Data Visualization using Python

Carlos J. Costa

Data visualization plays a crucial role in data analysis, making it easier to understand trends,
patterns, and relationships in data[1]. Python provides several powerful libraries for visualizing data,
including Pandas, Matplotlib, and Seaborn. Each library serves different purposes and offers a variety
of plotting methods. This document will cover essential visualization techniques, including scatter
plots, line charts, bar charts, and more advanced visualizations like heatmaps and pair plots.

1. Pandas: Quick and Simple Plots

Pandas provides an easy way to create basic visualizations directly from DataFrames. It is built on
top of Matplotlib, which shares many of the same features [3]. The following example shows how to
implement Bar Plot using Pandas:

import pandas as pd

import matplotlib.pyplot as plt

# Sample DataFrame

data = {'Category': ['A', 'B', 'C', 'D'], 'Values': [4, 7, 1, 8]}
df = pd.DataFrame (data)

# Create a bar plot

df.plot (kind="'bar', x='Category', y='Values', color='skyblue')
plt.title('Bar Plot using Pandas')

plt.show ()

Key Features of Pandas for Visualization are the following:
- df.plot() supports basic plots (line, bar, histogram, scatter).
- Integration with Matplotlib allows complete customization of plots.

- Simplified interface for quick visualizations.

2. Matplotlib: Low-Level Customization

Matplotlib is a powerful and versatile Python library for creating static, animated, and interactive
visualizations [6]. It provides fine-grained control over plot elements, making it ideal for users
who require detailed customization. As the foundational plotting library in Python, Matplotlib
supports a wide range of chart types, including scatter plots, line charts, and bar charts. While
highly flexible, it can sometimes feel verbose for simple visualizations. Additionally, it serves as
the backbone for many other libraries, such as Seaborn and Plotly, which build upon its capabilities
to offer more user-friendly interfaces..

e Strengths:
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o Fine-grained control over plot elements
e Wide range of plot types
o Suitable for publication-quality figures

o Weaknesses:

e Steeper learning curve for beginners
e More verbose compared to higher-level libraries

Here’s an improved version with examples:

Building Blocks of Matplotlib Plots

Matplotlib plots are composed of several fundamental elements that work together to create clear
and informative visualizations. The key components include:

o Figure (fig)
e Axes (ax)

e Subplots

e Axis

Figure (fig) is the top-level container that holds all plot elements, including one or more subplots.
Think of it as a blank canvas where multiple charts can be arranged.

import matplotlib.pyplot as plt
fig = plt.figure(figsize=(8, 6))

Axes (ax) is the area where data is plotted. A figure can contain multiple axes (subplots), each
displaying a different visualization.

fig, ax = plt.subplots() # Creates a figure with a single plotting
area (axes)

ax.plot ([1, 2, 31, [4, 5, 6]) # Plots a simple line chart
plt.show ()

Subplots are multiple independent plotting areas within the same figure, which are useful for
comparing different datasets side by side.

fig, (axl, ax2) = plt.subplots(l, 2, figsize=(10, 4)) # Two subplots
in one row

axl.plot([1l, 2, 31, [4, 5, 6], label="Dataset 1")

ax2.scatter([1, 2, 31, [6, 5, 4], color='r', label="Dataset 2")
plt.show()

Axis, corresponding to x-axis and y-axis, defines the coordinate space for data visualization. Each
axis can be labeled, scaled, and customized.
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fig, ax = plt.subplots()

ax.plot([10, 20, 30], [5, 15, 25])

ax.set xlabel ("X-Axis Label")

ax.set ylabel ("Y-Axis Label")

ax.set title("Example Plot with Labeled Axes")
plt.show ()

Understanding these components makes it possible to create highly customized and effective
visualizations using Matplotlib.

Matplotlib's plotting flow typically starts by creating a figure and axes, and then adding various
elements (like data points, lines, bars....) to the axes. The immense customization possibilities
allow users to manipulate every plot detail, from titles and axis labels to line styles and colors.

2.1 Scatter Plot

Scatter plots are used to visualize relationships between two continuous variables. In Matplotlib,
scatter plots can be customized extensively by adding colors or markers based on a third categorical
variable:

import matplotlib.pyplot as plt
# Create a figure and axis
fig, ax = plt.subplots()

o

vs 'popular vote %

o

# Scatter plot for 'electoral college %
ax.scatter (df['electoral college %'], df['popular vote %'])
# Set titles and labels

ax.set title('Election Results')

ax.set xlabel ('Electoral College Percentage')

ax.set ylabel ('Popular Vote Percentage')

plt.show()

Itis possible to customize scatter plots further by using color to represent different categories. In the
following example, we color points based on political party affiliation.

# Create a color dictionary based on party affiliation
colrs = {'Rep.': 'r', 'Dem.': 'b'}

# Create figure and axis

fig, ax = plt.subplots()

# Plot data points with color based on party

for i in range(len(df['electoral college percentage'l])):

ax.scatter (df['electoral college $%$']J[i], df['popular vote %'][1i],
color=colrs[df['party'][i]])
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# Set titles and labels

ax.set title('US Elections')

ax.set xlabel ('Electoral College Percentage')
ax.set ylabel ('Popular Vote Percentage')

plt.show ()
2.2 Line Chart

Line charts are commonly used to visualize data trends over time. They are ideal for showing
continuous data points and identifying changes in variables. The following example shows how to
implement a Basic Line Chart using Matplotlib. This example demonstrates how to plot the trend of
the popular vote percentage over several years.

# Create a figure and axis

fig, ax = plt.subplots()

# Plot 'popular vote percentage' over the years
ax.plot(df['year'], df['popular vote percentage'])

# Set titles and labels

ax.set title('US Elections - Popular Vote Over Time')
ax.set xlabel ('Year')

ax.set ylabel ('Popular Vote Percentage')

plt.show ()

The following example shows how to implement a Multiple Lines Chart using Matplotlib. The
following example shows how to plot both the popular vote percentage and the electoral college
percentage over time on the same axes.

# Create a figure and axis

fig, ax = plt.subplots()

# Plot multiple lines

ax.plot(df['year'], df['popular vote percentage'], label='Popular Vote')

ax.plot(df['year'], df['electoral college percentage'], label='Electoral
College')

# Set title, legend, and labels

ax.set title('US Elections - Popular Vote and Electoral College')
ax.legend()

ax.set xlabel ('Year')

ax.set ylabel ('Percentage')
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plt.show ()
2.3 Bar Chart

Bar charts are helpful for visualizing the frequency of categorical data. They can be used to compare
quantities across categories. Matplotlib can create grouped, stacked, and horizontal bar charts. The
following example shows how to implement a Bar Chart using Matplotlib. In the following example,
we use a bar chart to visualize the number of votes by party.

# Count the occurrence of each class (party)
data = df['party'].value counts()
# Get x and y data

points = data.index

frequency = data.values

# Create a figure and axis

fig, ax = plt.subplots()

# Plot a bar chart

ax.bar (points, frequency)

# Set titles and labels

ax.set title('US Votes by Party')
ax.set xlabel ('Party')

ax.set ylabel ('Frequency')

plt.show()
2.4 Advanced Subplots and Layouts

Matplotlib allows multiple plots in the exact figure using subplots. This is especially useful when
comparing different visualizations side by side.

Creating Multiple Subplots:
# Create a figure with 2x1 subplots

fig, (axl, ax2) = plt.subplots(l, 2, figsize=(10, 5))

# First subplot: Scatter plot

o) o)

axl.scatter(df['electoral college %'], df['popular vote %'])
axl.set title('Scatter Plot')

Q

axl.set xlabel ('Electoral College %')

o)

axl.set ylabel ('Popular Vote %')
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# Second subplot: Line plot
ax2.plot(df['year'], df['popular vote %'])
ax2.set title('Line Plot')

ax2.set xlabel ('Year')

ax2.set ylabel ('Popular Vote %'")

# Adjust layout and display
plt.tight layout ()

plt.show ()

This approach makes displaying multiple visualizations in a single figure easy, particularly useful for
exploratory data analysis or reports.

3. Seaborn: Statistical Data Visualization

Seaborn is built on top of Matplotlib and provides a high-level interface for creating attractive and
informative statistical graphics. It works seamlessly with pandas. DataFrames and adds powerful
features for visualizing complex datasets[7] [8].

e Strengths:

o Simplifies statistical plotting
e Aesthetically pleasing default styles
o Ideal for exploring relationships in data

e Weaknesses:

e Less flexibility in customizing individual plot elements compared to Matplotlib

3.1 Pair Plot

Pair plots help visualize relationships between all variables in a dataset. This function plots pairwise
relationships in a dataset and is particularly useful for exploratory data analysis. The following
example shows how to implement a Pair Plot using Seaborn.

import seaborn as sns

# Load example dataset

df = sns.load dataset('iris')
# Create a pair plot

sns.pairplot (df, hue='species')
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plt.show ()

3.2 Heatmap

Heatmaps are used to visualize correlation matrices, showing relationships between variables with
colors. You can easily add annotations and color palettes to highlight specific aspects of the data.
The following example shows how to implement Heatmap using Seaborn.

# Create a correlation matrix

corr = df.corr()

# Create a heatmap

sns.heatmap (corr, annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')

plt.show ()

3.3 Customizing Seaborn Plots

Seaborn also offers additional features, such as themes and color palettes, to enhance the
aesthetics of the plots. Different themes can be applied using sns.set_theme() to match the style of
the visualization with the presentation or report.

4. Plotly: Interactive Visualizations

Plotly is a powerful library for creating interactive, web-based visualizations. It supports a wide range
of chart types, including 3D plots, and enables dynamic exploration through features like zooming,
hovering, and filtering [5]. Designed for interactivity, Plotly excels at embedding visualizations in web
applications and dashboards, making it an ideal choice for dynamic data analysis and presentation.

e Strengths:
o Fully interactive visualizations
e QGreat for web applications and presentations
e Supports a variety of complex visualizations (e.g., 3D plots, geographic maps)

e Weaknesses:

e More resource-intensive than static libraries like Matplotlib or Seaborn
o Slightly different approach to plotting compared to traditional Python libraries
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The following example shows how to implement an Interactive Line Chart using Plotly:

import plotly.express as px

# Create a sample DataFrame

df = px.data.gapminder () .query("country == 'Canada'")
# Create an interactive line chart

fig = px.line(df, x='year', y='gdpPercap', title='GDP Per Capita Over
Time (Canada)')

fig.show ()

With Plotly, it is possible to add interactive capabilities, making it easy to create dashboards and
reports that users can explore.

5. Bokeh: Interactive Visualizations for the Web

Bokeh is a powerful and versatile library for creating interactive visualizations that are well-suited for
web applications [2]. Like Plotly, Bokeh allows you to build interactive plots without writing JavaScript
code. Its main advantage is the ability to generate highly detailed, interactive plots that can be
embedded into websites or Jupyter notebooks. Bokeh's flexibility makes it ideal for developing
dashboards and web-based visual analytics.

e Strengths:

e Optimized for handling large datasets
o Well-suited for web deployment

e Weaknesses:

e Longe learning curve compared to Seaborn or Plotly

The following example shows how to implement an Interactive Line Plot using Bokeh:

from Bokeh.plotting import figure, show
from bokeh.io import output notebook

output notebook ()
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# Create a figure

p = figure(title="Interactive Line Plot in Bokeh", x axis label='X',
y axis label='Y")

# Add a line plot

p.line([1, 2, 3, 4, 5], (2, 4, 6, 8, 10], legend label="y=2X",
line width=2)

# Show the plot in the notebook
show (p)

In this example, we create a simple line plot with Bokeh's figure () method, specifying labels for
the x andy axes. The p.1line () function is used to draw a line based on a list of x and y values, and
the show () function renders the plot interactively in the notebook.

Here's another example that creates an interactive bar plot using Bokeh:
from Bokeh.plotting import figure, show
from bokeh.io import output notebook
from Bokeh.models import HoverTool
from Bokeh.transform import factor cmap
# Ensure Bokeh renders in the notebook
output notebook ()
# Sample data
categories = ['A', 'B', 'C', 'D']
values = [10, 20, 30, 40]
# Create a figure object
p = figure(x range=categories, height=350, title="Category Bar Plot",
toolbar location=None, tools="")
# Create bar chart with colors and hover tool

p.vbar (x=categories, top=values, width=0.9, color=factor cmap('x"',
palette=["'#c9d9d3", '$#718dbf"', '#e84de60"', '#ddb7b1'],
factors=categories))

# Add hover tool to show data values

hover = HoverTool ()

hover.tooltips = [ ("Category", "@x"), ("Value", "@top")]
p.add_tools (hover)

# Customize the plot

p.xgrid.grid line color = None
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p.y _range.start = 0
# Show the plot in the notebook interactively

show (p)

6. Conclusion

Python provides a diverse range of libraries for data visualization, each designed to cater to specific
needs: Pandas, Matplotlib, Seaborn, Plotly, and Bokeh.

Pandas library is ideal for quick and straightforward plots directly from DataFrames. Pandas makes
generating basic visualizations with minimal code easy, allowing you to explore and summarize data
efficiently. Its integration with Matplotlib enables more customization if needed, but Pandas suffices
with its simple syntax and direct functionality for most exploratory tasks.

Matplotlib is known for its flexibility and low-level control, and it is the go-to library for Python users
who need highly customizable plots. With its core components like figures, axes, and subplots,
Matplotlib enables the creation of both simple and complex visualizations, ranging from scatter plots
to advanced multi-plot layouts. It is the perfect choice when you require complete control over every
aspect of the visual output.

Seaborn is built on top of Matplotlib. Seaborn simplifies the creation of aesthetically pleasing
statistical plots. It offers high-level interfaces for drawing attractive and informative visualizations
such as heat maps, box plots, and regression plots. Seaborn's strong emphasis on revealing
statistical relationships makes it an excellent choice for visualizing complex data patterns cleanly
and elegantly.

Plotly specializes in creating interactive and web-ready visualizations. With minimal code, users can
generate dynamic, zoomable, and hover-friendly charts easily embedded into websites or shared in
reports. Plotly is ideal for creating engaging visualizations, particularly for presentations or interactive
dashboards where user engagement with the data is essential [4].

Like Plotly, Bokeh focuses on creating interactive visualizations and emphasizes the ability to handle
large datasets and generate web-ready plots. It allows for detailed interactivity, including zooming,
panning, and tooltips, making it well-suited for applications where real-time data exploration is
necessary.

By understanding and combining these libraries, it is possible to create powerful visualizations
tailored to different stages of data analysis, from quick exploration and statistical insights to
polished, interactive presentations. Each library serves specific needs, and choosing the right one—
or using them in tandem—will allow you to present your data effectively, whether for exploration or
final reporting.
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