LISBON
SCHOOL OF
ECONOMICS &
MANAGEMENT
UNIVERSIDADE DE LISBOA

Carlos J. Costa

DIMENSIONALITY REDUCTION
ALGORITHMS

(2021)

Summary

Dimensionality reduction
Feature Extraction and Feature Selection

Dimensionally reduction (PCA, LDA, NMF, TSVD)
Feature Selection

Dimensional Reduction Algorithms

* dimensionality reduction seek and exploit the inherent
structure in the data,

* unsupervised learning

Dimensional Reduction Algorithms

 Feature Extraction
 Feature Selection

Dimensional Reduction Algorithms

* Feature Extraction
— PCA (principal Components analysis)
— LDA (Linear Discriminant Analysis)
— NMF (Non-negative Matrix Factorization)
— TSVD (Truncate Singular Value Decomposition)

PCA

original data space

RET
g

]

5

| | =y |

=1

|j_I—J_

i=h

I

component space

|

e e)

PCA

Z2d

PC1

Gene 1

Gene 2

PCA

Standardization
Covariance Matrix computation.

Compute the eigenvectors and eigenvalues of the covariance
matrix to identify the principal components

Feature Vector
Recast the Data Along the Principal Components Axes

1 | # Load libraries
2 from sklearn import datasetls
= from sklearn.decomposition import PCA

1 # Load the Iris flower dataset:
iris = datasets.load iris()

3 | X =:iris.data

4 y = iris.target

1 # Create an PCA that will reduce the data down to 2 feature
2 PCAModel = PCA(n components=Z)

run an PCA and use it to transform the features
5 XPCA = PCAModel.fit(X) .transform(x)

1 # Print the number of features
2 print ('Original number of features:', X.shape[l])
2 print ('Reduced number of features:', XPCA.shapel[l])

Original number of features: 4

Reduced number of features: 2

1 ## View the ratio of explained variance
2 PCAModel.explained variance ratio

array([0.92461621, 0.05301557])

LDA

- Linear Discriminant Analysis (LDA)

- |Is a linear transformation techniques that is commonly used for
dimensionality reduction (like PCA)

- Reducing features by maximizing class separation

1 # Lead libraries
2 from sklearn import datasets
from sklearn.discriminant analysis import LinearDiscriminantAnalysis

Load the Iris flower dataset:
iris = datasets.load iris()

X = iris.data

v = iris.target

= L)

Create an ILDA that will reduce the data deown to 1 feature
2 ldaModel = LinearDiscriminantAnalysis(n components=2)

4 # run an LDA and use it te transform the features
5 XLda = ldaModel .fit (X, ¥).transform(X)

Print the number of features
print ('Original number of features:', X.shape(l])
print ('Reduced number of features:', XLda.shape[l]l)

Original number of features: 4
Reduced number of features: 2

View the ratio of explained variance
ldaModel.explained variance ratio

array([0.99147248, 0.008527521)

NMF

Non-negative Matrix Factorization
Performs matrix factorization

It can be applied for:

— Recommender Systems,
— Collaborative Filtering

— topic modelling

— dimensionality reduction.

Does not provides the explained variance

NMF

Load likbraries
from sklearn import datasets
from sklearn.decomposition import NME

Load the Iris flower dataset:
iris = datasets.load iris()
Xi= diris.data

Create an NMF that will reduce the data down to 2 feature
NMFModel = NMF{(n components=2)

run an LDA and use it to transform the features
¥NMF = NMFModel.fit (X).transform ()

Print the number of features
print ("Original mumber of features:', X.shapel[l])
print ('Reduced number of features:', XNMF.shapel[l])

TSVD

- Truncate Singular Value Decomposition
- Used in sparce feature matrix

TSVD

from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import TruncatedSVD

4 from scipy.sparse import csr matrix

5 from sklearn import datasets
import numpy as np

1l # Load the data
2 digits = datasets.lecad digits()

Standardize the feature matrix

X = StandardScaler().fit transform(digits.data)
5 # Make sparse matrix

¥ sparse = csr_matriX{X)

1 # Create a TSVD

2 tsvdModel = TruncatedSVD{n_components=10)

1 | # Conduct TSVD on sparse matrix
Z2 X sparse tsvd = tsvdModel.fit[X_sparse).transformix_sparse)

1 | # Show results
Z | print("Original number of features:', X sparsc.shapelll)

3 | print ('Reduced number of features:', X sparse tsvd.shapel[l]l)

Original number of features: 64
Reduced number of features: 10

1 # Sum of first three compr ! i
tsvdModel .explained variance ratio [0

0.30035938B538627534

Dimensional Reduction Algorithms

» Feature Selection
— Thresholding numerical features variance
— Thresholding binary features variance
— Handling high correlated features

— Removing irrelevant features for Classification
— RFEC

Thresholding numerical features variance

 The dataset has set of numerical features

Approach:
 Remove those with the low variance
* Low variance likely contains little information

Thresholding numerical features variance

from sklearn import datasets
from sklearn.feature selection import VarianceThreshold

Load 1iris data

with a
Conduct variance thresholding
XHighVariance = thresholder.fit transform(X)
rows with features with variances above

CAresnoLlaq

XHigthrianceE@:S}

array(EE5.2, 1.9, ©.2],
[4:98; 14, 0:2];
[4.7,; 1.3:; 0.21,
[4.6, 1.5, 0.21,
[5 5 lof 0:2]11)

Handling high correlated features

Load libraries
import pandas as pd
import numpy as np

e matrix with two highly correlated features
e, 1z, 11,
[5, 10, 0OI,

[4, 8, 1],
3, 3, 01,
[z, 5, 11,
1, 2, 01,
[3, 6, 11,

[5, 10, 0],
(9. A9, 1l
Convert feature matrix inte DataFrame

#
df = pd.DataFrame (X)

: ate correlation matrix

corr matrix = df.corr() .abs()

Select upper triangle of correlation matriﬂ

upper = corr matrix.where(np.triu(np.ones(corr matrix.shape), k=1).astype(np.bool))
Find index of feature columns with correlation greater than 0.95

to drop = [column for column in upper.columns if any(upperl[column] > 0.95})1

Drop features
df.drop(df[to_drop], axis=1)

Removing irrelevant features for
Classification

Categorical features:

» Calculate Chi-square statistic between each feature and
target

Quantitative features:

e Calculate ANOVA F-Value between each feature and
target

Recursive Eliminating Feature

Load libraries

from sklearn.datasets import make_regression
from sklearn.feature selection import RFECV
from sklearn import datasets, linear model

import warnings

Suppress an

warnings. fllterwarnlngs{actlon— ignore

matrix, ector, and
ssion(n samples = 10000,
n features = 100,

n informative = 2,
random state = 1)

a2 PEeT =
adl Iegrcs

C =2 a 13
olsModel = linear _model . LlnearRegre551on{}

that

step=1, Scoring=‘neg_mean_squared_error‘}

scores features by mean squared errors

4

Number =]
rfecvModel.n features

Conclusion

Dimensionality reduction
Feature Extraction and Feature Selection

Dimensionally reduction (PCA, LDA, NMF, TSVD)
Feature Selection

