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Topics on Functional Form
Functional Form - The meaning of the term linear

A function f (z1, ..., zJ) is linear in z1, ..., zJ if it can be written in the
following form

f (z1, ..., zJ) = m1z1 +m2z2 + ...+mJzJ + b

for some constants b and m1, ...mJ.
That is, a function is linear if it can be written as a weighted sum of
the arguments plus a constant.
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Topics on Functional Form
Functional Form - The meaning of the term linear

Linearity in the Variables
The meaning of linearity in the variables is that the conditional
expectation of y is a linear function of x, that is the regression curve in
this case is a straight line. Examples:

E(yjx) = β0 + β1x.

is linear in variables but

E(yjx) = β0 + β1x2.

is not a linear function of x.
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Topics on Functional Form
Functional Form - The meaning of the term linear

Further examples
1-

E(yjx1, x2) = β0 + β1x1 + β2x2.

This function is linear in variables.
2-

E(yjx1, x2) = β0 + β1x1 + β2x2 + β3x1x2.

This function is non-linear in variables.
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Topics on Functional Form
Functional Form - The meaning of the term linear

Linearity in the Parameters
The second interpretation of linearity is that the conditional
expectation of y, E(yjx) , is a linear function of the parameters, the
β’s; it may or may not be linear in the variable x. Examples:

1

E(yjx) = β0 + β1x2.

is a linear (in the parameters) regression model as it is a straight
line (where the arguments now are β0 and β1).

2

E(yjx1, x2) = β0 + β1x1 + β2x2 + β3x1x2,

is a linear in the parameters
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Topics on Functional Form
Functional Form - The meaning of the term linear

All the models shown in the figure below are linear regression
models, that is, they are models linear in the parameters.
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Multiple Regression Analysis: Further Issues
Functional Form - The meaning of the term linear

Now consider the model:

E(yjx) = β0 + β2
1x.

The preceding model is an example of a nonlinear (in the parameter)
regression model. Why? Because it is a quadratic function in the
parameters.
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Topics on Functional Form
Functional Form - The meaning of the term linear

The term “linear” regression refers to a regression that is linear in the
parameters; the β’s (that is, the parameters are raised to the first power
only).
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Topics on Functional Form
Functional Form

The ordinary least squares estimator can be used to study
relationships that are not strictly linear in x and y by using
nonlinear functions of x and y.
An example considered before was the case that the dependent
variable and/or regressors were in natural logs.
Other popular nonlinear functions considered in empirical work
are:

Quadratic forms of the regressors
Forms that include interactions of the regressors (cross-products).
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Quadratic Models

For a model of the form

y = β0 + β1x+ β2x2 + u

we can’t interpret β1 alone as measuring the change in y with respect
to x, we need to take into account β2.
The estimated regression equation is

ŷ = β̂0 + β̂1x+ β̂2x2.

Therefore
∂ŷ
∂x
= β̂1 + 2β̂2x.

Hence if x increases by 1, ŷ increases by β̂1 + 2β̂2x.
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Quadratic Models

Example: We would like to study how wages are related with years
of experience.
We have information on wages and experience for 526 people from
the 1976 Current Population Survey (USA).
Running the regression of wages on experience and experience
squared we obtain

[wage = 3.73
(0.35)

+ 0.298
(0.041)

exper� 0.0061
(0.0009)

exper2,

R2 = 0.093,

where the values in parentheses are the estimated standard errors. In
this model

∂ [wage
∂ exper

= 0.298� 2(0.0061)exper
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Quadratic Models

Example:
Experience has a diminishing effect on wage:

exper 1 10 24.4 28
∂[wage
∂exper 0.286 0.176 0.000 �0.047
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Quadratic Models

Example:

Does this mean the return to experience becomes negative after
24.4 years?
Not necessarily. It depends on how many observations in the
sample lie right of the turnaround point
In the given example , these are about 28% of the observations .
There may be a specification problem.
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Quadratic Models

Example: (Effects of pollution on housing prices) Consider the model

log (price) = β0 + β1 log (nox) + β3 log (dist) + β4rooms

+β5rooms2 + β6stratio+ u

where

price=median housing price of a community.
nox=Nitrogen oxide air.
distance=distance from from employment centres.
rooms=average number of rooms
stratio=student/teacher ratio.
n = 506 communities in the Boston area
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Quadratic Models

Estimating the model we obtain

\log (price) = 13.39
(0.57)

� 0.902
(0.115)

log (nox)� 0.087
(0.043)

log (dist)� 0.545
(0.165)

rooms

+0.062
(0.013)

rooms2 � 0.048
(0.006)

stratio,

R2 = 0.603

Hence
∂ \log (price)

∂rooms
= �0.545+ 2� 0.062rooms
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Quadratic Models

Turnaround point rooms� = 0.545
2�0.062 = 4.4.
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Quadratic Models

Example:

∂ \log(price)
∂rooms = �0.545+ 2� 0.062� 2 = �0.297 if rooms = 2 !This

is an odd result.
Only 1% of the sample the sample have houses averaging 4.4
rooms or less, about 1% of the sample!We can ignore
observations with rooms � 4.4
∂ \log(price)

∂rooms = �0.545+ 2� 0.062� 5 = 0.075 (7.5%) if rooms = 5

∂ \log(price)
∂rooms = �0.545+ 2� 0.062� 6 = 0.199 (19.9%) if rooms = 6

Remark: We can consider higher order polynomials

y = β0 + β1x+ β2x2 + β3x3 + u
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Interaction Terms

Sometimes we may want to allow the marginal effect of a regressor to
vary with the level os some other regressor. In this case, the model of
the form

y = β0 + β1x1 + β2x2 + β3x1x2 + u.

We can’t interpret β1 alone as measuring the change in y with respect
to x1, we need to take into account β3 as well.
The estimated equation is

ŷ = β̂0 + β̂1x1 + β̂2x2 + β̂3x1x2

Therefore
∂ŷ
∂x1

= β̂1 + β̂3x2.

Hence the interpretation is difficult. We have to evaluate it at
particular values of x2. For example, at the sample mean of x̄2.
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Interaction Terms
Reparametrization of interaction effects

Original model

y = β0 + β1x1 + β2x2 + β3x1x2 + u.

New model

y = δ0 + δ1x1 + δ2x2 + β3 (x1 � µ1) (x2 � µ2) + u.

µ1 and µ2 are population means. In practice they are replaced by
sample means x̄1 and x̄2.
We can show that δ1 = β1 + β3µ2 and its estimate is
δ̄1 = β̂1 + β̂3x̄2

Advantages of reparametrization

Easy interpretation of all parameters
Standard errors for partial effects at the mean values available
If necessary, interaction may be centered at other interesting
values
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Interaction Terms
Reparametrization of interaction effects

Example

log (price) = β0 + β1bdrms+ β3lotsize+ β4sqrft
+β5sqrft� bdrms+ β6stratio+ u

where
price = house price, $1000s
bdrms = number of bedrooms
lotsize = size of lot in square feet
sqrft = size of house in square feet
Sample: 88 observations collected from the real estate pages of the
Boston Globe during 1990. These are homes that sold in the Boston,
MA area.
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Interaction Terms
Reparametrization of interaction effects

Dependent variable log (price)
n = 88

Estimate Std. Err. t-Ratio
Intercept 5.0151932 0.2852878 17.5794155

bdrms �0.0397661 0.0742173 �0.5358054
lotsize 0.0000055 0.0000020 2.6934041
sqrft 0.0002425 0.0001348 1.7986795

sqrft� bdrms 0.0000298 0.0000314 0.9492329
R2 = 0.626333874

21 / 31



Interaction Terms
Reparametrization of interaction effects

Dependent variable log (price)
n = 88

Estimate Std. Err. t-Ratio
Intercept 4.8008736 0.1032982 46.4758498

bdrms 0.0202980 0.0290793 0.6980240
lotsize 0.0000055 0.0000020 2.6934041
sqrft 0.0003489 0.0000450 7.7595579�

sqrft� sqrft
�
� (bdrms� bdrms) 0.0000298 0.0000314 0.9492329

R2 = 0.626333874

sqrft -sample average of sqrft
bdrms -sample average of bdrms
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Test of functional form
Functional Form

y = β0 +∑k
i=1 βixi + u.

We’ve seen that a linear regression can really fit nonlinear
relationships

Can use logs on right hand side, left hand side or both.
Can use quadratic forms of x’s.
Can use interactions of x’s.
How do we know if we’ve got the right functional form for our
model?
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Test of functional form
Functional Form (continued)

First, use economic theory to guide you.
Think about the interpretation.
Does it make more sense for x to affect y in percentage (use logs)?
Does it make more sense for the derivative of y with respect to x1
to vary with x1 (quadratic) or with x2 (interactions) or to be
fixed?
We already know how to test joint exclusion restrictions to see if
higher order terms or interactions belong in the model.
It can be tedious to add and test extra terms, plus may find a
square term matters when really using logs would be even better.
A test of functional form is Ramsey’s regression specification
error test (RESET)
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Test of functional form
Ramsey’s RESET

The idea of RESET is to include squares and possibly higher order
powers of the fitted values in the regression.
We can estimate:

y = β0 + β1x1 + . . .+ βkxk + δ1ŷ2 + error and test H0 : δ1 = 0
using the t statistic.
Why should we use ŷ2?
Because ŷ2 is a function of the squares of the regressors and the
cross-products of the regressors.
We can also use the cube of ŷ : We estimate

y = β0 + β1x1 + . . .+ βkxk + δ1ŷ2 + δ2ŷ3 + error

and test H0 : δ1 = 0, δ2 = 0 using the F or LM statistic.
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Test of functional form
Ramsey’s RESET

Example: Housing Price Equation
Consider the following two models for housing prices:
1- price = β0 + β1lotsize+ β2sqrft+ β3bdrms+ u.
n = 88

Running the regression of price on lotsize ,sqrft and bdrms we
obtain R2 = 0.67236

Running the regression of price on lotsize ,sqrft and bdrms, dprice
2

and dprice
3

we obtain R2 = 0.70585.

2- log(price) = β0 + β1 log(lotsize) + β2 log(sqrft) + β3 log(bdrms) + u.

Running the regression of log(price) on log(lotsize) ,log(sqrft)
and log(bdrms) we obtain R2 = 0.63937.
Running the regression of Running the regression of log(price)

on log(lotsize) ,log(sqrft), log(bdrms), \log (price)
2

and \log (price)
3

we obtain R2 = 0.66248.

Which is the preferred model?
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Test of functional form
Nonnested Tests

If the models have the same dependent variables, but nonnested
x’s could still just make a giant model with the x’s from both and
test joint exclusion restrictions that lead to one model or the
other, approach suggested by Mizon and Richard (1986)
We have two competing models:

y = β0 + β1x1 + β2x2 + u (1)

against
y = β�0 + β�1 f (x1) + β�2 f (x2) + u (2)

Estimate by OLS a comprehensive model

y = γ0 + γ1x1 + γ2x2 + γ3f (x1) + γ4f (x2) + u

Use F test to test H0 : γ3 = γ4 = 0 as a test of model 1, or
Use F test to test H0 : γ1 = γ2 = 0 as a test of model 2.
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Test of functional form
Nonnested Tests

The problem with the comprehensive approach: when we have
many regressors, the power of the test is low.
An alternative, the Davidson-MacKinnon (1981) test, uses the
fitted values ŷ from one model as regressor in the second model
and tests for significance.
In any case, Davidson-MacKinnon test may reject neither or both
models rather than clearly preferring one specification.
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Test of functional form
Nonnested Tests

Davidson-MacKinnon (1981) test against nonnested alternatives:
We have two competing models:

y = β0 +
k

∑
i=1

βixi + u (3)

against

y = β�0 +
k

∑
i=1

β�i f (xi) + u (4)

To test model 3 against model 4, first estimate model 4 by OLS to
obtain the fitted values bby
Estimate by OLS the model

y = β0 +
k

∑
i=1

βixi + θbby+ u

The rejection of H0 : θ = 0 (against a two-sided alternative) leads
to the rejection of model 3.
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Test of functional form
Nonnested Tests

Example: Let us consider the a sample taken from the 1976 US
Current Population Survey (n = 526).Consider the models
1- log(wage) = β0 + β1exper+ u
2- log(wage) = β�0 + β�1 log(exper) + v
Which is the most appropriate model?
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Test of functional form
Nonnested Tests

Example: We run the regression of log(wage) on exper and compute
the fitted values (ŷ). Running the regression of log(wage) on
log(exper) and ŷ we obtain

log(wage) = 8.36802
(1.27826)

+ 0.35034
(0.04719)

log (exper)� 4.67182
(0.84937)

ŷ

Do you reject model 2 in favour of model 1?
We run the regression of log(wage) on log(exper) and compute the
fitted values (bby). Running the regression of log(wage) on exper and bby
we obtain

log(wage) = �2.89653
(0.59986)

� 0.02038
(0.0037)

exper+ 2.998
(0.40384)

bby
Do you reject model 1 in favour of model 2?
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