Multiple Regression Analysis with Qualitative Information: Dummy variables. Wooldridge (2013), Chapter 7.

- Introduction
- Program Evaluation
- Perfect Multicollinearity and the Dummy variable trap
- Dummies for Multiple Categories
- Interactions between dummy variables
- Other Interactions with Dummies
- Testing for Differences Across Groups
- Linear Probability Model

Introduction

- A dummy variable (also known as an indicator variable or binary variable) is a variable that takes the values 0 or 1 and allows to take into account qualitative information in a regression model.
- Example of a dummy variable:

$$
f e m= \begin{cases}1 & \text { if the individual is female } \\ 0 & \text { if the individual is male }\end{cases}
$$

- We can use this dummy variable as a regressor to answer this question: do men earn more than women, after controlling for education?
- We can use the following model to answer the above question

$$
\begin{aligned}
\text { wage } & =\beta_{0}+\beta_{1} e d u c+\delta_{0} \text { fem }+u, \\
E[u \mid \text { fem }] & =0 .
\end{aligned}
$$

Introduction

$$
\delta_{0}<0
$$

Intercept shift

Program Evaluation

- Dummy variables are widely used the Program Evaluation Studies.
- Suppose you wish to evaluate the effects of a "treatment" (for example, receiving training).
- One can define a dummy variable $T=1$ if the individual has been treated and $T=0$ if the individual has not been treated

$$
\begin{gathered}
y=\beta_{0}+\beta_{1} x+\delta_{0} T+u, \\
E[u \mid x, T]=0 .
\end{gathered}
$$

- Treated Group $(T=1)$ vs Control Group $(T=0)$.

Program Evaluation

Example: We would like to study if the average of hours of training per employee at the firm level are higher for companies that receive a job training grant. (Data set: Michigan manufacturing firms in 1988). Consider the model

$$
\text { hrsemp }=\beta_{0}+\delta_{1 \text { grant }}+\beta_{1} \log (\text { sales })+\beta_{2} \log (\text { employ })+u,
$$

where

- hrsemp = average hours of training per employee at the firm level.
- grant $=1$ if the firm received a job training grant for 1988 and 0 otherwise.
- sales =annual sales.
- employ $=$ number of employees.
- $n=105$

The estimated regression line is given by

$$
\widehat{\text { hrsemp }}=\underset{(43.41)}{46.67}+\underset{(5.59)}{26.25 \text { grant }}+\underset{(3.54)}{0.98} \log (\text { sales })+\underset{(3.88)}{6.07} \log (\text { employ }) .
$$

Perfect Multicollinearity and the Dummy variable trap

So far we have excluded the case that two or more explanatory variables are perfectly related (perfect collinearity is ruled out) Perfect multicollinearity means an exact linear relationship between variables in the linear regression.
Example: $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+u$
If x_{1} is perfectly correlated with x_{2} (say $x_{1}=2 x_{2}$) then the OLS estimator cannot be computed.
If some of the regressors are dummy variables and we are not careful defining our regression model we might fall into the dummy variable trap (i.e. we might have perfect multicollinearity in our model).

Perfect Multicollinearity and the Dummy variable trap

Example of the Dummy variable trap: Define

$$
\begin{aligned}
\text { fem } & =\left\{\begin{array}{lc}
1 & \text { if the individual is female } \\
0 & \text { if the individual is male }
\end{array},\right. \\
\text { male } & = \begin{cases}1 & \text { if the individual is male } \\
0 & \text { if the individual is female }\end{cases}
\end{aligned}
$$

and consider the regression

$$
\text { wage }=\beta_{0}+\beta_{1} \text { fem }+\beta_{2} \text { male }+u .
$$

Here we have perfect multicollinearity as fem + male $=1$
Solution: Drop fem or male

Dummies for Multiple Categories

- Any categorical variable can be turned into a set of dummy variables.
- Because the base group is represented by the intercept, if there are m categories there should be $m-1$ dummy variables (otherwise we fall in the dummy variable trap).
- If there are a lot of categories, it may make sense to group some together

Dummies for Multiple Categories

Example: Two Labour Economists, Hamermesh and Biddle, used measures of physical attractiveness in a wage equation. Each person in the sample was ranked by an interviewer for physical attractiveness.

Dummies for Multiple Categories

They estimated the following equations for men:

$$
\begin{aligned}
\log (\text { wage }) & =\hat{\beta}_{0}-\underset{(0.046)}{0.164 \text { belavg }}+\underset{(0.033)}{0.016 a b v a v g}+\text { other factors } \\
n & =700, \bar{R}=0.403
\end{aligned}
$$

The equation for women is:

$$
\begin{aligned}
\widehat{\log (\text { wage })} & =\hat{\beta}_{0}-\underset{(0.066)}{0.124 \text { belavg }}+\underset{(0.049)}{0.035 \text { abvavg }+ \text { other factors }} \\
n & =409, \bar{R}=0.330 .
\end{aligned}
$$

where
belavg $=1$ if the person is below average, 0 otherwise abvavg $=1$ if the person is above average, 0 otherwise base group: average

Interactions between dummy variables

Consider the model

$$
\begin{gathered}
y=\beta_{0}+\delta_{1} d_{1}+\delta_{2} d_{2}+u, \\
E\left(u \mid d_{1}, d_{2}\right)=0
\end{gathered}
$$

- d_{1} and d_{2} are dummy variables.
- δ_{1} is the effect of changing $d_{1}=0$ to $d_{1}=1$. In this specification this effect does not depend on the value of d_{2},

$$
\delta_{1}=E\left[y \mid d_{1}=1, d_{2}=D_{2}\right]-E\left[y \mid d_{1}=0, d_{2}=D_{2}\right]
$$

- To allow the effect of changing d_{1} to depend on d_{2}, include the "interaction term" $d_{1} \times d_{2}$

$$
\begin{gathered}
y=\beta_{0}+\delta_{1} d_{1}+\delta_{2} d_{2}+\delta_{3} d_{1} \times d_{2}+u \\
E\left(u \mid d_{1}, d_{2}\right)=0
\end{gathered}
$$

Interactions between dummy variables

$$
\begin{equation*}
y=\beta_{0}+\delta_{1} d_{1}+\delta_{2} d_{2}+\delta_{3} d_{1} \times d_{2}+u \tag{1}
\end{equation*}
$$

In this case

$$
E\left[y \mid d_{1}=1, d_{2}=D_{2}\right]-E\left[y \mid d_{1}=0, d_{2}=D_{2}\right]=\delta_{1}+\delta_{3} D_{2}
$$

Other model that allows for interactions is

$$
\begin{gather*}
y=\beta_{0}+\delta_{1}^{*} d_{1} \times d_{2}+\delta_{2}^{*}\left(1-d_{1}\right) \times d_{2} \tag{2}\\
+\delta_{3}^{*} d_{1} \times\left(1-d_{2}\right)+u \\
E\left(u \mid d_{1}, d_{2}\right)=0
\end{gather*}
$$

Model (2) corresponds to a reparametrization of (1) as it can be shown that

$$
\delta_{1}=\delta_{3}^{*}, \delta_{2}=\delta_{2}^{*} \text { and } \delta_{3}=\delta_{1}^{*}-\delta_{2}^{*}-\delta_{3}^{*} .
$$

Model (2) might be easier to interpret as the following example shows.

Interactions between dummy variables

- Example: Suppose we are studying the Log-Hourly wage equation and you wish to allow the effect of being married to be different across men and women.
- Define the following dummy variables:

$$
\begin{aligned}
& \text { male }=\left\{\begin{array}{ll}
1 & \text { if male } \\
0 & \text { otherwise }
\end{array},\right. \\
& \text { marr }=\left\{\begin{array}{ll}
1 & \text { if married } \\
0 & \text { otherwise }
\end{array} .\right.
\end{aligned}
$$

Interactions between dummy variables

Example: Consider the model

$$
\begin{aligned}
\log (\text { wage })= & \beta_{0}+\delta_{0} \text { marr } \times \text { male }+\delta_{1} \text { marr } \times(1-\text { male }) \\
& +\delta_{2}(1-\text { marr }) \times(1-\text { male }) \\
& +\beta_{1} \text { educ }+\beta_{2} \text { exper }+\beta_{3} \text { exper }^{2}+\beta_{4} \text { tenure }+ \\
& \beta_{5} \text { tenure }^{2}+u,
\end{aligned}
$$

where
wage $=$ average hourly earnings,
$e d u c=$ years of education, exper $=$ years of potential experience, tenure $=$ years with current employer.
Base group: men not married

Interactions between dummy variables

Example:

$$
\begin{aligned}
\log (\text { wage })= & \beta_{0}+\delta_{0} \text { marr } \times \text { male }+\delta_{1} \text { marr } \times(1-\text { male }) \\
& +\delta_{2}(1-\text { marr }) \times(1-\text { male }) \\
& +\beta_{1} \text { educ }+\beta_{2} \text { exper }+\beta_{3} \text { exper }^{2}+\beta_{4} \text { tenure }+ \\
& \beta_{5} \text { tenure }^{2}+u
\end{aligned}
$$

Groups		Dummy	Intercept of the model
male	married	marr \times male	$\beta_{0}+\delta_{0}$
female	married	marr $\times(1-$ male $)$	$\beta_{0}+\delta_{1}$
female	not married	$(1-$ marr $) \times(1-$ male $)$	$\beta_{0}+\delta_{2}$
male	not married	base group	β_{0}

Interactions between dummy variables

Example : Data Set: 1976 US Current Population Survey. The estimated regression function is

$$
\begin{aligned}
& \widehat{\log (\text { wage })}=\underset{(0.100)}{0.321}+\underset{(0.055)}{0.213} \text { marr } \times \text { male }-\underset{(0.058)}{0.198 \text { marr }} \times(1-\text { male }) \\
& -\underset{(0.056)}{0.110}(1-\text { marr }) \times(1-\text { male }) \\
& +\underset{(0.007)}{0.079 \text { educ }}+\underset{(0.005)}{0.027 \text { exper }}-\underset{(0.00011)}{0.00054 \text { exper }^{2}}+\underset{(0.007)}{0.029 \text { tenure }}+ \\
& -0.00053 \text { tenure }{ }^{2} \\
& \text { (0.00023) } \\
& n=526, R^{2}=0.461 \text {. }
\end{aligned}
$$

Holding other things fixed, married women earn 19.8\% less than not married men (= the base category)

Interactions between dummy variables

Remark: If we change the base group the estimates for the coefficients of the dummy variables will be different as the following example shows:
Example (cont):

$$
\begin{aligned}
\widehat{\log (\text { wage })}= & \underset{(0.016)}{0.123}+\underset{(0.046)}{0.411} \text { marr } \times \text { male }+\underset{(0.058)}{0.198}(1-\text { marr }) \times \text { male } \\
& +\underset{(0.052)}{0.088}(1-\text { marr }) \times(1-\text { male })+\ldots
\end{aligned}
$$

Holding other things fixed, single men earn 19.8% more than married women (= the base category)

Other Interactions with Dummies

Can also consider interacting a dummy variable, d, with a continuous variable, x (slope shift):

$$
y=\beta_{0}+\beta_{1} x+\delta_{1} d \times x+u
$$

In this model :

d	Intercept	Slope
0	β_{0}	β_{1}
1	β_{0}	$\beta_{1}+\delta_{1}$

Other Interactions with Dummies

Example of $\delta_{1}<0$

Other Interactions with Dummies

Can also consider a slope shift and an intercept shift:

$$
y=\beta_{0}+\delta_{0} d+\beta_{1} x+\delta_{1} d \times x+u
$$

In this model :

d	Intercept	Slope
0	β_{0}	β_{1}
1	$\beta_{0}+\delta_{0}$	$\beta_{1}+\delta_{1}$

Other Interactions with Dummies

$$
\text { Example of } \delta_{0}>0 \text { and } \delta_{1}<0
$$

Other Interactions with Dummies

Example: Consider the model

$$
\begin{aligned}
\log (\text { wage })= & \beta_{0}+\delta_{0} \text { female }+\delta_{1} \text { female } \times \text { educ }+\beta_{1} \text { educ }+\beta_{2} \text { exper } \\
& +\beta_{3} \text { exper }^{2}+\beta_{4} \text { tenure }+\beta_{5} \text { tenure }^{2}+u
\end{aligned}
$$

where
wage = average hourly earnings
female $=1$ if female, 0 otherwise
educ =years of education
exper $=$ years of potential experience
tenure $=$ years with current employer.

Other Interactions with Dummies

Consider the following 2 estimated models

$$
\begin{aligned}
& \widehat{\log (\text { wage })}=\underset{(0.11869)}{0.38881}-\underset{(0.16754)}{0.22679 \text { female }}-\underset{(0.01306)}{0.00556 \text { female }} \times \text { educ } \\
& +\underset{(0.00847)}{0.08237} \text { educ }+\underset{(0.00498)}{0.02934} \text { exper }-\underset{(0.00011)}{0.00058 \text { exper }^{2}} \\
& +\underset{(0.00686)}{0.0319} \text { tenure }-\underset{(0.00024)}{0.00059 \text { tenure }^{2} \text {, }, ~, ~} \\
& n=526, R^{2}=0.441, \\
& \begin{aligned}
\widehat{\log (\text { wage })}= & \underset{(0.10147)}{0.20157}+\underset{(0.00716)}{0.08453 \text { educ }}+\underset{(0.00529)}{0.0293} \text { exper } \\
& \underset{(0.00011)}{-0.00059 \text { exper }^{2}}+\underset{(0.00724)}{0.03712 \text { tenure }-\underset{(0.00025)}{0.00062} \text { tenure }}{ }^{2}, \\
n= & 526, R^{2}=0.3669 .
\end{aligned}
\end{aligned}
$$

Test whether the variable female affects the conditional mean of \log (wage) at 5% level.

Testing for Differences Across Groups

Consider the multiple regression model $y=\beta_{0}+\sum_{i=1}^{k} \beta_{i} x_{i}+u$.

- Objective: Testing whether a regression function is different for a group versus another. Denote one group as A and the other as B. These groups are mutually exclusive and exhaustive.
- Denote $d=1$ if the individual is in group A and zero if she is group B.
Our hypothesis can be tested as follows:
- Consider the more general model

$$
y=\beta_{0}+\delta_{0} d+\sum_{i=1}^{k}\left(\beta_{i} x_{i}+\delta_{i} x_{i} d\right)+v
$$

- Our null hypothesis can be thought of as simply testing for the joint significance of the dummy and its interactions with all other x variables: $H_{0}: \delta_{0}=\delta_{1}=\ldots=\delta_{k}=0$.
- Example: Suppose that we would like to test if the parameters of the model

$$
\log (\text { wage })=\beta_{0}+\beta_{1} e d u c+u
$$

are equal for males and females.

Testing for Differences Across Groups

- To test this we can consider the model

$$
\log (\text { wage })=\beta_{0}+\beta_{1} \text { educ }+\delta_{0} \text { female }+\delta_{1} \text { female } \times \text { educ }+v,
$$

where v is the error term and test $H_{0}: \delta_{0}=\delta_{1}=0$.

- So, you can estimate the model with all the interactions and without and form an F statistic:

$$
F=\frac{\left(S S R_{r}-S S R_{u r}\right) / q}{S S R_{u r} / d f}
$$

where $S S R_{r}$ is the sum of squared residuals of the restricted model and $S S R_{u r}$ is the sum of squared residuals of the unrestricted model, and $d f$ are the degrees of freedom of the model (sample size-number of parameters of the model) and q is the number of restrictions.

- However, this is equivalent to using a test known as Chow Test.

Testing for Differences Across Groups

The Chow Test (structural change)

- Key-idea: You can compute the F statistic without running the unrestricted model with interactions with all k continuous variables.
- If we run the restricted model for group A and get $S S R_{A}$, then we run for group B and get $S S R_{B}$.
- Run the restricted model for all to get $S S R$, then

$$
F_{\text {Chow }}=\frac{\left[S S R-\left(S S R_{A}+S S R_{B}\right)\right]}{S S R_{A}+S S R_{B}} \times \frac{[n-2(k+1)]}{k+1}
$$

Testing for Differences Across Groups

The Chow Test (structural change)

Consider the model

$$
y=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}+u
$$

- The Chow test is the F test for exclusion restrictions described above.
- Recall that the usual F test in this setup is given by

$$
F=\frac{\left(S S R_{r}-S S R_{u r}\right) / q}{S S R_{u r} / d f} .
$$

- It can be shown that $S S R_{u r}=S S R_{A}+S S R_{B}$, also $S S R_{r}=S S R$.
- We have $q=k+1$ restrictions (each of the slope coefficients and the intercept).
- The unrestricted model would estimate 2 different intercepts and 2 different slope coefficients, so $d f=n-2 k-2$.
- Note that $F_{\text {Chow }} \sim F(k+1, n-2 k-2)$

Testing for Differences Across Groups

The Chow Test (structural change)

Example: Consider the following regression lines.

- Regression with dummy variable

$$
\begin{aligned}
\operatorname{log(\text {wage})}= & \underset{(0.11685)}{0.82595}+\underset{(0.00899)}{0.07723 \text { educ }-\underset{(0.20325)}{0.36006 f e m a l e}} \\
& -\underset{(0.00006 \text { female } \times \text { educ }}{(0.0066)} \\
S S R_{u r}= & 103.7983, n=526
\end{aligned}
$$

- Regression without dummy variable

$$
\begin{aligned}
\widehat{\log (\text { wage })} & =\underset{(0.09823)}{0.58377}+\underset{(0.00774)}{0.08274 e d u c}, \\
S S R_{r} & =120.769, n=526
\end{aligned}
$$

Testing for Differences Across Groups

The Chow Test (structural change)

- Regression for females

$$
\begin{aligned}
\widehat{\log (\text { wage })} & =\underset{(0.16633)}{0.46589}+\underset{(0.01355)}{0.07716 e d u c} \\
S S R_{A} & =40.3962, n_{1}=252
\end{aligned}
$$

- Regression for males

$$
\begin{aligned}
\widehat{\log (\text { wage })} & =\underset{(0.11684)}{0.82595}+\underset{(0.00899)}{0.07723 e d u c} \\
S S R_{B} & =63.4021, n_{2}=274
\end{aligned}
$$

- Test whether a regression function is different for a group versus another at 5\% significance level using the F test for exclusion restrictions and the Chow test. Do the results differ?

Linear Probability Model

- Now the dependent variable y is a binary variable, that is it takes values 0 and 1 .

Examples:

- Labour force participations.

$$
y=\left\{\begin{array}{cc}
1 & \text { if employed } \\
0 & \text { otherwise }
\end{array} .\right.
$$

We would like to study how labour force participation depends on the characteristics of the individuals.

- Financial crises

$$
y=\left\{\begin{array}{lc}
1 & \text { if the country is in a financial crisis } \\
0 & \text { otherwise }
\end{array}\right.
$$

We would like to study the occurrence of a financial crisis depends on the characteristics of countries.

- Denote $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right)$.
- The objective of a regression model is to estimate $E(y \mid \mathbf{x})$.

Linear Probability Model

- $E(y \mid \mathbf{x})=\mathcal{P}(y=1 \mid \mathbf{x})$, when y is a binary variable.
- In the linear probability model we assume that

$$
\mathcal{P}(y=1 \mid \mathbf{x})=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k} .
$$

- So, the interpretation of β_{j} is the change in the probability of success when x_{j} changes:

$$
\frac{\partial \mathcal{P}(y=1 \mid x)}{\partial x_{j}}=\beta_{j}, j=1, \ldots, k
$$

- The predicted y is the predicted probability of success.
- The linear probability model is estimated using OLS, that is regressing y on x_{1}, \ldots, x_{k}.

Linear Probability Model

Example: Consider the model

$$
\begin{aligned}
\text { inlf }= & \beta_{0}+\beta_{1} \text { nwifeinc }+\beta_{2} \text { educ }+\beta_{3} \text { exper }+\beta_{4} \text { exper }^{2} \\
& +\beta_{5} \text { age }+\beta_{6} \text { kidslt } 6+\beta_{7} \text { kidsge } 6+u
\end{aligned}
$$

where

- inlf ("in the labour force") = binary variable indicating labour force participation by a married woman during 1975:
- nwifeinc=husband's earnings (, measured in thousands of dollars),
- educ= years of education,
- exper=past years of labor market experience,
- age=age of the woman,
- kidslt6=number of children less than six years old,
- kidsge $6=$ number of kids between 6 and 18 years of age .

Linear Probability Model

Estimating the model we obtain:

$$
\begin{aligned}
\text { inlf }= & \underset{(0.154)}{0.586}-\underset{(0.0014)}{0.0034} \mathbf{0} \text { ifeinc }+\underset{(0.007)}{0.038} \text { educ }+\underset{(0.006)}{0.039 \text { exper }}-\underset{(0.00018)}{0.0006 \text { exper }^{2}} \\
& -\underset{(0.002)}{0.016 a g e}-\underset{(0.34)}{0.262 k i d s l t}+\underset{(0.013)}{0.013 \text { kidsge6 },} \\
n= & 743, R^{2}=0.264
\end{aligned}
$$

Linear Probability Model

Graph for nwifeinc $=50$, exper $=5$, age $=30$, kindslt $6=1$, kidsge $6=0$

- The maximum level of education in the sample is educ $=17$. For the given case, this leads to a predicted probability to be in the labor force of about 0.5.
- For educ <3.84 there is a negative predicted probability but no problem because no woman in the sample has educ <5.

Linear Probability Model

Disadvantages of the linear probability model

- Potential problem that the fitted values can be outside $[0,1]$.
- Even without predictions outside of $[0,1]$, we may estimate effects that imply a change in x changes the probability by more than +1 or -1 .
- This model will violate assumption of homoskedasticity, so will affect inference. Notice that

$$
\begin{aligned}
\operatorname{Var}(y \mid \mathbf{x})= & \mathcal{P}(y=1 \mid \mathbf{x})(1-\mathcal{P}(y=1 \mid \mathbf{x})) \\
= & \left(\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}\right) \times \\
& \left(1-\beta_{0}-\beta_{1} x_{1}-\ldots-\beta_{k} x_{k}\right) .
\end{aligned}
$$

Heteroskedasticity consistent standard errors need to be computed

Advantanges of the linear probability model

- Easy estimation and interpretation
- Estimated predictions often reasonably good in practice

