altere a parte real do complexo z1 para 7;

iii) Crie um complexo z2 e preencha-o com valores pedidos ao utilizador;

iv) Escreva os complexos z1 e z2 no ecrã usando o método Imprime;

v) Use o construtor por omissão para criar um novo complexo z3 onde deverá guardar o simétrico do
complexo z2;

vi) Crie um novo complexo z4 que seja o conjugado do complexo z3;

vii) Crie um novo complexo z5 que corresponda à subtração de z3 com z4 e imprima-o no ecrã;

viii) Use o método IPuro para verificar se z5 é um imaginário puro.

25

77. Classes: Fração

Crie uma classe Fracao que represente uma fração. Esta classe deve estar preparada para lidar com todo o
tipo de erros que possam ocorrer lançando exceções com mensagens de erro específicas sempre que necessário.
A classe deve:

1. armazenar o numerador e o denominador da fração como atributos privados (utilize long long int com
type alias para simplificar);

2. ter um construtor por omissão e um construtor pertinente;

3. ter um método público que devolva a fração escrita como string;

4. ter um método privado que devolva o máximo divisor comum entre o numerador e o denominador;

5. ter um método público que permita simplificar a fração. Este método altera a fração, não a imprime.

Fora da classe, crie uma função que receba duas frações e retorne o seu produto e outra que retorne a sua
soma. Na função main crie duas frações e calcule a sua soma e o seu produto apresentando o resultado
simplificado.

78. Classes: Livro

Crie uma classe que represente um livro. A classe deverá ter um construtor por omissão e um construtor
com argumentos pertinentes. Deverá ter os seguintes membros privados: título, autor e ano de publicação.
Deve criar membros públicos que permitam a alteração dos membros privados e outros que os retornem.
Deve ainda ter um método público que imprima a informação do livro na forma

Titulo: ...
Autor: ...
Ano: ...

Na função main peça ao utilizador o título do livro, o autor e o ano, crie um livro e imprima a informação
sobre o livro introduzida pelo utilizador.

79. Classes: Polinómio

Crie uma classe que represente um polinómio com coeficientes inteiros. Esta classe deve estar preparada
para lidar com todo o tipo de erros que possam ocorrer lançando exceções sempre que necessário. Neste
exercício é fornecida a função main que deverá ser usada para testar a classe e o output esperado associado.
A única alteração que pode fazer na função main é a introdução de um bloco try..catch para lidar com as
exceções lançadas. A classe deve:

1. armazenar o grau e os coeficientes do polinómio;

2. ter um construtor por omissão vazio, outro que aceite o grau do polinómio e inicie todos os seus
coeficientes a zero e outro que aceite o grau e um vetor de coeficientes;

3. ter métodos para definir/alterar um coeficiente do polinómio;

4. ter um método que permita imprimir um polinómio;

26

5. ter um método para calcular o valor do polinómio num dado x;

6. ter um método que permita alterar o grau do polinómio. Se o novo grau for inferior ao anterior, o
polinómio deve ser truncado, caso contrário, os novos coeficientes devem ser pedidos ao utilizador.

Fora da classe, deve criar ainda uma função que permita somar dois polinómios.

O programa deve funcionar com a seguinte função main:

int main()
{

Polinomio p1(4);
for(int i=0; i<=4; i++)

p1.AlteraCoef(i,1);
cout << "p1 = "<< p1.Imprime();

Polinomio p2(5, {1,-2,0,4,-1, 3});
cout << "\np2 = "<<p2.Imprime();
cout << "\nO valor de p1 em x = 2 e " << p1.Valor(2) <<endl;

p1.AlteraGrau(2);
cout << "Diminuir grau de p1 de 4 para 2\n p1 = " << p1.Imprime();

cout << "\nAumentar grau de p1 de 2 para 5\n";
p1.AlteraGrau(5);
cout << "\n p1 = " << p1.Imprime() << "\n\n";

Polinomio p3(2, {1,1,1});
Polinomio p4(4, {2,2,2,2,2});
Polinomio p5 = Soma(p4, p3);
cout << "Soma: \n("<< p3.Imprime() <<") + (" << p4.Imprime() << ") ";
cout << "= " << p5.Imprime() << "\n\n";
return 0;

}

O output esperado é:

p1 = 1 + x + x^2 + x^3 + x^4
p2 = 1 - 2x + 4x^3 - x^4 + 3x^5
O valor de p1 em x = 2 e 31
Diminuir grau de p1 de 4 para 2

p1 = 1 + x + x^2
Aumentar grau de p1 de 2 para 5
v[3] = 6
v[4] = 5
v[5] = 8

p1 = 1 + x + x^2 + 6x^3 + 5x^4 + 8x^5

Soma:
(1 + x + x^2) + (2 + 2x + 2x^2 + 2x^3 + 2x^4) = 3 + 3x + 3x^2 + 2x^3 + 2x^4

27

80. Classes: Retângulo

Crie uma classe que represente um retângulo. Esta classe deve estar preparada para lidar com todo o tipo
de erros que possam ocorrer. A classe deve ter:

1. quatro membros privados: altura, comprimento e duas variáveis que representem as duas coordenadas
do canto superior esquerdo do retângulo;

2. um construtor por omissão que atribui as dimensões de um quadrado 1× 1 e um construtor que aceite
quatro argumentos para preencher os membros privados;

3. funções para modificar as dimensões do retângulo;

4. uma função que retorne a área e outra que retornar o perímetro do retângulo;

5. uma função para representar o retângulo no ecrã. Assuma que o ecrã é uma tela de 40× 20 caracteres
e considere que uma unidade na horizontal corresponde a dois caracteres e na vertical a um new line.

Implemente a função main de forma a dar o output indicado em baixo. As instruções começadas por >> são
o input do utilizador e não necessitam de ser apresentadas da mesma forma que está no output.

O retangulo do construtor por omissao e:
__

|__|
>> Altura e o comprimento do retangulo: altura = 2, comprimento = 4
>> Coordenadas (x,y) onde deve ficar o canto superior esquerdo do retangulo: (2, 2)
O perimetro do retangulo introduzido e 12 e a area e 8.
O retangulo introduzido e:

| |
|________|

81. Classes: Pontos em R2

Crie a classe PontoR2 que represente um ponto (x, y) ∈ R2. Crie um construtor por omissão, que inicializa
o ponto como sendo a origem, e outro que aceite as coordenadas do ponto. A classe deve ter funções-
membro públicas que permitam o acesso aos seus membros privados. Adicionalmente, a classe deverá ter
funções-membro que permitam:

1. imprimir o ponto no formato (x, y) (a função deve devolver uma string);

2. determinar a distância euclideana do ponto à origem (ponto (0, 0));

3. determinar a distância euclideana do ponto a um outro ponto;

4. rodar o ponto α graus relativamente à origem. Nota: O ponto (x, y) rodado α graus dá origem ao
ponto (x× cosα− y × sinα, y × cosα+ x× sinα).

5. verificar se o ponto é colinear com outro ponto. Nota: O ponto (x1, y1) é colinear com o ponto (x2, y2)
se e só se x1 × y2 = x2 × y1.

28

Implemente a função main de forma a dar o output indicado em baixo. A instrução começada por >> é o
input do utilizador e não necessita de ser apresentada da mesma forma que está no output.

A distancia euclideana do ponto (1.000000 , 2.000000)a origem e 2.23607
>> Introduza as coordenadas para um ponto: (2 , 5)
A distancia do ponto (1.000000 , 2.000000) ao ponto (2.000000 , 5.000000) e 3.16228
O ponto (1.000000 , 2.000000) rodado 90 graus e (-2.000000 , 1.000000)
Os pontos (-2.000000 , 1.000000) e (2.000000 , 5.000000) nao sao colineares

82. Classes: Campeonato de LP

Implemente as classes indicadas abaixo. Além dos métodos pedidos explicitamente, deve implementar tam-
bém um método de impressão em cada classe. Se for necessário, pode também implementar métodos além
dos indicados nos vários pontos.

1. Crie a classe Jogador que tem como membros privados o nome do jogador, o número do jogador no
Sindicato dos Jogadores, que é um identificador único, a forma física do jogador (valor inteiro entre 1 e
100) e o talento do jogador (valor inteiro entre 1 e 100). Crie uma função que permita calcular a aptidão
do jogador de acordo com a seguinte fórmula: 0.60×forma física + 0.40×talento. Na implementação do
método de impressão da classe, pode usar as instruções left e setw(·) disponíveis no pacote iomanip.

2. Crie a classe Equipa que tem como membros privados o nome da equipa, o nome do desporto e um
vetor de objetos do tipo Jogador. Além das funções de acesso aos membros privados da classe, crie
funções para adicionar e remover um jogador da equipa recebido como argumento.

3. Crie a classe Jogo que tem como membros privados as duas equipas que o vão disputar. Adicione
uma função que calcule o vencedor do jogo sabendo que ganha a equipa cuja aptidão média dos seus
jogadores seja a maior. Em caso de igualdade das aptidões médias, gere um número binário aleatório
r ∈ {0, 1} usando a instrução r=rand()%2. Se r = 0, a equipa vencedora é a primeia, caso contrário
será a segunda.

4. Crie uma classe Liga que tem como membros privados o nome da liga, um vetor de objetos Equipa
e outro de Jogo. Crie uma função que permita determinar o vencedor da liga, isto é, a equipa que
ganhou mais jogos sabendo que cada equipa joga uma vez com todas as outras.

As classes implementadas devem funcionar com a seguinte função main.

int main(){
Jogador j1("Joao", 1, 56, 90); Jogador j2("Manuel", 2, 78, 20);
Jogador j3("Maria", 3, 82, 63); Jogador j4("Joana", 4, 23, 20);
Jogador j5("Rita", 5, 98, 68); Jogador j6("Francisca", 6, 25, 99);
Jogador j7("Caetana", 7, 69, 64); Jogador j8("Cristovao", 8, 48, 87);
Equipa e1 = Equipa("Equipa_1", "-");
e1.AdicionarJogador(j8); e1.AdicionarJogador(j7); e1.AdicionarJogador(j2);
e1.RemoverJogador(j8);
Equipa e2 = Equipa("Equipa_2", "-");
e2.AdicionarJogador(j8); e2.AdicionarJogador(j4);
Equipa e3 = Equipa("Equipa_3", "-");
e3.AdicionarJogador(j5); e3.AdicionarJogador(j6);
Equipa e4 = Equipa("Equipa_4", "-");
e4.AdicionarJogador(j1); e4.AdicionarJogador(j3);

29

Liga liga = Liga("LigaLP");
liga.AdicionaEquipa(e1); liga.AdicionaEquipa(e2);
liga.AdicionaEquipa(e3); liga.AdicionaEquipa(e4);

auto equipas = liga.VeEquipas();
for(size_t i = 0; i < equipas.size() - 1; ++i){

for(size_t j = i+1; j < equipas.size(); ++j){
if(equipas[i].VeNome() == equipas[j].VeNome())

continue;
Jogo jogo = Jogo(equipas[i], equipas[j]);
liga.AdicionaJogo(jogo);

}
}
liga.Imprime();
auto vencedorLiga = liga.CalculaEquipaVencedora();
cout << "A vencedora da liga " << liga.VeNome() << " e " << vencedorLiga.VeNome() << endl;
return 0;

}

o output esperado do programa é o seguinte:

##
Equipas
##
Nome: Equipa_1

Caetana ID:7 F:69 T:64 Apt: 67
Manuel ID:2 F:78 T:20 Apt: 54.8

Nome: Equipa_2
Cristovao ID:8 F:48 T:87 Apt: 63.6
Joana ID:4 F:23 T:20 Apt: 21.8

Nome: Equipa_3
Rita ID:5 F:98 T:68 Apt: 86
Francisca ID:6 F:25 T:99 Apt: 54.6

Nome: Equipa_4
Joao ID:1 F:56 T:90 Apt: 69.6
Maria ID:3 F:82 T:63 Apt: 74.4

###########################
Jogos
###########################

Equipa_1 vs Equipa_2 -> Equipa_1 ganha
Equipa_1 vs Equipa_3 -> Equipa_3 ganha
Equipa_1 vs Equipa_4 -> Equipa_4 ganha
Equipa_2 vs Equipa_3 -> Equipa_3 ganha
Equipa_2 vs Equipa_4 -> Equipa_4 ganha
Equipa_3 vs Equipa_4 -> Equipa_4 ganha

A vencedora da liga LigaLP e Equipa_4

30

83. Classes: O Jogo do Galo

Pretende-se implementar a classe JogoGalo para jogar ao Jogo do Galo. Esta classe deve ter dois atributos:
uma matriz de char, que representa o quadro de jogo, e um char, que indica qual o símbolo do próximo
jogador a jogar (X ou O).

1. Crie um construtor que receba o símbolo do primeiro jogador a jogador e que inicialize o quadro de
jogo com o char -.

2. Crie um método VerJogador que permita aceder ao simbolo do jogador.

3. Crie um método void MostrarTabuleiro que imprima o tabuleiro de jogo para o ecrã no formato
abaixo. Nota: No exemplo está representado o tabuleiro vazio.

- | - | -

- | - | -

- | - | -

4. Crie um método booleano FazerMovimento que receba a linha e coluna onde deve ser colocado o
símbolo e que altere o símbolo do jogador.

5. Crie um método VerificarVencedor que devolve o símbolo do jogador vencedor, o símbolo E em caso
de empate e o símbolo - caso o jogo ainda não tenha acabado.

Preencha a função main apresentada de seguida com os nomes dos métodos apropriados substituindo os
(...) para poder jogar ao Jogo do Galo. Sempre que utilizador insira informação que não seja válida, peça
de novo a informação até que seja introduzido um valor válido.

int main(){
char symbol;
cout << "Insira o primeiro jogador a jogar: ";
cin >> symbol;
JogoGalo jogo = (...);
int l, c;
while (true) {

cout << "Tabuleiro atual:" << endl;
jogo.(...);
cout << "Vez do Jogador " << jogo.(...) << ". Insira linha e coluna (0-2): ";
cin >> l >> c;
jogo.(...);
char res = jogo.(...);
if (res == ’X’ || res == ’O’)

cout << "Jogador " << res << " ganha!" << endl; break;
else if (res == ’E’) {

cout << "E um empate!" << endl; break;
}
cout << "Tabuleiro final:" << endl;
jogo.(...);
return 0;

}

31

.

s

Guião 8
s

84. Sobrecarga de operadores: Complexo

Neste exercício, pretende-se redefinir vários operadores para manipular números complexos. Nos mesmos
ficheiros criados na implementação da classe Complexo defina os seguintes operadores:

i) Operadores binários para a soma, a subtração e a multiplicação de complexos;

ii) Operador unário para o simétrico de um complexo;

iii) Operador de ostream e de istream para ler e escrever um complexo, respetivamente. Use o formato
“a+bi” para representar um número complexo.

Teste os operadores que implementou com a seguinte função main:

int main(){
Complexo z1(2,3);
Complexo z2;
cout << "Introduza um numero complexo: \n";
cin >> z2;

cout << "O complexo introduzido foi: " << z2;

Complexo zSimetrico = -z2;
cout << "O simetrico do complexo introduzido e: " << zSimetrico << endl;

Complexo zSoma = z1+z2;
Complexo zSubtracao = z1-z2;
Complexo zMultiplicacao= z1*z2;
cout << "Soma: " << zSoma << endl;
cout << "Subtracao: " << zSubtracao << endl;
cout << "Multiplicacao: " << zMultiplicacao << endl;
return 0;

}

32

85. Sobrecarga de operadores: Polinómio

Neste exercício pretende-se redefinir vários operadores para manipular polinómios. Nos mesmos ficheiros
criados na implementação da classe Polinomio defina os seguintes operadores:

i) Operadores binários para a soma e a subtração de polinómios;

ii) Operadores unários [] para aceder e modificar os coeficientes do polinómio;

iii) Operador unário () que receba um escalar e calcule o valor do polinómio nesse escalar;

iv) Operador de ostream para escrever um polinómio. Use o formato “c0 + c1x + ... + cnx∧n" para
representar um polinómio.

86. Sobrecarga de operadores: Frações

Neste exercício, pretende-se redefinir vários operadores para manipular frações. Nos mesmos ficheiros criados
na implementação da classe Fracao defina os seguintes operadores:

i) Operadores binários para a soma, a subtração, a multiplicação e a divisão de frações;

ii) Operador unário para o simétrico de uma fração;

iii) Operadores de ostream e de istream para ler e escrever uma fração, respetivamente. Use o formato
“numerador/denominador" para representar uma fração.

87. Classes: Data (com sobrecarga de operadores)

Neste exercício pretende-se criar uma classe para manipular datas. A classe, chamada Data, deve ter como
atributos privados o dia, o mês e o ano. A classe deve ainda ter:

i) Um construtor por omissão e outro definido pelo utilizador que valide a data recebida (deve continuar
a pedir datas ao utilizador até ser introduzida uma data válida);

ii) Métodos públicos que permitam visualizar o dia, mês e o ano;

iii) Um operador ++ que permita incrementar um dia na data e um operador -- que permita decrementar
um dia na data. Implemente apenas uma versão de cada operador (ver função main abaixo);

iv) Operadores de ostream e de istream para ler e escrever uma data, respetivamente. Use o formato
“dia/mês/ano" para representar uma data.

Os operadores implementados terão que funcionar com a seguinte função main:

int main(){
Data d;
cout << "Introduza a data no formato d/m/a:"; cin >> d;
cout << "\nDate: " << d;
++d; ++d;
cout << "\nData + 2 dias: " << d;
d--; d--; d--;
cout << "\nData - 1 dia: " << d;
return 0;

}

33

88. Sobrecarga de operadores: Pontos em R2

Neste exercício, pretende-se redefinir vários operadores para manipular pontos em R2. Nos mesmos ficheiros
criados na implementação da classe PontoR2 defina os seguintes operadores:

i) Operadores binários para a soma e a subtração de pontos em R2;

ii) Operador binário * que devolve o produto interno entre dois pontos de R2;

iii) Operador unário para o simétrico de um ponto em R2;

iv) Operadores de ostream e de istream para ler e escrever um ponto, respetivamente. Use o formato
“(x, y)" para representar um ponto em R2.

89. Sobrecarga de operadores: Matriz

Defina uma classe Matriz que tenha como atributos privados o número de linhas, o número de colunas e a
matriz (utilize um vector<vector<int>>).

i) Defina um construtor por omissão e outro que receba o número de linhas e colunas da matriz bem
como os elementos da matriz na forma de um vetor de vetores;

ii) Crie o operador [] para aceder aos elementos da matriz;

iii) Crie também o operador ostream para imprimir a matriz;

iv) Crie os operadores de soma, de subtração e de multiplicação matricial. Os operadores devem reconhecer
as dimensões das matrizes e portanto verificar se as operações são possíveis.

34

.

s

Guião 9
s

90. Herança e polimorfismo: Edifício

Execute os seguintes passos:

i. Crie uma classe base chamada Edificio cujos atributos são a morada, o tamanho em metros quadrados
e o número de andares. A classe deve ter um único construtor que receba argumentos pertinentes e
um método que permita imprimir informação sobre o edifício.

ii. Crie duas classes derivadas Casa e Escritorio que herdem publicamente da classe Edificio. A classe
Casa deve ter como atributos o número de quartos e de casas de banho. Já a classe Escritorio deve
ter como atributo o número de cubículos.

iii. Crie um método em cada uma das classes derivadas que permita imprimir não só a informação específica
sobre elas como também a informação geral que caracteriza um qualquer edifício. Evite repetições de
código no(s) ficheiro(s) header.

iv. Crie um método puramente virtual na classe Edificio chamado Avaliacao que indique quanto vale
um edifício. Implemente este método nas classes derivadas com as funções de avaliação dadas na tabela
seguinte.

Tipo Função avaliação
Casa 20×N.º quartos + 5×N.º casas de banho + 10×N.º andares
Escritório 10×N.º cubículos + 10×N.º andares

v. Crie uma outra classe Rasteira que herde publicamente da classe Casa e que tenha como intuito
representar casas construídas no rés-do-chão (sem andares). Esta classe deve ter um único construtor
que receba no máximo quatro argumentos.

vi. Na função main, crie uma Casa, um Escritorio e uma casa Rasteira. Imprime toda a informação
relativa a cada uma delas, incluindo a sua avaliação.

91. Herança e polimorfismo: Pessoa

Crie quatro classes que representem pessoas que frequentam o ISEG. A classe base, Pessoa, deverá ter como
atributos um nome e a data de nascimento (representada por 3 inteiros). Além disso, deve ter um método
público que receba uma data (três inteiros) e que calcule a idade da pessoa nessa data. Implemente também
um método público puramente virtual chamado Profissao(). Este método deve ser concretizado nas classes
devolvendo a profissão da pessoa.

As classes derivadas devem ser: Estudante, Professor e Funcionario.

• A classe Estudante deve ter o nome do curso que frequenta e a média como atributos privados.

35

• A classe Professor deve ter os seguintes atributos privados: categoria e anos de trabalho.

• A classe Funcionario deve ter os seguintes atributos privados: nome do departamento e anos de
trabalho.

Cada classe deverá ter construtores pertinentes e métodos para retornar os atributos privados.

Crie uma função que tenha como argumento uma Pessoa. Esta função deve chamar o método Profissao()
para demonstrar a capacidade de polimorfismo.

92. Herança e polimorfismo: Veículo

Execute os seguintes passos:

i. Crie uma classe mãe Veiculo para guardar informação comum a todos os tipos de veículos (marca,
ano de produção e matrícula) e um construtor pertinente para inicializar objetos desta classe. Crie
um método público que permita imprimir informação geral sobre um veículo de acordo com o exemplo
abaixo:

Informacao Geral:
Marca: Opel
Ano: 1996
Matricula: AB-29-JE

ii. Crie uma classe Pesado que seja derivada de Veiculo, e que herde publicamente dela. Crie atributos
específicos para o tipo Pesado, nomeadamente a carga máxima e a indicação se é ou não refrigerado.
Crie um construtor pertinente para a classe Pesado.

iii. Crie uma outra classe mãe que represente o seguro de um certo veículo, chame-lhe Seguro. Esta classe
deve conter os atributos validade e valor do seguro, sendo a validade um objeto da classe Data criada
no Guião 8 e um construtor pertinente. Crie um método público que permita imprimir informação do
seguro de um veículo segundo o exemplo abaixo:

Informacao de Seguro:
Validade: 20/2/2029
Valor: 67

iv. Altere a classe Pesado para herdar também da classe Seguro.

v. Crie uma classe Motorizado que seja derivada de Veiculo e de Seguro, e que herde publicamente
delas. Essa classe deve ter como único atributo o número de rodas. Crie um construtor pertinente
para esta classe.

vi. Crie um método público puramente virtual chamado TipoVeiculo na classe Veiculo. Este método
deve se concretizar nas classes derivadas escrevendo para o ecrã o tipo de veículo em causa.

vii. Crie uma função global Tipo no ficheiro main.cpp que receba um objeto do tipo Veiculo e imprima a
informação geral sobre esse veículo bem como o tipo de veículo em causa.

viii. Na classe Veiculo implemente um método privado que faça a validação de uma matrícula (use o
formato AA-00-AA). Alguns comandos úteis: .size() - dimensão de uma string; .at(i) - carater na
posição i; isdigit(c) - verifica se o carater c é um digito entre 0 e 9; isupper(c) - verifica se o carater
c é uma letra maiúscula entre A e Z. Altere o construtor da classe Veiculo para verificar se a matrícula
recebida é válida e, em caso negativo, pedir sucessivamente ao utilizador uma nova matrícula até ser
introduzida uma que seja válida.

36

.

s

Guião 10
s

93. Escrita de ficheiros - ofstream

Crie um programa que escreva informação sobre uma turma num ficheiro com o nome “Turma.txt”. Comece
por pedir ao utilizador o número de alunos da turma. Peça depois ao utilizador o nome e as três notas de
cada aluno e escreva-as no ficheiro de acordo com o formato abaixo indicado.

Exemplo do formato do ficheiro:

Joana/12/14/15
João/13/20/7
...

94. Leitura de ficheiros - ifstream

Crie manualmente um ficheiro Notas.txt que contenha as notas finais de uma disciplina. Leia essas notas
para o seu programa guardando-as num vetor. Calcule depois a sua média e imprima-a no ecrã.

Dados do ficheiro: 12 15 9 18 15 10 9 8 19

95. Brincar com ficheiros

Crie um programa que leia uma lista de valores inteiros de um ficheiro chamado input.txt e que:

1. Imprima o valor mais alto para o ecrã.

2. Guarde os valores ao quadrado num novo ficheiro chamado output1.txt.

3. Remova os valores em duplicado e que escreva a lista sem esses valores num novo ficheiro chamado
output2.txt.

4. Imprima para o ecrã a maior sequência crescente de valores existente no ficheiro output2.txt.

Exemplo:

Conteúdo no ficheiro “input.txt”: 7 2 9 3 4 5 8 7 2 3

Conteúdo no ecrã: 9

Conteúdo no ficheiro “output1.txt”: 49 4 81 9 16 25 64 49 4 9

Conteúdo no ficheiro “output2.txt”: 7 2 9 3 4 5 8

Conteúdo no ecrã: 3 4 5 8

37

96. Nova escala de notas

Crie um programa que leia uma lista de notas (0-20) de um ficheiro chamado Notas.txt. Cada linha do
ficheiro contêm o nome e a nota de um aluno (separadas por um espaço).

1. Atribua uma classificação a cada estudante baseada na seguinte escala: Insuficiente (0-9), Suficiente
(10-12), Bom (13-15), Muito Bom (16-18), Excelente (19-20). O programa deve guardar as notas na
nova escala num novo ficheiro chamado NotasNovaEscala.txt no formato "Nome Classificação".

2. Escreva as 10 notas mais altas num novo ficheiro chamado TopNotas.txt

3. Escreva o histograma das notas num novo ficheiro chamado Histograma.txt. O histograma deve mostrar
o número de estudantes que receberam cada classificação.

97. Escrita de ficheiros - ofstream, ifstream, ios_base::out/app, getline

Crie um programa que peça uma frase ao utilizador e a escreva num ficheiro de texto. Caso o ficheiro já
exista, o programa deve perguntar ao utilizador se quer apagar o conteúdo do ficheiro existente ou adicionar
informação a esse ficheiro.

98. Alternativa ao to_string: ostringstream, .str()

Crie um programa que peça ao utilizador dois números reais que representem o numerador (n) e o denom-
inador (d) de uma fração. Crie depois uma string para guardar a expressão "n/d=r" usando a função
to_string e imprima essa string. Crie depois uma nova string com o mesmo conteúdo usando uma
ostringstream e imprima-a no ecrã. Compare os resultados.

99. Contagem de palavras: istringstream

Escreva um programa que leia uma string introduzida pelo utilizador. Determine o número de palavras da
string introduzida utilizando um objeto do tipo istringstream.

100. Numerar palavras: ostringstream, istringstream

Escreva um programa que leia uma frase da consola. Crie uma string com a mesma frase em que no final
de cada palavra aparece a ordem numérica dessa palavra.

Exemplo:

Introduza uma frase:
Esta e uma frase que tem imensos espacos em branco

Esta[1] e[2] uma[3] frase[4] que[5] tem[6] imensos[7] espacos[8] em[9] branco[10]

38

101. Equipas Futsal

Crie manualmente o seguinte ficheiro referente a idades de jogadores de três equipas de futsal:

AFT 23 18 19 22 29 30 25 24
WET 20 31 19 27 35 30 27 20
FCR 17 32 22 22 35 37 21 24

Escreva um programa que leia a informação deste ficheiro e que determine qual a idade do jogador mais
velho e mais novo de cada equipa.

102. Notas do ficheiro Turma

Crie um programa que leia a informação de uma turma (utilize o ficheiro “Turma.txt” criado no exercício
85). Deve imprimir no ecrã o nome e a média de cada aluno com duas casas decimais (use o manipulador
setprecision disponível na biblioteca iomanip).

Exemplo:

Joana: 13.67
Joao: 13.33

103. Frequência de cada palavra

Crie um programa que peça uma frase ao utilizador e que indique o número de vezes que cada palavra
aparece na frase.

104. Apagar linha

Escreva um programa que permita apagar uma linha de um ficheiro. O programa deve pedir ao utilizador
qual o número da linha que pretende apagar.

105. Calculo do IMC

Crie manualmente o ficheiro abaixo cujo formato é “Numero. Nome_Idade Peso Altura”. Escreva depois
um programa que leia esse ficheiro e: (i) indique quais as pessoas que têm menos de 23 anos; (ii) escreva um
ficheiro com o nome da pessoa e o seu índice de massa corporal (na forma Numero. Nome IMC).

1. Maria_25 56 1.75
2. Joao_22 60 1.6
3. Lara_30 52 1.57
4. Pedro_21 80 1.85
...

106. Frase com mais palavras

Escreve um programa que leia uma lista de frases de um ficheiro chamado frases.txt e que imprima para o
ecrã a frase com mais palavras.

39

107. Ordem inversa

Escreva um programa que leia uma lista de palavras de num ficheiro chamado palavras.txt e que as escreva
pela ordem inversa num ficheiro chamado PalavrasInverso.txt

108. Ordenação de datas

Escreva um programa que leia uma lista de datas no formato DD/MM/AAAA de um ficheiro chamado Datas.txt
e que as escreva por ordem cronológica num ficheiro chamado DatasCronologicas.txt.

109. Interpretação de expressões matemáticas

Escreva um programa que peça sucessivamente expressões matemáticas ao utilizador e devolva o seu resul-
tado. As expressões matemáticas devem envolver apenas as operações básicas (-, + e *), não podem conter
parêntesis e cada operador deve ter um espaço antes e depois. O programa termina quando o utilizador
introduzir a palavra “sair”.

Exemplo:

-> 2 + 4 * 2 - 7
R: 3

-> -5 + 10 * 2
R: -15

-> 2 + 3 + 2 * 2 - 5 - 2 * 6 - 3 - 2 * 5
R: -21

-> sair

40

