[Wooldridge (2013) Chapter 1 and Chapter 2 (sections 2.1 and 2.2)]

- Major uses of Econometrics
- Basic Ingredients of an empirical project
- Formulate a model (example)
- The Question of Causality
- Misspecification Testing
- Types of Data
- The Simple Regression Model
  - Introduction
  - Ordinary Least Squares (OLS)
  - Deriving OLS Estimates
  - Alternative approach to derivation
  - Some definitions

### The Nature of Econometrics and Economic Data Major uses of Econometrics

- O Describing Economic Reality.
- Itesting hypotheses about Economic Theory.
- Forecast future economic activity.

2/35

#### The Nature of Econometrics and Economic Data Basic Ingredients of an empirical project

### Flow chart for the Steps of an Empirical Study



**Remark:** This module is not about Economic Theory and gathering data. A D A A B A A B A A B A

Economic Theory suggests interesting relations between variables.

### Example: Returns to education

- A model of human capital investment predicts that getting more education should lead to higher wages.
- However, let us look at a data set: US national survey of people in the labour force that already completed their education, 528 people.

母 と く き と く き と



- People with the same years of education earn different hourly wages.
- There is a distribution for the hourly wages conditional on the years of education.

- How can we study if the evidence of the data supports Economic Theory?
- A possibility is to look at means of wages conditional on the years of Education.



#### Scatterplot - Hourly wages (in dollars)



We can see that the mean of wages vary with the years of Education.

- Hence, the object that we are interested in studying is the mean of wages given the years of Education: *E* [*Wages*|*Education*].
- To simplify computations and the interpretation of results usually we assume a model for *E* [*Wages*|*Education*].
- A possible model for *E* [*Wages*|*Education*] is

 $E[Wages|Education] = \beta_0 + \beta_1 Education.$ 

• Notice that for any value *a* 

 $\beta_1 = E[Wages|Education = a + 1] - E[Wages|Education = a].$ 

Hence,  $\beta_1$  is the change of the expected value of *Wages* for one additional year of Education.

• Equivalently, the model can be written in the more familiar way

$$Wages = \beta_0 + \beta_1 Education + u$$
,

where E[u|Education] = 0.

- *u* is denoted the *error term*.
- This model is known as *The Simple Regression Model*.
- It is linear in the parameters  $\beta_0$  and  $\beta_1$ .

The estimate of  $\beta_1$ , is the return to education, but can it be considered causal?

- We would like to prove that the effect is causal.
- However it is impossible to prove causality. If  $\beta_1 \neq 0$  and we have a sound theoretical economic argument, this might indicate that there is a causal relation. However this is far from being a proof.

### The Nature of Econometrics and Economic Data Misspecification Testing

### Major challenges:

- Inference procedures depend of the characteristics of the distribution of *u* given *Education*.
- The model

$$Wages = \beta_0 + \beta_1 Education + u$$

might be misspecified.

- Confounding Effects (omitted factors).
- Endogeneity.

David Hendry's 3 Golden rules of Econometrics:

- Itest.
- 2 Test.
- Itest.

< E ≥ < E ≥</p>

### The Nature of Econometrics and Economic Data Types of Data

- Cross Sectional.
- Time Series.
- Panel

12 / 35

### The Nature of Econometrics and Economic Data Types of Data – Cross Sectional

- Cross-sectional data is usually a random sample.
- Each observation is a new individual, household, firm, etc.. with information at a point in time.
- **Examples:** Data on expenditures, income, hours of work, household composition, assets, investments, employment, etc..
- If the data is not a random sample, we have a sample-selection problem.

### The Nature of Econometrics and Economic Data Types of Data – Cross Sectional

| obsno | wage  | educ | exper | female | married |
|-------|-------|------|-------|--------|---------|
| 1     | 3.10  | 11   | 2     | 1      | 0       |
| 2     | 3.24  | 12   | 22    | 1      | 1       |
| 3     | 3.00  | 11   | 2     | 0      | 0       |
| 4     | 6.00  | 8    | 44    | 0      | 1       |
| 5     | 5.30  | 12   | 7     | 0      | 1       |
| :     | 1     | 1    | 1     | :      | ÷       |
| 525   | 11.56 | 16   | 5     | 0      | 1       |
| 526   | 3.50  | 14   | 5     | 1      | 0       |

#### A Cross-Sectional Data Set on Wages and Other Individual Characteristics

▲□▶▲□▶▲□▶▲□▶ = つく⊙

### The Nature of Econometrics and Economic Data Types of Data – Time Series

- Time series data has a separate observation for each time period.
- Typically Macroeconomic measures: GDP, Inflation, Prices, Exchange Rates, Interest Rates, etc..
- Financial data: Stock Prices, Bonds and other financial instruments at frequencies that range from minute to minute up to annual (useful to analyse financial markets).
- Since not a random sample, different problems to consider.
- Trends and seasonality will be important.

### The Nature of Econometrics and Economic Data Types of Data – Time Series

#### Minimum Wage, Unemployment, and Related Data for Puerto Rico

| obsno | year | avgmin | avgcov | unemp | gnp    |
|-------|------|--------|--------|-------|--------|
| 1     | 1950 | 0.20   | 20.1   | 15.4  | 878.7  |
| 2     | 1951 | 0.21   | 20.7   | 16.0  | 925.0  |
| 3     | 1952 | 0.23   | 22.6   | 14.8  | 1015.9 |
| :     | :    | 1      | :      | :     | :      |
| 37    | 1986 | 3.35   | 58.1   | 18.9  | 4281.6 |
| 38    | 1987 | 3.35   | 58.2   | 16.8  | 4496.7 |

### The Nature of Econometrics and Economic Data Types of Data – Panel

- Can follow the same random individual observations over time known as panel data or longitudinal data.
- Used to study dynamic aspects of household and firm behaviour and to measure the impact of variables that vary predominantly over time.

### The Nature of Econometrics and Economic Data Types of Data – Panel

| obsno | city | year | murders | population | unem | police |
|-------|------|------|---------|------------|------|--------|
| 1     | 1    | 1986 | 5       | 350000     | 8.7  | 440    |
| 2     | 1    | 1990 | 8       | 359200     | 7.2  | 471    |
| 3     | 2    | 1986 | 2       | 64300      | 5.4  | 75     |
| 4     | 2    | 1990 | 1       | 65100      | 5.5  | 75     |
| :     | :    | :    | :       | :          | :    | 1      |
| 297   | 149  | 1986 | 10      | 260700     | 9.6  | 286    |
| 298   | 149  | 1990 | 6       | 245000     | 9.8  | 334    |
| 299   | 150  | 1986 | 25      | 543000     | 4.3  | 520    |
| 300   | 150  | 1990 | 32      | 546200     | 5.2  | 493    |

A Two-Year Panel Data Set on City Crime Statistics

ロト (部) (注) (注) (注) うんの

The Simple Regression Model - Introduction

$$E\left[y|x\right] = \beta_0 + \beta_1 x$$

or equivalently

$$y = \beta_0 + \beta_1 x + u,$$
  
$$E[u|x] = 0.$$

In the model:

- $\beta_0$  is known as the *intercept parameter* or *constant term*.
- $\beta_1$  is known as the *slope parameter*.

The Simple Regression Model - Introduction

| Terminology for Simple Regression |                      |  |  |  |
|-----------------------------------|----------------------|--|--|--|
| у                                 | x                    |  |  |  |
| Dependent variable                | Independent variable |  |  |  |
| Explained variable                | Explanatory variable |  |  |  |
| Response variable                 | Control variable     |  |  |  |
| Predicted variable                | Predictor variable   |  |  |  |
| Regressand                        | Regressor            |  |  |  |

### The Simple Regression Model Introduction

$$y = \beta_0 + \beta_1 x + u,$$
  
$$\Xi[u|x] = 0.$$

•  $\beta_0 + \beta_1 x$  is the *systematic part* of *y*.

1

• *u*, the error term, is the *unsystematic part* of *y*.

21 / 35

The Simple Regression Model - Introduction

E(y|x) as a linear function of x, where for any x the distribution of y is centered about E(y|x).



Basic idea of regression is to estimate the population parameters from a sample.

- Let {(*x<sub>i</sub>*, *y<sub>i</sub>*) : *i* = 1, . . . , *n*} denote a random sample of size *n* from the population.
- For each observation in this sample, it will be the case that

$$y_i = \beta_0 + \beta_1 x_i + u_i.$$

聞 と く ヨ と く ヨ と 。

The Simple Regression Model -Deriving OLS Estimates

• To derive the OLS estimates we need to realize that our main assumption of E(u|x) = 0 also implies that

$$E(u) = 0,$$
  

$$Cov(x, u) = E(xu) = 0.$$

• Why? Because of the *Law of Iterated Expectations*.

The Simple Regression Model -Deriving OLS Estimates

We can write our 2 restrictions just in terms of *x*, *y*,  $\beta_0$  and  $\beta_1$ , since  $u = y - \beta_0 - \beta_1 x$ :

$$E(y - \beta_0 - \beta_1 x) = 0, E[x(y - \beta_0 - \beta_1 x)] = 0.$$

These are called *moment restrictions*.

### The Nature of Econometrics and Economic Data The Simple Regression Model -Deriving OLS Estimates

We use the *Method of moments* to propose an estimator for the parameters β<sub>0</sub> and β<sub>1</sub>. The moment restrictions

$$E(y - \beta_0 - \beta_1 x) = 0, E[x(y - \beta_0 - \beta_1 x)] = 0,$$

correspond to population means of random variables. Hence the estimator suggested by the Method of Moments is obtained if we replace population means by sample means.

• What does this mean? Recall that for E(X), the mean of a population distribution, a sample estimator of E(X) is simply the arithmetic mean of the sample  $\overline{X} = \sum_{i=1}^{n} X_i / n$ .

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト … 臣

The Simple Regression Model -Deriving OLS Estimates

• The moment restrictions in the population:

$$E(y - \beta_0 - \beta_1 x) = 0, E[x(y - \beta_0 - \beta_1 x)] = 0.$$

• We want to choose values of the parameters that will ensure that the sample versions of our moment restrictions are true. The sample versions are as follows:

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0,$$
  
$$\frac{1}{n} \sum_{i=1}^{n} x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0.$$

The OLS estimator is given by the pair  $(\hat{\beta}_0, \hat{\beta}_1)$  that solves these equations.

The Simple Regression Model -Deriving OLS Estimates

The solution of this system of equations is given by

$$egin{array}{rcl} \hat{eta}_{0} &=& ar{y} - \hat{eta}_{1}ar{x}, \ \hat{eta}_{1} &=& rac{\sum_{i=1}^{n} \left(x_{i} - ar{x}
ight) \left(y_{i} - ar{y}
ight)}{\sum_{i=1}^{n} \left(x_{i} - ar{x}
ight)^{2}}, \end{array}$$

where  $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ ,  $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ , and it is assumed that  $\sum_{i=1}^{n} (x_i - \bar{x})^2 > 0.$ 

イロト イポト イヨト イヨト 三国

The Simple Regression Model -Alternative approach to derivation

- There is an alternative justification for this estimator that justifies its name.
- This estimator is known as *Ordinary Least Squares* estimator because it is fitting a line through the sample points such that the mean of squared residuals is as small as possible.
- Consider the function

۷

$$S = \frac{1}{n} \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2.$$

- This function takes its minimum when  $b_0 = \hat{\beta}_0$  and  $b_1 = \hat{\beta}_1$ .
- To see this notice that by using calculus to solve the minimization problem for the two parameters you obtain the following first order conditions:

$$\begin{cases} \frac{\partial S}{\partial b_0} = -\frac{2}{n} \sum_{i=1}^n (y_i - b_0 - b_1 x_i) = 0\\ \frac{\partial S}{\partial b_1} = -\frac{2}{n} \sum_{i=1}^n x_i (y_i - b_0 - b_1 x_i) = 0 \end{cases}$$

• These conditions are the same as we obtained before, multiplied by -2. Hence the solution is the same:  $b_0 = \hat{\beta}_0$  and  $b_1 = \hat{\beta}_1$ 

The Simple Regression Model -Some definitions

• The the *fitted values* are defined as

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i,$$

i = 1, ..., n.

• The *residual*,  $\hat{u}_i$  is the difference between the sample point and the fitted line (sample regression function)

$$\hat{u}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$$
  
=  $y_i - \hat{y}_i$ ,

i = 1, ..., n.

The Simple Regression Model -Some definitions

Sample regression line (fitted values), sample data points and the associated estimated error terms:



31 / 35

### The Nature of Econometrics and Economic Data Some definitions

Note the differences:

• Population regression line

$$E\left[y_i|x_i\right] = \beta_0 + \beta_1 x_i$$

i = 1, ..., n.

• Sample regression line (fitted values)

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i,$$

i = 1, ..., n.

A Note on Terminology: Often we indicate that the equation

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i,$$

i = 1, ..., n, was obtained by OLS by saying that we run a regression of y on x, or that we regress y on x.

### The Nature of Econometrics and Economic Data The Simple Regression Estimates

### Example:

• Regression of Wages on Education

Dependent valiable: Wages

Estimation Method: Ordinary Least Squares

Sample size: 528

| Regressors | Estimates |
|------------|-----------|
| Intercept  | -1.60468  |
| Education  | 0.81395   |

Hence the fitted values are equal to

 $\widehat{Wages} = -1.60468 + 0.81395 \times Education.$ 

#### Interpretation:

- This means that one extra year of schooling increases the average hourly wages by \$0.81395.
- The results should be interpreted with caution as the intercept of -1.60468 means that the average hourly wages of people with no education is -1.60468 which does not make sense. In the sample we do not have people with less than 6 years of education and in this case  $\widehat{Wages} = -1.60468 + 0.81395 \times 6 = 3.279$ .

(本部) (本語) (本語) (二語)

### The Nature of Econometrics and Economic Data The Simple Regression Estimates

# Scatterplot and the sample regression line - Hourly wages (in dollars)

