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Consistency-Introduction

Consistency is a minimal requirement for an estimator:

“If you can’t get it right as n goes to infinity, you shouldn’t be
in this business.”

C.W.Granger, 2003, Nobel Prize Winner in Economics

In some cases an estimator does not have the desirable properties
when the sample size is small, but when the sample is large some
of the desirable properties might hold. As we let the sample size
go to infinite we call these properties asymptotic properties.

Definition

An estimator θ̂ is said to be a consistent estimator of θ if

lim
n!∞

P(θ � ε < θ̂ < θ + ε) = 1,

for all ε > 0. This property is often expressed as plim θ̂ = θ. If θ̂ is not
consistent for θ, we say that it is inconsistent.
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Consistency-Introduction

Intuition behind the technical definition of consistency

Take ε equal to a very small number say ε = 0.00001.
the sample size n is equal to a very large number say
n = 1000000.

Thus if the sample size n is large θ̂ is close to θ.
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Consistency-Introduction

Notice that there are estimators that are unbiased but are not
consistent.
Example: if we have a random sample (X1, ..., Xn) and we would
like to estimate the population mean µX = E(Xi), i = 1, ..., n.

We consider the first observation X1 as an estimator for the
population mean.
Then, E (X1) = µX (and therefore it is an unbiased estimator).
However, it can be shown that X1 is not a consistent estimator of
µX.
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Consistency-Introduction

Proposition

If
lim

n!∞
E
�
θ̂
�
= θ

and
lim

n!∞
Var

�
θ̂
�
= 0,

then plim θ̂ = θ.

Consider a random sample (X1, ..., Xn) such that E (Xi) = µX and
V (Xi) = σ2

X (finite) where i = 1, ..., n and let X = 1
n ∑n

i=1 Xi.
Properties of X:

1 E
�
X
�
= µX.

2 Var
�
X
�
= σ2

X/n.
3 plim X = µX. (Law of Large Numbers -LLN)

Remark: An estimator can be biased and consistent.
Example: eX = 1

n+1 ∑n
i=1 Xi.
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Consistency-Introduction

Consistency of X̄ for µX (intuition)
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Introduction

Consistency of X̄ for µX (intuition)
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Consistency-Introduction

Consistency of X̄ for µX (intuition)
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Consistency-Introduction

Consistency of X̄ for µX (intuition)
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Consistency-Introduction

Remarks on Consistency:
In practice we deal with finite samples, not infinite ones. So why
should we be interested in whether an estimator is consistent?

1 Sometimes it is impossible to find an estimator that is unbiased
for small samples. If you can find one that is at least consistent,
that may be better than having no estimate at all.

2 Often we are unable to say anything at all about the expectation
of an estimator. The expected value can be applied in relatively
simple contexts.
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Consistency-Introduction

There are some theoretical results that help us to prove the
consistency of estimators.
Property PLIM.1: Let g(.) be a continuous function and suppose that

plim θ̂ = θ,

then
plim g(θ̂) = g(θ).

Example: If θ̂ = X̄, plim X̄ = µX. Consider the function g(x) = x2.
This function is continuous, therefore

plim X̄2 = µ2
X.

11 / 39



Consistency-Introduction

Example: Exercise C.5. of Wooldridge (2013, page 792)
Let Y denote a Bernoulli(θ) random variable, that is

Y =
�

1 with probability θ
0 with probability 1� θ

where 0 < θ < 1. Given a random sample (Y1, ..., Yn) we know that a
consistent estimator for θ is Ȳ = ∑n

i=1 Yi/n. We are interested in
estimating the odds ratio

γ =
θ

1� θ
,

which is the probability of success over the probability of failure.
Show that

Gn =
Ȳ

1� Ȳ
is a consistent estimator of γ.
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Consistency-Introduction

Property PLIM.2: If plim Tn = α and plim Un = β then
(i)

plim (Tn +Un) = α+ β.

(ii)
plim (TnUn) = αβ.

(iii)

plim
Tn

Un
=

α

β
.
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Consistency of the OLS estimator

Consider the multiple regression model

y = β0 + β1x1 + ...+ βkxk + u.

Under some assumptions the OLS estimators β̂j, j = 0, ..., k are
unbiased. That is,

E(β̂j) = βj,

j = 0, ..., k.
The required assumptions are:

1 Linearity.
2 Random sampling.
3 No perfect multicollinearity.
4 Zero Conditional Mean.

But are these estimators consistent?
That is, as n ! ∞, is β̂j close to βj?
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Consistency of the OLS estimator

Under the assumptions required for unbiasedness, the OLS
estimator is consistent.
To show this let us focus on the simple linear regression model
for simplicity

y = β0 + β1x+ u.

Consistency can be proved for the simple regression case in a
manner similar to the proof of unbiasedness.
Will need to take probability limit (plim) to establish consistency.
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Consistency of the OLS estimator

Sketch of the prove of consistency of the OLS estimator β̂1 for the
slope β1 in the simple linear model:
The objective is to prove that

plim β̂1 = β1.

That is, if the size of the sample is large β̂1 is close to β1.
Sketch of the prove:

Recall that the Ordinary Least Squares estimator for the slope β1
is given by

β̂1 =
∑n

i=1 (xi � x̄) yi

∑n
i=1 (xi � x̄)2

.

Plug in yi = β0 + β1xi + ui and we obtain

β̂1 = β1 +
∑n

i=1 (xi � x̄) ui

∑n
i=1 (xi � x̄)2

.
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Consistency of the OLS estimator

Notice that

β̂1 = β1 +
1
n ∑n

i=1 (xi � x̄) ui
1
n ∑n

i=1 (xi � x̄)2
.

Using the properties above in can be shown that

plim
1
n ∑n

i=1 (xi � x̄) ui = E[(x� E(x))u]

and by definition E [(x� E(x))u] = Cov(x, u).
In addition

plim
1
n ∑n

i=1 (xi � x̄)2 = E[(x� E(x))2],

and by definition E[(x� E(x))2] = Var(x).
Hence we can write

plim β̂1 = β1 +
Cov(x, u)

Var(x)

If Cov(x, u) = 0 and Var(x) > 0, it follows that plim β̂1 = β1
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Consistency of the OLS estimator

Similarly it can be shown that the OLS estimator is consistent in
the Multiple Regression Model.

Remark: We require weaker Assumptions to prove consistency than
to prove unbiasedeness.
Consider the multiple regression model

y = β0 + β1x1 + ...+ βkxk + u.

To prove unbiasedness of the OLS estimator we assumed a zero
conditional mean – E(ujx1, x2, . . . , xk) = 0.
To prove consistency of the OLS estimator we can have the
weaker assumption of zero mean and zero correlation – E(u) = 0
and Cov(xj, u) = 0, for j = 1, 2, . . . , k.
Without these assumptions, OLS will be biased and inconsistent.
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Inconsistency when we ignore regressors

Assume that the true model is

y = β0 + β1x1 + β2x2 + v,

where the error term v satisfies E[vjx1, x2] = 0.
Suppose you think incorrectly that the model is

y = β0 + β1x1 + u.

That is x2 was omitted from the model. Hence, the error is

u = β2x2 + v.

Suppose we run a regression of y on x1. The OLS estimator for β1
is

β̃1 =
∑n

i=1 (x1i � x̄1) yi

∑n
i=1 (x1i � x̄1)

2 .
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Inconsistency when we ignore regressors

Then, it can be shown that

plim β̃1 = β1 + β2δ,

where

δ =
Cov(x1, x2)

Var(x1)

The difference between plim β̃1 and β1 is called asymptotic bias
and in this case is equal to β2δ, where δ = Cov(x1,x2)

Var(x1)
.

So, thinking about the direction of the asymptotic bias is just like
thinking about the direction of bias for an omitted variable.
Main difference is that asymptotic bias uses the population
variance and covariance, while bias uses the sample variance and
covariance.
Remember, inconsistency is a large sample problem – it doesn’t
go away as add data.
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Asymptotic Normality-Introduction

Consider a random variable (X1, ..., Xn) and assume that
Xi � N(µX, σ2

X), i = 1, ..., n , then

∑n
i=1 Xi � N(nµX, nσ2

X).

Thus
X̄ =

1
n ∑n

i=1 Xi � N(µX, σ2
X/n).

If we standardize we have the statistic

Z =
p

n
�
X� µX

�
σX

� N(0, 1)

This result is the main building block to develop test statistics to
test hypothesis and construct confidence intervals for µX.
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Asymptotic Normality-Introduction

However, what happens if the random variables Xi are not
normally distributed?
In that case we resort to the following theorem
Central Limit Theorem (CLT): If the Xi in the sample are all
drawn independently from the same distribution (the
distribution of X), and provided that this distribution has finite
variance, the distribution of

Z =
p

n
�
X� µX

�
σX

will converge to a standard normal distribution as n tends to
infinity. We write Z a� N (0, 1) where the symbol a� reads
“distributed asymptotically” (it means that if the sample size is
large the distribution of Z is close to the standard normal).
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Asymptotic Normality-Introduction
Example: Sample Distribution of Z when Xi � χ2(1), i = 1, ..., n.
Sample size n = 3.
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Asymptotic Normality-Introduction
Example: Sample Distribution of Z when Xi � χ2(1), i = 1, ..., n.
Sample size n = 10.

­4 ­3 ­2 ­1 0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Density function of Z
Density function of the standard normal

24 / 39



Asymptotic Normality-Introduction
Example: Sample Distribution of Z when Xi � χ2(1), i = 1, ..., n.
Sample size n = 25.
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Asymptotic Normality-Introduction
Example: Sample Distribution of Z when Xi � χ2(1), i = 1, ..., n..
Sample size n = 500.

­4 ­3 ­2 ­1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Density function of Z
Density function of the standard normal

26 / 39



Asymptotic Normality of the OLS estimator

Consider the multiple regression model

y = β0 + β1x1 + ...+ βkxk + u.

Recall that under the Classical Linear Model assumptions, the
sampling distributions are normal, so we could derive t and F
distributions for testing.
Classical Linear Model assumptions:

1 Linearity.
2 Random sampling.
3 No perfect multicollinearity.
4 Zero Conditional Mean.
5 The regressors are independent of the error term and u � N(0, σ2).

This exact normality was due to assuming the population error
distribution was normal.
This assumption of normal errors implied that the distribution of
y, given the x’s, was normal as well.
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Asymptotic Normality of the OLS estimator

Easy to come up with examples for which this exact normality
assumption will fail.
Variables, like wages, arrests, savings, etc. don’t have symmetric
distribution functions, hence can’t be normal.
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Asymptotic Normality of the OLS estimator

Histogram of Wages
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Asymptotic Normality of the OLS estimator

Normality assumption not needed to conclude OLS is BLUE,
only for inference.
Based on the central limit theorem, we can show that OLS
estimator is asymptotically normal.
Asymptotic Normality means that the distribution of the estimator
(after a standardization) converges to the standard normal
distribution function as n ! ∞. That is, the distribution of the
standardized estimator is close to the the distribution of a
standard normal random variable if the sample size is large.
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Asymptotic Normality of the OLS estimator

Consider the multiple regression model

y = β0 + β1x1 + ...+ βkxk + u

and denote the OLS estimators for the parameters β0, β1, ..., βk as
β̂0, β̂1, ..., β̂k.
Under the Gauss-Markov Assumptions it is possible to use the CLT
and the LLN to prove the following results:
1- Denote ûi = yi � β̂0 � β̂1x1i � ...� β̂kxki, i = 1, ..., n, the residuals. It
can be shown that

plim σ̂2 = σ2,

where
σ̂2 =

1
n� k� 1 ∑n

i=1 û2
i and σ2 = Var(u).

That is, σ̂2 is a consistent estimator of σ2.
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Asymptotic Normality of the OLS estimator

2- For j = 0, ..., k
β̂j � βj

se(β̂j)

a� N(0, 1),

where se(β̂j) is the usual OLS standard error:

se(β̂j) =
σ̂r

SSTj

�
1� R2

j

� ,

the SSTj = ∑n
i=1
�
xij � x̄j

�2 and R2
j is the R2 from the regressing xj on

all other x0s.
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Asymptotic Normality of the OLS estimator

Result 2 can be used to test hypothesis on the parameters or to
construct confidence intervals.
Remark: Note that the CLT does not imply that the error term is
standard normal in large samples.
Note that while we no longer need to assume normality with a
large sample, we do still need homoskedasticity.
Notice that since the t(n� k� 1) distribution is close to the
N(0, 1) distribution when n is large, there is no problem in using
the table of the t distribution to obtain the critical values.
Asymptotic Normality of the OLS estimators also implies that
the F statistic have approximate F distribution in large samples.
So nothing changes from what we have done before.
If u is not normally distributed, we sometimes will refer to the
standard error as an asymptotic standard error.
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Lagrange Multiplier statistic

Once we are using large samples and relying on asymptotic
normality for inference, we can use more than the t and F
statistics.
The Lagrange Multiplier or LM statistic is an alternative for testing
multiple exclusion restrictions.
Because the LM statistic uses an auxiliary regression it’s
sometimes called an nR2 statistic.
This test statistic does not require the assumption of normality,
but we do still need homoskedasticity.
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Lagrange Multiplier statistic

Suppose we have a standard model,
y = β0 + β1x1 + β2x2 + ...+ βqxq + βq+1xq+1 + ...+ βkxk + u and our
null hypothesis is H0 : β1 = 0, ..., βq = 0 vs H1 : H0 not true.
Steps to construct the LM test statistic

1 First, we run the restricted model, that is, we run the regression
of y on an intercept and xq+1, xq+2, ..., xk.

2 Now take the residuals of this regression ũ and regress ũ on an
intercept and x1, x2, ..., xk (i.e. all variables). Denote R2

u the R2 of
this regression.

3 The LM statistic is given by LM = nR2
u.
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Lagrange Multiplier statistic
It can be shown that

LM a� χ2(q),

that is the distribution of LM is asymptotically chi-square with q
degrees of freedom.

Suppose we would like to test H0 at the α level.
Denote cact the actual value of the LM statistic in a given sample.
The critical value is denoted as cα and corresponds to the
percentile (1� α)th of the χ2(q) distribution, that this the
constant that satisfies

P(X > cα) = α,

where X is a random variable with the χ2(q) distribution.
Rejection rule: Reject H0 if cact > cα.
Alternatively, compute the p-value as

p� value = P(X > cact),

where X is a random variable with the χ2(q) distribution.
Rejection rule: Reject H0 if p� value < α.
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Lagrange Multiplier statistic

Example: We are studying the returns to education at junior colleges
and four year colleges (universities) and we have the model

log (wages) = β0 + β1jc+ β2univ+ β3exper+ u,

We would like to test

H0 : β1 = 0, β2 = 0

The alternative hypothesis is

H1 : β1 6= 0 and/or β2 6= 0.

37 / 39



Lagrange Multiplier statistic

Running the regression of log(wages) on exper we obtained

\log (wages) = 1.70919+ 0.0044 exper,

n = 6763, R2 = 0.0911

Denote Res1 the residuals of the regression above. Running the
regression of Res1 on jc, univ and exper we obtain

dRes1 = �0.23686+ 0.00054jc+ 0.0667univ+ 0.07688exper,

n = 6763, R2 = 0.1445

Test H0 at 5% level:
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Lagrange Multiplier statistic

With a large sample, the result from an F test and from an LM
test should be similar, though in finite samples the results of both
tests will not be identical.
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