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Multiple Regression Analysis: Inference
Introduction

Examples of test of hypothesis
Consider the model:

bwgth = β0 + β1cigs+ β2educ+ β3npvis+ β4age+ u,

where

bwgth -birth weight,
cigs -cigarettes smoked per day while pregnant,
educ -years of schooling for the mother,
npvis -total number of prenatal visits,
age -Age of the mother.
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Multiple Regression Analysis: Inference
Introduction

bwgth = β0 + β1cigs+ β2educ+ β3npvis+ β4age+ u,

Is the partial effect of age relevant after controlling for cigs,
education and npvis?

H0 : β4 = 0 vs H1 : β4 6= 0,
[Individual statistical significance]

Is the effect of smoking 10 cigarettes canceled by the effect of one
more prenatal visit?

H0 : 10β1 + β3 = 0 vs H1 : 10β1 + β3 6= 0,
[single linear combination of parameters]

3 / 56



Multiple Regression Analysis: Inference
Introduction

bwgth = β0 + β1cigs+ β2educ+ β3npvis+ β4age+ u,

Are the partial effect of age, education and npvis jointly irrelevant
after controlling for the number of cigarettes smoked?

H0 : β2 = β3 = β4 = 0
vs

H1 : β2 6= 0 and/or β3 6= 0 and/or β4 6= 0,
[jointly statistical significance; Exclusion restrictions]

Is there any variable in the equation relevant to explain the birth
weight?

H0 : β1 = β2 = β3 = β4 = 0
vs

H1 : β1 6= 0 and/or β2 6= 0 and/or β3 6= 0 and/or β4 6= 0,
[Overall significance of the regression]
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Multiple Regression Analysis: Inference
Assumptions of the Classical Linear Model (CLM)

So far, we know that given the Gauss-Markov assumptions, OLS
is BLUE,
In order to do classical hypothesis testing, we need to add
another assumption (beyond the Gauss-Markov assumptions),
Assume that u is independent of x1,x2,. . . ,xk and u is normally
distributed with zero mean and variance σ2: u � N

�
0, σ2� .
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Multiple Regression Analysis: Inference
CLM Assumptions (cont)

Under CLM, OLS is not only BLUE, but is the minimum variance
unbiased estimator:

BLUE means that the OLS estimator is the most efficient among the
class of linear unbiased estimators.
Under CLM the OLS estimator is the most efficient among all
unbiased estimators.

We can summarize the population assumptions of CLM as
follows

yjx � N(β0 + β1x1 + . . .+ βkxk, σ2).

While for now we just assume normality, clear that sometimes
not the case.
Large samples will let us drop normality.

6 / 56



Multiple Regression Analysis: Inference

The homoskedastic normal distribution with a single explanatory
variable

.
.

x1 x2

E(y|x) = β0 + β1x

f(y|x)

Normal
distributions
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Multiple Regression Analysis: Inference
Normal Sampling Distributions

Under the CLM assumption, conditional on the sample values of the
independent variables for j = 0, ..., k

β̂j � N(βj, Var(β̂j)),

so that
β̂j � βj

sd(β̂j)
� N(0, 1),

where sd(β̂j) =
q

Var(β̂j).

β̂j is distributed normally because it is a linear combination of
independent errors that have the normal distribution.
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Multiple Regression Analysis: Inference
The t Test

Under the CLM assumptions

β̂j � βj

se(β̂j)
� t(n� k� 1),

Note this is a t� student distribution because we estimate sd(β̂j)

by the standard error of β̂j, se(β̂j),

Note the degrees of freedom: n� k� 1 (sample size-number of
parameters of the model).
In the simple regression model k = 1.
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Multiple Regression Analysis: Inference
The t Test (cont)

Knowing the sampling distribution for the standardized
estimator allows us to carry out hypothesis tests.
Start with a null hypothesis H0 : βj = bj, where bj is a particular
value.
For example, H0 : βj = 0. If do not reject null, then xj has no
effect on the conditional mean of y, controlling for other x’s.
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Multiple Regression Analysis: Inference
The t Test (cont)

To perform our test we first need to form the statistic : tj =
β̂j�bj

se(β̂j)
.

Besides our null, H0, we need an alternative hypothesis, H1, and
a significance level α.

Alternatives:

H1 : βj > bj and H1 : βj < bj are one-sided.

H1 : βj 6= bj is a two-sided alternative.
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Multiple Regression Analysis: Inference
One-Sided Alternatives (cont)

yi = β0 + β1xi1 + . . . + βkxik + ui

H0 : βj = bj vs H1 : βj > bj.
Critical Value: tα is defined as the constant that satisfies
P(tj > tα) = α, where tj has the t(n� k� 1) distribution.
Equivalently P(tj < tα) = 1� α.
Rejection rule: Reject H0 if the value of the t-statistic > tα.
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Multiple Regression Analysis: Inference
One-Sided Alternatives (cont)

Example: Consider the following regression where the standard
errors are in brackets:

\log (wages) = 0.284
(0.104)

+ 0.092
(0.007)

educ+ 0.0041
(0.0017)

exper+ 0.022
(0.003)

tenure,

n = 526, R2 = 0.316

Test whether, after controlling for education and tenure, higher
work experience leads to higher hourly wages. Use the 5% and
the 1% significance levels.
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Multiple Regression Analysis: Inference
One-Sided Alternatives (cont)

yi = β0 + β1xi1 + . . . + βkxik + ui

H0 : βj = bj vs H1 : βj < bj.
Critical Value: �tα that is the constant that satisfies
P(tj < �tα) = α. where tj has the t(n� k� 1) distribution.
Equivalently P(tj > �tα) = 1� α.
Rejection rule: Reject H0 if the value of the t-statistic < �tα.

tα
0

α (1 − α)

Fail to rejectreject

tα
0

α (1 − α)

Fail to rejectreject
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Multiple Regression Analysis: Inference
One-Sided Alternatives (cont)

Example: Student performance and school size

Consider the following regression

\math10 = 2.274
(6.113)

+ 0.00046
(0.0001)

totcomp+ 0.048
(0.04)

staff � 0.0002
(0.00022)

enroll,

n = 408, R2 = 0.0541

where

math10 -percentage of students passing math test
totcomp -average annual teacher compensation
staff -staff per one thousand students
enroll -School enrollment=school size

Test whether smaller school size leads to better student
performance at 5% level and 10% level.
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Multiple Regression Analysis: Inference
Two-Sided Alternatives

yi = β0 + β1xi1 + . . . + βkxik + ui

H0 : βj = bj vs H1 : βj 6= bj.
Critical Value: tα/2 is defined as the constant that satisfies
P(tj > tα/2) = α/2, where tj has the t(n� k� 1) distribution.
Rejection rule: Reject H0 if the absolute value of the t-statistic
> tα/2.

tα/2tα/2 0

α/2(1 − α)α/2
reject reject

Fail to reject

tα/2tα/2 0

α/2(1 − α)α/2
reject reject

Fail to reject

0

α/2(1 − α)α/2
reject reject

Fail to reject
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Multiple Regression Analysis: Inference
Two-Sided Alternatives

Example: Campus crime and enrollment
An interesting hypothesis is whether crime increases by one percent
if enrollment is increased by one percent

\log (crime) = �6.63
(1.03)

+ 1.27
(0.11)

log (enroll) ,

n = 97, R2 = 0.0541

The estimate 1.27 is different from one but is this difference
statistically significant? (use the 5% significance level)?
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Multiple Regression Analysis: Inference
Two-Sided Alternatives

Remarks on H0 : βj = 0 vs H1 : βj 6= 0

The quantity tj =
β̂j

se(β̂j)
is called the t-ratio.

If we reject the null, we typically say “xj is statistically significant
at the α level”.
If we fail to reject the null, we typically say “xj is statistically
insignificant at the α level”.
If asked to test whether a regressor is statistical significant, the
alternative is assumed to be two-sided.
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Multiple Regression Analysis: Inference
Two-Sided Alternatives

Example: Consider the following regression where the standard
errors are in brackets:

\log (wages) = 0.284
(0.104)

+ 0.092
(0.007)

educ+ 0.0041
(0.0017)

exper+ 0.022
(0.003)

tenure,

n = 526, R2 = 0.316

Test whether, after controlling for experience and tenure, education is
statistically significant at 5% and the 1% significance levels.
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Multiple Regression Analysis: Inference
p-values

The smallest significance level at which the null hypothesis is
still rejected, is called the p-value of the hypothesis test
A small p-value is evidence against the null hypothesis because
one would reject the null hypothesis even at small significance
levels
A large p-value is evidence in favor of the null hypothesis

20 / 56



Multiple Regression Analysis: Inference
Computing p-values for t tests

Let tact
j be the actual value of the t-statistic in the sample.

If the alternative hypothesis is H1 : βj > bj,

p� value = P
�

tj > tact
j

�
.

If the alternative hypothesis is H1 : βj < bj,

p� value = P
�

tj < tact
j

�
.

If the alternative hypothesis is H1 : βj 6= bj

p� value = P
���tj

�� > jtact
j j
�

.

Rejection rule: If p� value < α, we reject the null hypothesis.

21 / 56



Multiple Regression Analysis: Inference

Example: We are studying the returns to education at junior colleges
and four year colleges (universities) and we have the model

log (wages) = β0 + β1jc+ β2univ+ β3exper+ u,

where:

jc =number of years attending a two year college
univ = number of years at a four year college
exper = months in workforce
Data set taken from Kane and Rouse, 1995, “Labor Market
Returns to Two- and Four-Year College", American Economic
Review 85, 600-614. Sample size n = 6, 763.
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Multiple Regression Analysis: Inference

Running a regression of log (wages) on jc, univ and exper we obtain:

Estimate Std. Err. t-Ratio p-Value
Intercept 1.47233 0.02106 69.911 0

exper 0.00494 0.00016 30.901 0
jc 0.0667 0.00683 9.765 0

univ 0.07688 0.00231 33.28 0

n = 6763, R2 = 0.2224.

This is the typical output of a software in a regression model. The
p-value computed in this table is for the hypothesis H0 : βj = 0 vs
H1 : βj 6= 0.

23 / 56



Multiple Regression Analysis: Inference
Confidence Intervals

Another way to use classical statistical testing is to construct a
confidence interval using the same critical value as was used for
a two-sided test.
Using

β̂j � βj

se(β̂j)
� t(n� k� 1),

we have

P(β̂j � tα/2se(β̂j) < β < β̂j + tα/2se(β̂j)) = 1� α,

where tα/2 the constant that satisfies P(tj < �tα/2) = α/2, where
tj is a random variable with distribution t(n� k� 1).
Equivalently P(tj > tα/2) = α/2.
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Multiple Regression Analysis: Inference
Confidence Intervals

Hence a 100(1� α)% confidence interval is defined as

(β̂j � tα/2se(β̂j), β̂j + tα/2se(β̂j)),

In repeated samples, the interval that is constructed in the above
way will cover the population regression coefficient in
100(1� α)% of the cases. The interval that we compute with the
actual sample is one of these intervals
Relationship between confidence interval and hypotheses tests:

bj /2 conf . interval ) reject H0 : βj = bj in favour of H1 : βj 6= bj

at 100α% level.
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Multiple Regression Analysis: Inference
Confidence Intervals

Example: Running a regression of log (wages) on jc, univ and exper we
obtain:

Estimate Std. Err. t-Ratio p-Value
Intercept 1.47233 0.02106 69.911 0

exper 0.00494 0.00016 30.901 0
jc 0.0667 0.00683 9.765 0

univ 0.07688 0.00231 33.28 0

n = 6763, R2 = 0.2224.

Construct a 90% confidence interval for the coefficient of the
variable exper.
Construct a 95% confidence interval for the coefficient of the
variable jc.
Construct a 99% confidence interval for the coefficient of the
variable univ.
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Multiple Regression Analysis: Inference
Testing a Linear Combination

Suppose instead of testing whether β1 is equal to a constant, you
want to test if it is equal to another parameter, that is
H0 : β1 = β2.
Use same basic procedure for forming a t statistic

t =
β̂1 � β̂2

se(β̂1 � β̂2)
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Multiple Regression Analysis: Inference
Testing Linear Combination (cont)

Notice that the standard error of β̂1 � β̂2, se(β̂1 � β̂2), is an estimator
of the standard deviation of β̂1 � β̂2 :q

Var
�

β̂1 � β̂2
�

Since
Var(β̂1 � β̂2) = Var(β̂1) +Var(β̂2)� 2Cov(β̂1, β̂2),

an estimator for
q

Var(β̂1 � β̂2) is given by

se(β̂1 � β̂2) =
q

se(β̂1)
2 + se(β̂2)

2 � 2s12,

where s12 is an estimate of Cov(β̂1, β̂2).
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Multiple Regression Analysis: Inference
Testing a Linear Combination (cont)

In some cases you can always restate the problem to get the test you
want.
Example: Consider the model on the returns to education at junior
colleges and four year colleges

log (wages) = β0 + β1jc+ β2univ+ β3exper+ u,

We would like to test whether one year at a junior college is
worth one year at a university, that is H0 : β1 = β2.
The alternative hypothesis is that a year at junior college is worth
less than a year at a university. That is H1 : β1 < β2.
One can test H0 by using the approach described before.
However there is an easier way.
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Multiple Regression Analysis: Inference
Testing a Linear Combination (cont)

Define a new parameter θ = β1 � β2. Hence the null hypothesis
becomes

H0 : θ = 0

and the alternative hypothesis becomes:

H1 : θ < 0,

We can always write the model in terms of θ. Under H0, the model is
equivalent to

log (wages) = β0 + θjc+ β2totcoll+ β3exper+ u,

where totcoll = jc+ univ.
This model is linear in the parameters so one can use the usual tests
on hypothesis for single parameters described before.
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Multiple Regression Analysis: Inference
Testing a Linear Combination (cont)

Running the regression of log (wages) on exper, jc and totcoll we
obtain:

Estimate Std.Err. t-ratio
Intercept 1.47233 0.02106 69.911

exper 0.00494 0.00016 30.901
jc �0.01018 0.00694 �1.467

totcoll 0.07688 0.00231 33.28

,

n = 6763, R2 = 0.2224

Test H0 : θ = 0 vs H1 : θ < 0 (use the 5% significance level).
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Multiple Regression Analysis: Inference
Testing a Linear Combinations (cont)

Example (cont):

This is the same model as originally, but now you get a standard
error for β̂1 � β̂2 directly from the basic regression
Any linear combination of parameters could be tested in a
similar manner
Other examples of hypotheses about a single linear combination
of parameters: β1 = 1+ β2; β1 = 5β2 ; β1 = �(1/2)β2 ; etc.
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Multiple Regression Analysis: Inference
Multiple Linear Restrictions

Everything we’ve done so far has involved testing a single linear
restriction, (e.g. β1 = 0 or β1 = β2)
However, we may want to jointly test multiple hypotheses about
our parameters.
A typical example is testing “exclusion restrictions” – we want to
know if a group of parameters are all equal to zero.
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Multiple Regression Analysis: Inference
Testing Exclusion Restrictions

Now the null hypothesis might be something like
H0 : β1 = 0, ..., βq = 0 in the model

y = β0 + β1x1 + ...+ βqxq + ...+ βkxk + u.

That is, we want to test whether the parameters of the first q
regressors (x1 to xq) are equal to zero.
The alternative is just H1: At least one of the βj 6= 0, j = 1, ..., q.

Can’t just check each t statistic separately, because we want to
know if the q parameters are jointly significant at a given level –
it is possible for none to be individually significant at that level.
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Multiple Regression Analysis: Inference
Exclusion Restrictions (cont)

To do the test we need to estimate the “restricted model” without
x1, . . . , xq included, as well as the “unrestricted model” with all
x’s included and compute

F =
(SSRr � SSRur) /q
SSRur/ (n� k� 1)

,

where SSRr is the sum of squared residuals of the restricted
model and SSRur is the sum of squared residuals of the
unrestricted model.
Intuitively, we want to know if the change in SSR is big enough
to warrant inclusion of x1, . . . , xq.
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Multiple Regression Analysis: Inference
The F statistic

The F statistic is always positive, since the SSR from the
restricted model can’t be less than the SSR from the unrestricted.
Essentially the F statistic is measuring the relative increase in
SSR when moving from the unrestricted to restricted model.
q =number of restrictions, or dfr � dfur.
n� k� 1 = dfur.
n� k� 1+ q = dfr.
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Multiple Regression Analysis: Inference
The F statistic (cont)

To decide if the increase in SSR when we move to a restricted
model is “big enough” to reject the exclusions, we need to know
about the sampling distribution of our F statistic.
F � F(q, n� k� 1), where q is referred to as the numerator
degrees of freedom and n� k� 1 as the denominator degrees of
freedom.
Denote Fact the actual value of the statistic in a given sample.
The critical value is denoted as fα and corresponds to the
constant that satisfies

P(F > fα) = α.
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Multiple Regression Analysis: Inference
The F statistic (cont)

Rejection rule: Reject H0 if Fact > fα.

0 f α

α(1 − α)

f(F)

F

reject

fail to reject
Reject H0 at α
significance level
if Fact > f α

0 f α

α(1 − α)

f(F)

F

reject

fail to reject

0 f α

α(1 − α)

f(F)

F

reject

fail to reject
Reject H0 at α
significance level
if Fact > f α
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Multiple Regression Analysis: Inference
Exclusion Restrictions (cont)

Example: Consider the following model that explains major league
baseball players’ salaries:

log (salary) = β0+ β1years+ β2gamesyr+ β3bavg+ β4hrunsyr+ β5rbisyr+u,

where

salary= salary of major league baseball player
years =Years in the league
gamesyr =Average number of games per year
bavg =Batting average
hrunsyr =Home runs per year
rbisyr =Runs batted in per year

We would like to test H0 : β3 = 0, β4 = 0, β5 = 0 vs H1 : H0 is not true.
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Multiple Regression Analysis: Inference
Exclusion Restrictions (cont)

Estimating the unrestricted model we obtain

\log (salary) = 11.19
(0.29)

+ 0.0689
(0.0121)

years+ 0.0126
(0.0026)

gamesyr

+0.00098
(0.00110)

bavg+ 0.0144
(0.0161)

hrunsyr+ 0.0108
(0.0072)

rbisyr,

n = 353, SSR = 183.186, R2 = 0.6278

Estimating the restricted model we obtain

\log (salary) = 11.22
(0.11)

+ 0.0713
(0.0125)

years+ 0.0202
(0.0013)

gamesyr,

n = 353, SSR = 198.311, R2 = 0.5971.

Test H0 : β3 = 0, β4 = 0, β5 = 0 vs H1 : H0 is not true at 5% level
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Multiple Regression Analysis: Inference
form of the F statistic

Because the SSR’s may be large and unwieldy, an alternative
form of the formula is useful.
We use the fact that SSR = SST(1� R2) for any regression, so
can substitute in for SSRr and SSRur :

F =
�
R2

ur � R2
r
�

/q
(1� R2

ur)/ (n� k� 1)
(1)

where R2
r is the R2 of the restricted model and R2

ur is the R2 of the
unrestricted model.

Example: For the baseball salary example, use (1) to obtain the F
statistic.
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Multiple Regression Analysis: Inference
Overall Significance

A special case of exclusion restrictions is to test
H0 : β1 = β2 = . . . = βk = 0.

Since the R2 from a model with only an intercept will be zero, the
F statistic is simply

F =
R2/k

(1� R2)/ (n� k� 1)
.
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Multiple Regression Analysis: Inference

Example: Consider the estimated model

\log (salary) = 11.19
(0.29)

+ 0.0689
(0.0121)

years+ 0.0126
(0.0026)

gamesyr

+0.00098
(0.00110)

bavg+ 0.0144
(0.0161)

hrunsyr+ 0.0108
(0.0072)

rbisyr,

n = 353, SSR = 183.186, R2 = 0.6278

We would like to test

H0 : β1 = 0, β2 = 0, β3 = 0, β4 = 0, β5 = 0
vs

H1 : H0 not true

at 5% level.
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Multiple Regression Analysis: Inference
General Linear Restrictions

The basic form of the F statistic will work for any set of linear
restrictions.
First estimate the unrestricted model obtain SSRur and then
estimate the restricted model and obtain SSRr.
The F statistic as the usual form

F =
(SSRr � SSRur) /q
SSRur/ (n� k� 1)

� F(q, n� k� 1)

where q is the number of restrictions being tested.
Imposing the restrictions can be tricky – will likely have to
redefine variables again.

44 / 56



Multiple Regression Analysis: Inference
General Linear Restrictions

Example: Test whether house price assessments are rational

log (price) = β0 + β1 log (assess) + β2 log (lotsize)
+β3 log (sqrft) + β4bdrms+ u

price =Actual house price
assess =The assessed housing value before the house was sold
lotsize =Size of lot (in feet)
sqrft =Square footage
bdrms =number of bedrooms
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Multiple Regression Analysis: Inference
General Linear Restrictions

Now, suppose we would like to test whether the assessed
housing price is a rational valuation. If this is the case, then a 1%
change in assess should be associated with a 1% change in price;
that is, β1 = 1. In addition, lotsize, sqrft, and bdrms should not
help to explain log (price), once the assessed value has been
controlled for.
Hence we want to test H0: β1 = 1, β2 = 0, β3 = 0, β4 = 0
vs H1: H0 not true
Sample size: 88.
Running the regression of log (price) on log (assess) , log (lotsize) ,
log (sqrft) and bdrms we obtain SSRur = 1.822
Imposing the restriction given by H0 we have

log (price)� log (assess) = β0 + u.

Estimating the parameter of this model by OLS we obtain
SSRr = 1.88.
Test H0: β1 = 1, β2 = 0, β3 = 0, β4 = 0 vs H1: H0 not true at 5%
level.
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Prediction for the conditional mean of y
Suppose that we want an estimate of

E(yjx1 = x1,0, . . . , xk = xk,0) = β0 + β1x1,0 + . . .+ βkxk,0.

That is, we would like to estimate the the mean of y when the
regressors are equal to known values x1,0, ..., xk,0.

This is easy to obtain by substituting the x’s in our estimated
model with x0’s ,

ŷ0 = β̂0 + β̂1x1,0 + . . .+ β̂kxk,0.

We would like to construct confidence intervals for
E(yjx1 = x1,0, . . . , xk = xk,0).
But what about a standard error of ŷ0, ?
There is general formula for this standard error in the case k > 1,
but it requires knowledge of matrix algebra. However there is a
simple way to obtain this standard error.
Let us change notation and define
θ = E(yjx1 = x1,0, . . . , xk = xk,0).
Thus now the objective becomes to construct a confidence
interval for θ.
θ is just a linear combination of the parameters.

47 / 56



Prediction for the conditional mean of y

Can rewrite
β0 + β1x1,0 + . . .+ βkxk,0 = θ

as
β0 = θ � β1x1,0 � . . .� βkxk,0

Substitute in

y = β0 + β1x1 + . . .+ βkxk + u, u � N(0, σ2)

to obtain

y = θ + β1(x1 � x1,0) + . . .+ βk(xk � xk,0) + u

So, if you regress y on (xj � xj,0), j = 1, ..., k, the intercept will
give the predicted value and its standard error.
Hence constructing a confidence interval for θ is similar to
constructing a confidence interval for a parameter.
se(ŷ0) is the standard error of the intercept in the regression of y
on an intercept and (xj � xj,0), j = 1, ..., k.
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Prediction for the conditional mean of y

Remark: In the simple regression model we have

y = β0 + β1x+ u, E(ujx) = 0, var(ujx) = σ2

Suppose that we would like to predict the value of

E(yjx = x0) = β0 + β1x0

In this case

se(ŷ0)
2 = σ̂2[

1
n
+

(x0 � x̄)2

∑n
i=1 (xi � x̄)2

]

where σ̂2 = ∑n
i=1 û2

i / (n� 2) (recall that k = 1 in the simple
regression model).
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Prediction for the conditional mean of y in the
multiple regression model

Example: Consider the following equation:

yi = β1 + β2xi + ui,i = 1, ..., 60

The results from estimating this equation using 60 observations by
Ordinary Least Squares were (standard errors in parentheses) are:

ŷ = 0.395
(0.125)

� 0.550
(0.189)

x,

SSR = 42.307, SSE = 6. 1771,

S2
x =

1
n ∑n

i=1(xi � x̄)2 = 0.34033

Given that x0 = 0.075, the sample mean of x is 0.105 and that
u � N(0, σ2), calculate the 95% confidence intervals for E(yjx = x0)
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Prediction for y
Suppose now that we would like to construct a confidence interval
for y when when the regressors are equal to known values x1,0, ..., xk,0
and denote this value as y0.

How can we construct a confidence interval for y0?
Notice that

y0 = β0 + β1x1,0 + . . .+ βkxk,0 + u0

Our best prediction for y0 is the regression line

ŷ0 = β̂0 + β̂1x1,0 + . . .+ β̂kxk,0

The prediction error is given by

û0 = y0 � ŷ0

= β0 + β1x1,0 + . . .+ βkxk,0 + u0 � ŷ0

Therefore, as u0 and ŷ0 are independent (conditional on the
regressors):

Var(û0) = Var(u0) +Var(ŷ0)

= σ2 +Var(ŷ0).
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Prediction for y

Var(û0) = σ2 +Var(ŷ0).

Hence an estimator for Var(û0) is given by

se2
0 = σ̂2 + se(ŷ0)

2,

where se(ŷ0) is the standard error of the intercept in the
regression of y on (xj � xj,0), j = 1, ..., k, and
σ̂2 = ∑n

i=1 û2
i /(n� k� 1).

It can be shown that if u � N(0, σ2),

y0 � ŷ0

se0
� t(n� k� 1)

Hence the (1� α)% prediction interval for y0 is given by

(ŷ0 � tα/2se0, ŷ0 + tα/2se0),

where tα/2 is the percentile (1� α/2)th of the the t distribution
with n� k� 1 df .
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Prediction for y

Example: Suppose we have the following regression model

y = β0 + β1x1 + β2x2 + β3x3

+β4x2
3 + u.

We have a sample of 4, 137 observations . The estimated model is

ŷ = 1.493
(0.075)

+ 0.00149
(0.00007)

x1 � 0.01386
(0.00056)

x2 � 0.06088
(0.01650)

x3

+0.00546
(0.00227)

x4,

σ̂ = 0.56
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Prediction for y

Objectives:

Construct a 95% confidence interval for the mean of y when
x1 = 1, 200 , x2 = 30 and x3 = 5, x4 = 25.
Construct a 95% confidence interval for y when x1 = 1, 200 ,
x2 = 30, x3 = 5, x4 = 25.
Define a new set of regressors:

x�1 = x1 � 1, 200.
x�2 = x2 � 30.
x�3 = x3 � 5.
x�4 = x4 � 25.

Running the regression of y on these new regressors we obtain

ŷ = 2.700
(0.020)

+ 0.00149
(0.00007)

x�1 � 0.01386
(0.00056)

x�2 � 0.06088
(0.01650)

x�3

+0.00546
(0.00227)

x�4 .

σ̂ = 0.56
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Predicting y in a log model
Suppose that we have the model

log(y) = β0 + β1x1 + . . .+ βkxk + u,

E (ujx1, ..., xk) = 0, Var (ujx1, ..., xk) = σ2 and we would like to predict
the mean of y for any value of the regressors: E (yjx1, ..., xk).
What can we do?
Given the OLS estimators the predicted value for the mean of log(y)
for any values of the regressors is

\log(y) = β̂0 + β̂1x1 + . . .+ β̂kxk

Our first guess would be to exponentiate \log(y).
However, simple exponentiation of \log(y) will underestimate the

expected value of y as \log(y) is and estimator of E (log(y)jx1, ..., xk)
and it can be shown using an inequality known as Jensen’s inequality
that

exp[E (log(y)jx1, ..., xk)] � E (yjx1, ..., xk) .
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Predicting y in a log model

If u � N(0, σ2), in can be shown that

E (yjx1, ..., xk) = exp(
σ2

2
) exp(β0 + β1x1 + . . .+ βkxk).

Therefore, a simple way to predict y is

ŷ = exp(
σ̂2

2
) exp(β̂0 + β̂1x1 + . . .+ β̂kxk).
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