
 

Last Update:2025 [1]  Carlos J. Costa  

Data Visualization using Python 
Carlos J. Costa 

Data visualization plays a crucial role in data analysis, making it easier to understand trends, 
patterns, and relationships in data[1]. Python provides several powerful libraries for visualizing data, 
including Pandas, Matplotlib, and Seaborn. Each library serves different purposes and offers a variety 
of plotting methods. This document will cover essential visualization techniques, including scatter 
plots, line charts, bar charts, and more advanced visualizations like heatmaps and pair plots. 

1. Pandas: Quick and Simple Plots 

Pandas provides an easy way to create basic visualizations directly from DataFrames. It is built on 
top of Matplotlib, which shares many of the same features [3]. The following example shows how to 
implement Bar Plot using Pandas: 

import pandas as pd 

import matplotlib.pyplot as plt 

# Sample DataFrame 

data = {'Category': ['A', 'B', 'C', 'D'], 'Values': [4, 7, 1, 8]} 

df = pd.DataFrame(data) 

# Create a bar plot 

df.plot(kind='bar', x='Category', y='Values', color='skyblue') 

plt.title('Bar Plot using Pandas') 

plt.show() 

 Key Features of Pandas for Visualization are the following:  

- df.plot() supports basic plots (line, bar, histogram, scatter).   

- Integration with Matplotlib allows complete customization of plots. 

- Simplified interface for quick visualizations. 

 2. Matplotlib: Low-Level Customization 

Matplotlib is a powerful and versatile Python library for creating static, animated, and interactive 

visualizations [6]. It provides fine-grained control over plot elements, making it ideal for users 

who require detailed customization. As the foundational plotting library in Python, Matplotlib 

supports a wide range of chart types, including scatter plots, line charts, and bar charts. While 

highly flexible, it can sometimes feel verbose for simple visualizations. Additionally, it serves as 

the backbone for many other libraries, such as Seaborn and Plotly, which build upon its capabilities 

to offer more user-friendly interfaces.. 

•  Strengths: 



 

Last Update:2025 [2]  Carlos J. Costa  

• Fine-grained control over plot elements 

• Wide range of plot types 

• Suitable for publication-quality figures 

•  Weaknesses: 

• Steeper learning curve for beginners 

• More verbose compared to higher-level libraries 

Here’s an improved version with examples: 

 

Building Blocks of Matplotlib Plots 

Matplotlib plots are composed of several fundamental elements that work together to create clear 
and informative visualizations. The key components include: 

• Figure (fig) 

• Axes (ax) 

• Subplots 

• Axis 

Figure (fig) is the top-level container that holds all plot elements, including one or more subplots. 
Think of it as a blank canvas where multiple charts can be arranged. 

import matplotlib.pyplot as plt 

fig = plt.figure(figsize=(8, 6))   

Axes (ax) is the area where data is plotted. A figure can contain multiple axes (subplots), each 
displaying a different visualization. 

fig, ax = plt.subplots()  # Creates a figure with a single plotting 

area (axes) 

ax.plot([1, 2, 3], [4, 5, 6])  # Plots a simple line chart 

plt.show() 

Subplots are multiple independent plotting areas within the same figure, which are useful for 
comparing different datasets side by side. 

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))  # Two subplots 

in one row 

ax1.plot([1, 2, 3], [4, 5, 6], label="Dataset 1") 

ax2.scatter([1, 2, 3], [6, 5, 4], color='r', label="Dataset 2") 

plt.show() 

Axis, corresponding to  x-axis and y-axis, defines the coordinate space for data visualization. Each 
axis can be labeled, scaled, and customized. 



 

Last Update:2025 [3]  Carlos J. Costa  

fig, ax = plt.subplots() 

ax.plot([10, 20, 30], [5, 15, 25]) 

ax.set_xlabel("X-Axis Label") 

ax.set_ylabel("Y-Axis Label") 

ax.set_title("Example Plot with Labeled Axes") 

plt.show() 

Understanding these components makes it possible to create highly customized and effective 

visualizations using Matplotlib. 

Matplotlib's plotting flow typically starts by creating a figure and axes, and then adding various 

elements (like data points, lines, bars….) to the axes. The immense customization possibilities 

allow users to manipulate every plot detail, from titles and axis labels to line styles and colors. 

2.1 Scatter Plot 

Scatter plots are used to visualize relationships between two continuous variables. In Matplotlib, 
scatter plots can be customized extensively by adding colors or markers based on a third categorical 
variable: 

import matplotlib.pyplot as plt 

# Create a figure and axis 

fig, ax = plt.subplots() 

# Scatter plot for 'electoral college %' vs 'popular vote %' 

ax.scatter(df['electoral college %'], df['popular vote %']) 

# Set titles and labels 

ax.set_title('Election Results') 

ax.set_xlabel('Electoral College Percentage') 

ax.set_ylabel('Popular Vote Percentage') 

plt.show() 

It is possible to customize scatter plots further by using color to represent different categories. In the 
following example, we color points based on political party affiliation. 

# Create a color dictionary based on party affiliation 

colrs = {'Rep.': 'r', 'Dem.': 'b'} 

# Create figure and axis 

fig, ax = plt.subplots() 

# Plot data points with color based on party 

for i in range(len(df['electoral college percentage'])): 

    ax.scatter(df['electoral college %'][i], df['popular vote %'][i], 

color=colrs[df['party'][i]]) 



 

Last Update:2025 [4]  Carlos J. Costa  

# Set titles and labels 

ax.set_title('US Elections') 

ax.set_xlabel('Electoral College Percentage') 

ax.set_ylabel('Popular Vote Percentage') 

plt.show() 

2.2 Line Chart 

Line charts are commonly used to visualize data trends over time. They are ideal for showing 
continuous data points and identifying changes in variables. The following example shows how to 
implement a Basic Line Chart using  Matplotlib. This example demonstrates how to plot the trend of 
the popular vote percentage over several years. 

# Create a figure and axis 

fig, ax = plt.subplots() 

# Plot 'popular vote percentage' over the years 

ax.plot(df['year'], df['popular vote percentage']) 

# Set titles and labels 

ax.set_title('US Elections - Popular Vote Over Time') 

ax.set_xlabel('Year') 

ax.set_ylabel('Popular Vote Percentage') 

plt.show() 

The following example shows how to implement a Multiple Lines Chart using Matplotlib. The 
following example shows how to plot both the popular vote percentage and the electoral college 
percentage over time on the same axes. 

# Create a figure and axis 

fig, ax = plt.subplots() 

# Plot multiple lines 

ax.plot(df['year'], df['popular vote percentage'], label='Popular Vote') 

ax.plot(df['year'], df['electoral college percentage'], label='Electoral 

College') 

# Set title, legend, and labels 

ax.set_title('US Elections - Popular Vote and Electoral College') 

ax.legend() 

ax.set_xlabel('Year') 

ax.set_ylabel('Percentage') 



 

Last Update:2025 [5]  Carlos J. Costa  

plt.show() 

2.3 Bar Chart 

Bar charts are helpful for visualizing the frequency of categorical data. They can be used to compare 
quantities across categories. Matplotlib can create grouped, stacked, and horizontal bar charts. The 
following example shows how to implement a Bar Chart using  Matplotlib. In the following example, 
we use a bar chart to visualize the number of votes by party. 

# Count the occurrence of each class (party) 

data = df['party'].value_counts() 

# Get x and y data 

points = data.index 

frequency = data.values 

# Create a figure and axis 

fig, ax = plt.subplots() 

# Plot a bar chart 

ax.bar(points, frequency) 

# Set titles and labels 

ax.set_title('US Votes by Party') 

ax.set_xlabel('Party') 

ax.set_ylabel('Frequency') 

plt.show() 

2.4 Advanced Subplots and Layouts 

Matplotlib allows multiple plots in the exact figure using subplots. This is especially useful when 
comparing different visualizations side by side. 

Creating Multiple Subplots: 

# Create a figure with 2x1 subplots 

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5)) 

 

# First subplot: Scatter plot 

ax1.scatter(df['electoral college %'], df['popular vote %']) 

ax1.set_title('Scatter Plot') 

ax1.set_xlabel('Electoral College %') 

ax1.set_ylabel('Popular Vote %') 

 



 

Last Update:2025 [6]  Carlos J. Costa  

# Second subplot: Line plot 

ax2.plot(df['year'], df['popular vote %']) 

ax2.set_title('Line Plot') 

ax2.set_xlabel('Year') 

ax2.set_ylabel('Popular Vote %') 

 

# Adjust layout and display 

plt.tight_layout() 

plt.show() 

This approach makes displaying multiple visualizations in a single figure easy, particularly useful for 
exploratory data analysis or reports. 

3. Seaborn: Statistical Data Visualization 

Seaborn is built on top of Matplotlib and provides a high-level interface for creating attractive and 
informative statistical graphics. It works seamlessly with pandas. DataFrames and adds powerful 
features for visualizing complex datasets[7] [8]. 

•  Strengths: 

• Simplifies statistical plotting 

• Aesthetically pleasing default styles 

• Ideal for exploring relationships in data 

•  Weaknesses: 

• Less flexibility in customizing individual plot elements compared to Matplotlib 

3.1 Pair Plot 

Pair plots help visualize relationships between all variables in a dataset. This function plots pairwise 
relationships in a dataset and is particularly useful for exploratory data analysis. The following 
example shows how to implement a Pair Plot using Seaborn. 

 

import seaborn as sns 

# Load example dataset 

df = sns.load_dataset('iris') 

# Create a pair plot 

sns.pairplot(df, hue='species') 



 

Last Update:2025 [7]  Carlos J. Costa  

plt.show() 

 

3.2 Heatmap 

Heatmaps are used to visualize correlation matrices, showing relationships between variables with 
colors. You can easily add annotations and color palettes to highlight specific aspects of the data. 
The following example shows how to implement Heatmap using Seaborn. 

# Create a correlation matrix 

corr = df.corr() 

# Create a heatmap 

sns.heatmap(corr, annot=True, cmap='coolwarm') 

plt.title('Correlation Heatmap') 

plt.show() 

 

3.3 Customizing Seaborn Plots 

 

Seaborn also offers additional features, such as themes and color palettes, to enhance the 
aesthetics of the plots. Different themes can be applied using sns.set_theme() to match the style of 
the visualization with the presentation or report.  

 

 4. Plotly: Interactive Visualizations 

Plotly is a powerful library for creating interactive, web-based visualizations. It supports a wide range 
of chart types, including 3D plots, and enables dynamic exploration through features like zooming, 
hovering, and filtering [5]. Designed for interactivity, Plotly excels at embedding visualizations in web 
applications and dashboards, making it an ideal choice for dynamic data analysis and presentation. 

•  Strengths: 

• Fully interactive visualizations 

• Great for web applications and presentations 

• Supports a variety of complex visualizations (e.g., 3D plots, geographic maps) 

•  Weaknesses: 

• More resource-intensive than static libraries like Matplotlib or Seaborn 

• Slightly different approach to plotting compared to traditional Python libraries 



 

Last Update:2025 [8]  Carlos J. Costa  

 

 

The following example shows how to implement an Interactive Line Chart using  Plotly: 

 

import plotly.express as px 

# Create a sample DataFrame 

df = px.data.gapminder().query("country == 'Canada'") 

# Create an interactive line chart 

fig = px.line(df, x='year', y='gdpPercap', title='GDP Per Capita Over 

Time (Canada)') 

fig.show() 

 

With Plotly, it is possible to add interactive capabilities, making it easy to create dashboards and 
reports that users can explore. 

5. Bokeh: Interactive Visualizations for the Web 

Bokeh is a powerful and versatile library for creating interactive visualizations that are well-suited for 
web applications [2]. Like Plotly, Bokeh allows you to build interactive plots without writing JavaScript 
code. Its main advantage is the ability to generate highly detailed, interactive plots that can be 
embedded into websites or Jupyter notebooks. Bokeh's flexibility makes it ideal for developing 
dashboards and web-based visual analytics.  

•  Strengths: 

• Optimized for handling large datasets 

• Well-suited for web deployment 

•  Weaknesses: 

• Longe  learning curve compared to Seaborn or Plotly 

 

The following example shows how to implement an Interactive Line Plot using  Bokeh: 

 

from Bokeh.plotting import figure, show 

from bokeh.io import output_notebook 

output_notebook() 



 

Last Update:2025 [9]  Carlos J. Costa  

# Create a figure 

p = figure(title="Interactive Line Plot in Bokeh", x_axis_label='X', 

y_axis_label='Y') 

# Add a line plot 

p.line([1, 2, 3, 4, 5], [2, 4, 6, 8, 10], legend_label="Y=2X", 

line_width=2) 

# Show the plot in the notebook 

show(p) 

In this example, we create a simple line plot with Bokeh's figure() method, specifying labels for 
the x and y axes. The p.line() function is used to draw a line based on a list of x and y values, and 
the show() function renders the plot interactively in the notebook. 

Here's another example that creates an interactive bar plot using Bokeh: 

from Bokeh.plotting import figure, show 

from bokeh.io import output_notebook 

from Bokeh.models import HoverTool 

from Bokeh.transform import factor_cmap 

# Ensure Bokeh renders in the notebook 

output_notebook() 

# Sample data 

categories = ['A', 'B', 'C', 'D'] 

values = [10, 20, 30, 40] 

# Create a figure object 

p = figure(x_range=categories, height=350, title="Category Bar Plot", 

           toolbar_location=None, tools="") 

# Create bar chart with colors and hover tool 

p.vbar(x=categories, top=values, width=0.9, color=factor_cmap('x', 

palette=['#c9d9d3', '#718dbf', '#e84d60', '#ddb7b1'], 

factors=categories)) 

# Add hover tool to show data values 

hover = HoverTool() 

hover.tooltips = [("Category", "@x"), ("Value", "@top")] 

p.add_tools(hover) 

# Customize the plot 

p.xgrid.grid_line_color = None 



 

Last Update:2025 [10]  Carlos J. Costa  

p.y_range.start = 0 

# Show the plot in the notebook interactively 

show(p) 

6.  Conclusion 

Python provides a diverse range of libraries for data visualization, each designed to cater to specific 
needs: Pandas, Matplotlib, Seaborn, Plotly, and Bokeh. 

Pandas library is ideal for quick and straightforward plots directly from DataFrames. Pandas makes 
generating basic visualizations with minimal code easy, allowing you to explore and summarize data 
efficiently. Its integration with Matplotlib enables more customization if needed, but Pandas suffices 
with its simple syntax and direct functionality for most exploratory tasks. 

Matplotlib is known for its flexibility and low-level control, and it is the go-to library for Python users 
who need highly customizable plots. With its core components like figures, axes, and subplots, 
Matplotlib enables the creation of both simple and complex visualizations, ranging from scatter plots 
to advanced multi-plot layouts. It is the perfect choice when you require complete control over every 
aspect of the visual output. 

Seaborn is built on top of Matplotlib. Seaborn simplifies the creation of aesthetically pleasing 
statistical plots. It offers high-level interfaces for drawing attractive and informative visualizations 
such as heat maps, box plots, and regression plots. Seaborn's strong emphasis on revealing 
statistical relationships makes it an excellent choice for visualizing complex data patterns cleanly 
and elegantly. 

Plotly specializes in creating interactive and web-ready visualizations. With minimal code, users can 
generate dynamic, zoomable, and hover-friendly charts easily embedded into websites or shared in 
reports. Plotly is ideal for creating engaging visualizations, particularly for presentations or interactive 
dashboards where user engagement with the data is essential [4]. 

Like Plotly, Bokeh focuses on creating interactive visualizations and emphasizes the ability to handle 
large datasets and generate web-ready plots. It allows for detailed interactivity, including zooming, 
panning, and tooltips, making it well-suited for applications where real-time data exploration is 
necessary. 

By understanding and combining these libraries, it is possible to create powerful visualizations 
tailored to different stages of data analysis, from quick exploration and statistical insights to 
polished, interactive presentations. Each library serves specific needs, and choosing the right one—
or using them in tandem—will allow you to present your data effectively, whether for exploration or 
final reporting. 

References 

[1] M. Aparicio and C. J. Costa, "Data visualization," Communication Design Quarterly Review, 

vol. 3, no. 1, pp. 7-11, 2015. 



 

Last Update:2025 [11]  Carlos J. Costa  

[2] Bokeh documentation, Bokeh. Accessed: Oct. 12, 2024. [Online]. Available: 

https://docs.bokeh.org/en/latest/index.html 

[3] Chart visualization—Pandas 2.2.3 documentation. Accessed: Oct. 12, 2024. [Online]. 

Available: https://pandas.pydata.org/docs/user_guide/visualization.html 

[4] C. Costa and M. Aparício, "Supporting the decision on dashboard design charts," in 

Proceedings of 254th The IIER International Conference 2019, September, pp. 10-15. 

[5] Getting started with Plotly in Python. Accessed: Oct. 12, 2024. [Online]. Available: 

https://plotly.com/python/getting-started/ 

[6] Matplotlib documentation—Matplotlib 3.9.2 documentation. Accessed: Oct. 12, 2024. 

[Online]. Available: https://matplotlib.org/stable/index.html 

[7] User guide and tutorial—Seaborn 0.13.2 documentation. Accessed: Oct. 12, 2024. [Online]. 

Available: https://seaborn.pydata.org/tutorial.html 

[8] M. Waskom, "seaborn: Statistical data visualization," Journal of Open Source Software, vol. 

6, no. 60, p. 3021, 2021. [Online]. Available: https://doi.org/10.21105/joss.03021 

 

https://docs.bokeh.org/en/latest/index.html
https://pandas.pydata.org/docs/user_guide/visualization.html
https://plotly.com/python/getting-started/
https://matplotlib.org/stable/index.html
https://seaborn.pydata.org/tutorial.html
https://doi.org/10.21105/joss.03021

