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Multiple Regression Analysis with Qualitative Information: Dummy
variables. Wooldridge (2013), Chapter 7.
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Introduction

A dummy variable (also known as an indicator variable or
binary variable) is a variable that takes the values 0 or 1 and
allows to take into account qualitative information in a
regression model.
Example of a dummy variable:

fem =

�
1 if the individual is female
0 if the individual is male

We can use this dummy variable as a regressor to answer this
question: do men earn more than women, after controlling for
education?
We can use the following model to answer the above question

wage = β0 + β1educ+ δ0fem+ u,
E[ujfem] = 0.
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Introduction

Intercept shift

δ0 < 0
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Program Evaluation

Dummy variables are widely used the Program Evaluation Studies.
Suppose you wish to evaluate the effects of a “treatment” (for
example, receiving training).
One can define a dummy variable T = 1 if the individual has
been treated and T = 0 if the individual has not been treated

y = β0 + β1x+ δ0T+ u,
E[ujx, T] = 0.

Treated Group (T = 1) vs Control Group (T = 0).

4 / 35



Program Evaluation
Example: We would like to study if the average of hours of training
per employee at the firm level are higher for companies that receive a
job training grant. (Data set: Michigan manufacturing firms in 1988).
Consider the model

hrsemp = β0 + δ1grant+ β1 log(sales) + β2 log(employ) + u,

where
hrsemp = average hours of training per employee at the firm
level.
grant = 1 if the firm received a job training grant for 1988 and 0
otherwise.
sales =annual sales.
employ =number of employees.
n = 105

The estimated regression line is given by

\hrsemp = 46.67
(43.41)

+ 26.25
(5.59)

grant+ 0.98
(3.54)

log(sales) + 6.07
(3.88)

log(employ).
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Perfect Multicollinearity and the Dummy variable trap

So far we have excluded the case that two or more explanatory
variables are perfectly related (perfect collinearity is ruled out)
Perfect multicollinearity means an exact linear relationship between
variables in the linear regression.
Example: y = β0 + β1x1 + β2x2 + u
If x1 is perfectly correlated with x2 (say x1 = 2x2) then the OLS
estimator cannot be computed.
If some of the regressors are dummy variables and we are not careful
defining our regression model we might fall into the dummy variable
trap (i.e. we might have perfect multicollinearity in our model).
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Perfect Multicollinearity and the Dummy variable trap

Example of the Dummy variable trap: Define

fem =

�
1 if the individual is female
0 if the individual is male ,

male =

�
1 if the individual is male
0 if the individual is female

and consider the regression

wage = β0 + β1fem+ β2male+ u.

Here we have perfect multicollinearity as fem+male = 1
Solution: Drop fem or male
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Dummies for Multiple Categories

Any categorical variable can be turned into a set of dummy
variables.
Because the base group is represented by the intercept, if there
are m categories there should be m� 1 dummy variables
(otherwise we fall in the dummy variable trap).
If there are a lot of categories, it may make sense to group some
together
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Dummies for Multiple Categories

Example: Two Labour Economists, Hamermesh and Biddle, used
measures of physical attractiveness in a wage equation. Each person
in the sample was ranked by an interviewer for physical
attractiveness.
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Dummies for Multiple Categories

They estimated the following equations for men:

\log(wage) = β̂0 � 0.164
(0.046)

belavg+ 0.016
(0.033)

abvavg+ other factors

n = 700, R̄ = 0.403.

The equation for women is:

\log(wage) = β̂0 � 0.124
(0.066)

belavg+ 0.035
(0.049)

abvavg+ other factors

n = 409, R̄ = 0.330.

where
belavg = 1 if the person is below average, 0 otherwise
abvavg = 1 if the person is above average, 0 otherwise
base group: average
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Interactions between dummy variables

Consider the model

y = β0 + δ1d1 + δ2d2 + u,
E(ujd1, d2) = 0

d1 and d2 are dummy variables.
δ1 is the effect of changing d1 = 0 to d1 = 1. In this specification
this effect does not depend on the value of d2,

δ1 = E [yjd1 = 1, d2 = D2]� E [yjd1 = 0, d2 = D2]

To allow the effect of changing d1 to depend on d2, include the
“interaction term” d1 � d2

y = β0 + δ1d1 + δ2d2 + δ3d1 � d2 + u
E(ujd1, d2) = 0
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Interactions between dummy variables

y = β0 + δ1d1 + δ2d2 + δ3d1 � d2 + u (1)

In this case

E [yjd1 = 1, d2 = D2]� E [yjd1 = 0, d2 = D2] = δ1 + δ3D2

Other model that allows for interactions is

y = β0 + δ�1d1 � d2 + δ�2(1� d1)� d2 (2)
+δ�3d1 � (1� d2) + u,

E(ujd1, d2) = 0

Model (2) corresponds to a reparametrization of (1) as it can be
shown that

δ1 = δ�3 , δ2 = δ�2 and δ3 = δ�1 � δ�2 � δ�3 .

Model (2) might be easier to interpret as the following example
shows.
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Interactions between dummy variables

Example: Suppose we are studying the Log-Hourly wage
equation and you wish to allow the effect of being married to be
different across men and women.
Define the following dummy variables:

male =
�

1 if male
0 otherwise ,

marr =
�

1 if married
0 otherwise .
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Interactions between dummy variables

Example: Consider the model

log(wage) = β0 + δ0marr�male+ δ1marr� (1�male)
+δ2(1�marr)� (1�male)

+β1educ+ β2exper+ β3exper2 + β4tenure+

β5tenure2 + u,

where
wage =average hourly earnings,
educ =years of education,
exper =years of potential experience,
tenure =years with current employer.
Base group: men not married
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Interactions between dummy variables

Example:

log(wage) = β0 + δ0marr�male+ δ1marr� (1�male)
+δ2(1�marr)� (1�male)

+β1educ+ β2exper+ β3exper2 + β4tenure+

β5tenure2 + u,

Groups Dummy Intercept of the model
male married marr�male β0 + δ0

female married marr� (1�male) β0 + δ1
female not married (1�marr)� (1�male) β0 + δ2
male not married base group β0
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Interactions between dummy variables

Example : Data Set: 1976 US Current Population Survey.
The estimated regression function is

\log(wage) = 0.321
(0.100)

+ 0.213
(0.055)

marr�male� 0.198
(0.058)

marr� (1�male)

�0.110
(0.056)

(1�marr)� (1�male)

+0.079
(0.007)

educ+ 0.027
(0.005)

exper� 0.00054
(0.00011)

exper2 + 0.029
(0.007)

tenure+

�0.00053
(0.00023)

tenure2

n = 526, R2 = 0.461.

Holding other things fixed, married women earn 19.8% less than not
married men (= the base category)
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Interactions between dummy variables

Remark: If we change the base group the estimates for the
coefficients of the dummy variables will be different as the following
example shows:
Example (cont):

\log(wage) = 0.123
(0.016)

+ 0.411
(0.046)

marr�male+ 0.198
(0.058)

(1�marr)�male

+0.088
(0.052)

(1�marr)� (1�male) + ...

Holding other things fixed, single men earn 19.8% more than married
women (= the base category)
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Other Interactions with Dummies

Can also consider interacting a dummy variable, d, with a continuous
variable, x (slope shift):

y = β0 + β1x+ δ1d� x+ u

In this model :
d Intercept Slope
0 β0 β1
1 β0 β1 + δ1
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Other Interactions with Dummies

Example of δ1 < 0

y

x

y = β0 + β1x

y = β0  + (β1 + δ1) x
d = 1

d = 0
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Other Interactions with Dummies

Can also consider a slope shift and an intercept shift:

y = β0 + δ0d+ β1x+ δ1d� x+ u

In this model :
d Intercept Slope
0 β0 β1
1 β0 + δ0 β1 + δ1
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Other Interactions with Dummies

Example of δ0 > 0 and δ1 < 0

y

x

y = β0 + β1x

y = (β0 + δ0) + (β1 + δ1) x
d = 1

d = 0
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Other Interactions with Dummies

Example: Consider the model

log(wage) = β0 + δ0female+ δ1female� educ+ β1educ+ β2exper

+β3exper2 + β4tenure+ β5tenure2 + u

where
wage =average hourly earnings
female = 1 if female, 0 otherwise
educ =years of education
exper =years of potential experience
tenure =years with current employer.
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Other Interactions with Dummies
Consider the following 2 estimated models

\log(wage) = 0.38881
(0.11869)

� 0.22679
(0.16754)

female� 0.00556
(0.01306)

female� educ

+0.08237
(0.00847)

educ+ 0.02934
(0.00498)

exper� 0.00058
(0.00011)

exper2

+ 0.0319
(0.00686)

tenure� 0.00059
(0.00024)

tenure2,

n = 526, R2 = 0.441,

\log(wage) = 0.20157
(0.10147)

+ 0.08453
(0.00716)

educ+ 0.0293
(0.00529)

exper

�0.00059
(0.00011)

exper2 + 0.03712
(0.00724)

tenure� 0.00062
(0.00025)

tenure2,

n = 526, R2 = 0.3669.

Test whether the variable female affects the conditional mean of
log(wage) at 5% level.
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Testing for Differences Across Groups
Consider the multiple regression model y = β0 +∑k

i=1 βixi + u.

Objective: Testing whether a regression function is different for
a group versus another. Denote one group as A and the other as
B. These groups are mutually exclusive and exhaustive.
Denote d = 1 if the individual is in group A and zero if she is
group B.

Our hypothesis can be tested as follows:

Consider the more general model

y = β0 + δ0d+∑k
i=1(βixi + δixid) + v

Our null hypothesis can be thought of as simply testing for the
joint significance of the dummy and its interactions with all
other x variables: H0 : δ0 = δ1 = ... = δk = 0.
Example: Suppose that we would like to test if the parameters of
the model

log(wage) = β0 + β1educ+ u

are equal for males and females.
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Testing for Differences Across Groups

To test this we can consider the model

log(wage) = β0 + β1educ+ δ0female+ δ1female� educ+ v,

where v is the error term and test H0 : δ0 = δ1 = 0.
So, you can estimate the model with all the interactions and
without and form an F statistic:

F =
(SSRr � SSRur) /q

SSRur/df
,

where SSRr is the sum of squared residuals of the restricted
model and SSRur is the sum of squared residuals of the
unrestricted model, and df are the degrees of freedom of the
model (sample size-number of parameters of the model) and q is
the number of restrictions.
However, this is equivalent to using a test known as Chow Test.
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Testing for Differences Across Groups
The Chow Test (structural change)

Key-idea: You can compute the F statistic without running the
unrestricted model with interactions with all k continuous
variables.
If we run the restricted model for group A and get SSRA, then we
run for group B and get SSRB.
Run the restricted model for all to get SSR, then

FChow =
[SSR� (SSRA + SSRB)]

SSRA + SSRB
� [n� 2(k+ 1)]

k+ 1
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Testing for Differences Across Groups
The Chow Test (structural change)

Consider the model

y = β0 + β1x1 + . . . + βkxk + u

The Chow test is the F test for exclusion restrictions described
above.
Recall that the usual F test in this setup is given by

F =
(SSRr � SSRur) /q

SSRur/df
.

It can be shown that SSRur = SSRA + SSRB, also SSRr = SSR.
We have q = k+ 1 restrictions (each of the slope coefficients and
the intercept).
The unrestricted model would estimate 2 different intercepts and
2 different slope coefficients, so df = n� 2k� 2.
Note that FChow � F(k+ 1, n� 2k� 2)
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Testing for Differences Across Groups
The Chow Test (structural change)

Example: Consider the following regression lines.

Regression with dummy variable

\log(wage) = 0.82595
(0.11685)

+ 0.07723
(0.00899)

educ� 0.36006
(0.20325)

female

�0.00006
(0.01626)

female� educ,

SSRur = 103.7983, n = 526

Regression without dummy variable

\log(wage) = 0.58377
(0.09823)

+ 0.08274
(0.00774)

educ,

SSRr = 120.769, n = 526.
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Testing for Differences Across Groups
The Chow Test (structural change)

Regression for females

\log(wage) = 0.46589
(0.16633)

+ 0.07716
(0.01355)

educ,

SSRA = 40.3962, n1 = 252.

Regression for males

\log(wage) = 0.82595
(0.11684)

+ 0.07723
(0.00899)

educ,

SSRB = 63.4021, n2 = 274.

Test whether a regression function is different for a group versus
another at 5% significance level using the F test for exclusion
restrictions and the Chow test. Do the results differ?
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Linear Probability Model

Now the dependent variable y is a binary variable, that is it takes
values 0 and 1.

Examples:

Labour force participations.

y =
�

1 if employed
0 otherwise .

We would like to study how labour force participation depends
on the characteristics of the individuals.
Financial crises

y =
�

1 if the country is in a financial crisis
0 otherwise .

We would like to study the occurrence of a financial crisis
depends on the characteristics of countries.
Denote x = (x1, ..., xk).
The objective of a regression model is to estimate E(yjx).
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Linear Probability Model

E(yjx) = P(y = 1jx), when y is a binary variable.
In the linear probability model we assume that

P(y = 1jx) = β0 + β1x1 + . . . + βkxk.

So, the interpretation of βj is the change in the probability of
success when xj changes:

∂P(y = 1jx)
∂xj

= βj, j = 1, ..., k

The predicted y is the predicted probability of success.
The linear probability model is estimated using OLS, that is
regressing y on x1, ..., xk.
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Linear Probability Model

Example: Consider the model

inlf = β0 + β1nwifeinc+ β2educ+ β3exper+β4exper2

+β5age+ β6kidslt6+ β7kidsge6+ u

where

inlf (“in the labour force”) = binary variable indicating labour
force participation by a married woman during 1975:
nwifeinc=husband’s earnings (, measured in thousands of
dollars),
educ= years of education,
exper=past years of labor market experience,
age=age of the woman,
kidslt6=number of children less than six years old,
kidsge6= number of kids between 6 and 18 years of age .
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Linear Probability Model

Estimating the model we obtain:

inlf = 0.586
(0.154)

� 0.0034
(0.0014)

nwifeinc+ 0.038
(0.007)

educ+ 0.039
(0.006)

exper� 0.0006
(0.00018)

exper2

�0.016
(0.002)

age� 0.262
(0.34)

kidslt6+ 0.013
(0.013)

kidsge6,

n = 743, R2 = 0.264
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Linear Probability Model

Graph for nwifeinc = 50, exper = 5, age = 30, kindslt6 = 1, kidsge6 = 0

The maximum level of education in the sample is educ = 17. For
the given case, this leads to a predicted probability to be in the
labor force of about 0.5.
For educ < 3.84 there is a negative predicted probability but no
problem because no woman in the sample has educ < 5.
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Linear Probability Model
Disadvantages of the linear probability model

Potential problem that the fitted values can be outside [0, 1].
Even without predictions outside of [0, 1], we may estimate
effects that imply a change in x changes the probability by more
than +1 or �1.
This model will violate assumption of homoskedasticity, so will
affect inference. Notice that

Var(yjx) = P(y = 1jx)(1�P(y = 1jx))
= (β0 + β1x1 + . . . + βkxk)�

(1� β0 � β1x1 � . . . � βkxk).

Heteroskedasticity consistent standard errors need to be
computed

Advantanges of the linear probability model

Easy estimation and interpretation
Estimated predictions often reasonably good in practice

35 / 35


