Econometrics

Multiple Regression Analysis: Heteroskedasticity. Wooldridge (2013),
Chapter 8.

@ What is Heteroskedasticity? Why Worry About
Heteroskedasticity?

@ Variance of the OLS estimator with Heteroskedasticity

@ Robust Standard Errors

o Heteroskedastic-robust Wald statistic and A Robust Lagrange
Multiplier Statistic

o Testing for Heteroskedasticity (The Breusch-Pagan Test, The
White Test)

@ Weighted Least Squares, Generalized Least Squares, Feasible
GLS

@ Prediction and Prediction Intervals with Heteroskedasticity
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Multiple Regression Analysis: Heteroskedasticity

What is Heteroskedasticity?

Recall the Gauss-Markov assumptions:

@ Population model is linear in parameters:
y=PBo+pix1+pyo+ ...+ +u

© We can use a random sample of size
n{(x, X, -, Xix, ¥i) 11 =1,2,...,n}, from the population
model, so that the sample model is

Yi = By + Brxin + Boxip + - .. + Bk + u;.

Q@ E(ulxq,xp,... x;) =0.
© None of the x’s is constant, and there are no exact linear
relationships among them (no perfect multicollinearity).

@ Homoskedasticity implied that conditional on the explanatory

variables, the variance of the unobserved error, 1, was constant

Var(ulxy, ..., x;) = 2.
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Multiple Regression Analysis: Heteroskedasticity

What is Heteroskedasticity?

@ If 5is not true, that is if the conditional variance of u is different
for different values of the x’s, then the errors are heteroskedastic.

@ Notice that
Var(u|xy, ..., xx) = Var(y|xy, ..., X).
@ Is the assumption of homoskedasticity realistic?

@ In cross-sectional data usually the errors are heteroskedastic, that
is Var(u|xy, ..., x) varies with the regressors.
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Multiple Regression Analysis: Heteroskedasticity

Example:
Let us consider the regression model

log(wage) = B, + Byfemale + u,
where female is a dummy variable:

female — 1 if female
] 0 otherwise °

Homoskedasticy implies that
Var(log(wage) |female = 1) = Var(log(wage)|female = 0)
which is equivalent to

Var(log(wage) |females) = Var(log(wage) |males).



Multiple Regression Analysis: Heteroskedasticity

Example: Let us consider the a sample taken from the 1976 US
Current Population Survey (n = 526).

ScatterPlot
Sample average of Sample average of
log(wages) for males Jog(wages) for females

AN

Sample regression line

Log(wages)
1
!

L x X XI]

female
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Multiple Regression Analysis: Heteroskedasticity

Example:Sample regression line:

o —

log(wage) = 1.8136 — 0.3972female

@ The sample variance of log(wage) for males is 0.28602.
@ The sample variance of log(wage) for females is 0.19734.

@ This is an indication that the assumption of Homoskedasticity
does not hold.
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Multiple Regression Analysis: Heteroskedasticity

e Homoskedastic Case: Var(u|x) = 0.

y
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Multiple Regression Analysis: Heteroskedasticity

@ Heteroskedastic Case: Var(u|x) varies with x.
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Multiple Regression Analysis: Heteroskedasticity

Why Worry About Heteroskedasticity?

@ OLS is still unbiased and consistent, even if we do not assume
homoskedasticity.

@ Now OLS is not BLUE.

@ The standard errors of the estimates proposed before are biased if
we have heteroskedasticity and hence not valid.

o If the standard errors are biased, we cannot use the usual ¢
statistics or F statistics or LM statistics for drawing inferences.

@ We have to propose standard errors that are valid even under
heteroskedasticity.
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Multiple Regression Analysis: Heteroskedasticity

Variance the OLS estimator with Heteroskedasticity in the simple regression model

Consider the simple linear regression model
y=Ppo+prx+u
E(ulx) = 0, Var(u|x) = o?(x).

For this model " D
. L (x — %)y
— + i=1\"1 - l,
.Bl .Bl ?:1 (xi . x)z
Hence conditional on x1, ..., x;,
N n o (x — %)%0%(x;)
Var = Sl !
(ﬁl) SSTJ%
SSTyx = Y, (x; — %)2. Notice that ¢%(x;) is unknown.
A valid estimator for Var(B,) is
— " (x —5()2112
Var(p,) = ==L~/ 1

7

where ii; are the OLS residuals.
Remark: E(u?|x) = 0?(x).
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Multiple Regression Analysis: Heteroskedasticity

Variance with Heteroskedasticity in the multiple regression model

k
_1/ == ﬁo + Zi:] ﬁixl‘ + u,
E(u|x) = 0, Var(u|x) = o%(x),
X = (xl,...,xk).

For the general multiple regression model, a valid estimator of

Var( ,B/) with heteroskedasticity is
N 22482
— A =1 it
Var(p) = — 4L
) =55z

where 7;; is the ith residual from regressing x; on all other
independent variables and SSR; is the sum of squared residuals from
this regression.
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Multiple Regression Analysis: Heteroskedasticity

Robust Standard Errors

@ Now that we have a consistent estimate of the variance, the
square root can be used as a standard error for inference, that is

se(ﬁj) = Var(Bj).
o Typically call these robust standard errors or White, Huber or Eicker
standard errors.

@ Once the heteroskedastic robust standard errors are obtained the
heteroskedastic-robust ¢ statistic is computed in the usual way

__ estimator — hypothesized value

t
standard error

@ One can show that t ~ N(0,1).

@ These robust standard errors only have asymptotic justification —
with small sample sizes ¢ statistics formed with robust standard
errors will not have a distribution close to the t, and inferences
will not be correct.
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Multiple Regression Analysis: Heteroskedasticity

Heteroskedastic-robust Wald statistic.

Consider the multiple regression model

k
y=p5y+ Zizl Bixi +u.
Suppose that we would like to test Hy : f; = f, = ... = B, = 0.
@ Itis possible to obtain F and LM statistics that are robust to
heteroskedasticity of an unknown arbitrary form.

@ The heteroskedastic robust F statistic (or a simple transformation
of it) is called a heteroskedastic-robust Wald statistic.

@ The specific formula of the Wald statistic requires matrix algebra
and will not be given here, though most of the Econometric
software have procedures to compute it.

@ Since we are testing the validity of g restrictions, the asymptotic
distribution of the heteroskedastic-robust Wald statistic is x(q).

@ This can also used to test other types of restrictions on the
parameters.
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Multiple Regression Analysis: Heteroskedasticity

Testing Hypothesis

Regressing log(wage) on education experience and tenure we obtain
(n=526):

Regressors | Estimates | Usual Robust
Std. Err. | Std. Err.
Intercept 0.28436 0.10419 | 0.11171
education | 0.09203 0.00733 | 0.00792
experience | 0.00412 0.00172 | 0.00175
tenure 0.02207 0.00309 | 0.00378

Tests of joint zero restrictions on exper and tenure:

@ Value of the usual F-Statistic F*! = 49.6852 (F ~ F(2,522))

@ Value of the heteroskedastic-robust Wald statistic: W%t = 74.1037.
W~ x*(2))
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Multiple Regression Analysis: Heteroskedasticity

A Robust Lagrange Multiplier Statistic

Suppose that we would like to test Hy : B, = B, = ... = ,Bq =0.

@ Run OLS on the restricted model and save the residuals iI.

@ Regress each of the excluded variables on all of the included
variables (g different regressions) and save each set of residuals
1,72, ..., 7.

@ Regress a variable defined to be = 1 on #1l, %, . . ., 741, with no
intercept.

@ The LM statistic is n — SSR1, where SSR; is the sum of squared
residuals from this final regression.

@ Under Hy, LM ~ x%(9).
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Multiple Regression Analysis: Heteroskedasticity

Heteroskedasticity.

Let x = (x1,xp, ..., xx) and consider the linear regression model
Yy =Byt Bixr+ Bpxo + .+ Brx + 1,
E(u|x) = 0.

e There is heteroskedasticity if Var(u|x) = ¢?(x).

e There is homoskedasticity if Var(u|x) = 2.
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Multiple Regression Analysis: Heteroskedasticity

Testing for Heteroskedasticity

e Essentially want to test Hy : Var(u|xi, xy, ..., x;) = 02, which is
equivalent to Hg : E(u?|x1,xy, ..., x;) = E(u?) = 02,

o If assume the relationship between u? and x; will be linear, can
test as a linear restriction.

@ So, for u? = 6y + 81x1 + ... + Skxp + v, E(v|x1, x2,. .. x¢) = 0, this
means testing Hy : 61 = 0 = ... = 6 = 0.
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Multiple Regression Analysis: Heteroskedasticity

The Breusch-Pagan Test

@ Don’t observe the error, but can estimate it with the residuals
from the OLS regression, that is we replace u by ii.

o After regressing the residuals squared on all of the x’s, can use
the R? to form an F or LM test.

@ The F statistic is just the reported F statistic for overall
significance of the regression, F = [R?/k]/[(1 — R?)/(n —k —1)],
which is distributed F(k,n —k — 1).

o The LM statistic is LM = nR?, which is distributed x?(k).
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Multiple Regression Analysis: Heteroskedasticity

The Breusch-Pagan Test

Example 1:Consider the following regression, where Res2 are the
squares of the residuals of the regression of log(wages) on female.Test
the null hypothesis of homoskedasticity at 5% level.

Res2 = 0.2850 — 0.0884female,
R* = 0.012744,
n = b526.

Example 2: Let Res2 be the squares of the residuals of the regression
of log(wages) on an intercept, educ, exper and tenure (n = 526). We run
the regression of Res2 on an intercept, educ, exper and tenure and
obtain R? = 0.0205.Test the null hypothesis of homoskedasticity at
5% level.
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Multiple Regression Analysis: Heteroskedasticity

The White Test

@ The Breusch-Pagan test will detect any linear forms of
heteroskedasticity.

@ The White test allows for nonlinearities by using squares and
crossproducts of all the x’s, that is, we run the regression

02 = So+01x1+... +Skxp+ (5k+1x% +...4+ §2kx% + Oop1X1X2 +
Ok 4 k(k+1) /2XkXk—1 + error
Want to test Hy : 61 = 0 = ... = g qx(kr1)/2 = 0.

@ The F statistic is just the reported F statistic for overall
significance of the regression, F = [R?/q]/[(1 — R?)/(n — q —1)],
which is distributed F(q,n —q — 1), where g = k + k(k+ 1) /2.

o The LM statistic is LM = nR?, which is distributed x?(q).

e Example: if k = 3, we run the regression of #1? on an intercept
and X1,X2,X3, x%, x%, x%, X1X2,X2X3,X1X3.

@ We are testing if 9 parameters are equal to zero so
FRAF9,n—9—1)and LM ~ x2(9).
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Multiple Regression Analysis: Heteroskedasticity

The White Test

Example: Let Res2 be the squares of the residuals of the regression of
log(wages) on an intercept, educ, exper and tenure (n = 526). We run
the regression of Res2 on an intercept, educ, exper, tenure, educ?, experz,
tenure?, educ x exper, educ x tenure and exper x tenure and obtain

R? = 0.0394. Test the null hypothesis of homoskedasticity at 5% level.
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Multiple Regression Analysis: Heteroskedasticity

Alternative form of the White test

The power of the White test is usually not high because we are testing
the significance of a large number of regressors. For instance if k = 6
we are testing the significance of 27 regressors.

A possible remedy is to drop the cross terms, if k = 6 we are testing
the significance of 12 regressors.

@ In this case we run the regression

0% =80+ 01x1 + ...+ Spxp + (5k+1x% +...+ §2kx% + error

Wanttotest Hy: 61 =6y = ... =3y = 0.

@ The F statistic is just the reported F statistic for overall
significance of the regression,
F = [R?/2k]/[(1 — R*)/(n — 2k — 1)], which is distributed
F(2k,n —2k—1).

e The LM statistic is LM = nR?, which is distributed x?(2k).
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Multiple Regression Analysis: Heteroskedasticity

Alternative form of the White test

Example: Let Res2 be the squares of the residuals of the regression of
log(wages) on an intercept, educ, exper and tenure (n = 526). We run
the regression of Res2 on an intercept, educ, exper, tenure, educ?, exper2
and tenure? and obtain R?> = 0.0268. Test the null hypothesis of
homoskedasticity at 5% level.
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Multiple Regression Analysis: Heteroskedasticity

Alternative form of the White test

An alternative is the following:
@ Consider that the fitted values from OLS, j, are a function of all
the x’s.

e Thus, §* will be a function of the squares and crossproducts and

# and ? can proxy for all of the x;, x]Z, and x;xy,.

@ Regress the residuals squared on  and §? and use the R? to form
an F or LM statistic. In this case F ~ F(2,n —2 — 1) and
LM < x2(2).

@ Note only testing for 2 restrictions now.
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Multiple Regression Analysis: Heteroskedasticity

Alternative form of the White test

Example:Let Res2 and log,(/w%es) be the squares of the residuals and
the fitted values, respectively, of the regression of log(wages) on an
intercept, educ, exper and tenure (n = 526). We run the regression of

— — 32
Res2 on an intercept, log(wages) and (log(wuges)) and obtain
R? = 0.0127. Test the null hypothesis of homoskedasticity at 5% level.
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Multiple Regression Analysis: Heteroskedasticity

Heteroskedasticity (Main Points)

@ Under heteroskedasticity the usual formula for the standard
errors is not valid.

@ We need to compute robust standard errors, that are consistent
under heteroskedasticity.

@ Once the heteroskedastic robust standard errors are obtained the
heteroskedastic-robust t statistic is computed in the usual way

o estimator — hypothesized value
B standard error

@ The F and LM statistics introduced under the Gauss-Markov
Assumptions are also not valid.

@ The heteroskedastic robust F statistic (or a simple transformation
of it) is called a heteroskedastic-robust Wald statistic .

@ One can also use a LM test statistic which is valid under
heteroskedasticity.
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Multiple Regression Analysis: Heteroskedasticity

Heteroskedasticity (Main Points)

@ We can test for Homoskedasticity by testing the joint significance
of the independent variables in the regression of the squared
residuals 717 on:

All the regressors.

All the regressors, squares of the regressors and crossproducts.
All the regressors, squares of the regressors.

The fitted values and squares of the fitted values.
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Multiple Regression Analysis: Heteroskedasticity

Weighted Least Squares

@ We can always estimate robust standard errors for OLS.

e However, if we know something about the specific form of the
heteroskedasticity, we can obtain more efficient estimates than
OLS.

@ The basic idea is going to be to transform the model into one that
has homoskedastic errors — called weighted least squares.
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Multiple Regression Analysis: Heteroskedasticity

Case of form being known up to a multiplicative constant

Let x = (x1, X2, ..., X¢) and consider the linear regression model

y=PBy+B1x1+ Brxo+ .. + B + 1,
E(u|x) = 0.

@ Suppose the heteroskedasticity can be modeled as
Var(u|x) = o?h(x).
e Example:

Wage = B + B, Education + B,Experience + B;Tenure + u

where Var(u|Education, Experience, Tenure) = o> exp(Education).
e E(u/+\/h(x)|x) = 0, because h(x) is only a function of x, and
Var(u/ /h(x)|x) = o2.
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Multiple Regression Analysis: Heteroskedasticity

Case of form being known up to a multiplicative constant

@ So, if we divide our whole regression equation by \/h(x) we
have a model where the error is homoskedastic.

Y* = Boxg + BrX] + Boxs + o+ Brxg +u”

where

y© o= y/\/’@
x = 1/y/h(x)
= /), =1,k
TR u/\/@

as E[u*|x] = 0 and var[u*|x] = o?.

o Estimating the transformed equation by OLS leads to the
generalized least squares (GLS) estimator.
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Multiple Regression Analysis: Heteroskedasticity

Generalized Least Squares

e GLS will be BLUE in this case, while OLS is not efficient.

@ The GLS estimator for the particular case where we divide the
regression equation by h(x;) is called a weighted least squares
(WLS) estimator. Why?

Zl 1 (i — ,30/\/71 :317‘?1 e kafk)z/""hefe yi = yi/ \/}m
and x; = xl]/:/ )fl )
=Y (i — By — By — - — Bexa) 2/ h(x).

Individuals with larger variance are given a smaller weight

e WLS is great if we know what Var(u;|x;) looks like.
@ In most cases, won’t know form of heteroskedasticity.
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Multiple Regression Analysis: Heteroskedasticity

Feasible GLS

e We need to estimate 2k (x;).

@ Typically, we start with the assumption of a fairly flexible model,
such as Var(u|x) = o2 exp(dg + 61x1 + . .. + Sx).
e Example:

Wage = B, + B, Education + B,Experience + By Tenure + u

where
Var(u|Education, Experience, Tenure) = o exp (8o + 61Education).

@ Since we don’t know the ¢'s, we must estimate them.
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Multiple Regression Analysis: Heteroskedasticity

Feasible GLS (continued)

e Our assumption implies that u? = o?exp(Jy + 011 + . .. + 6xxk ),
where E(v|x) = 1.
@ We assume further that v is independent of x.

o Taking logs we obtain
log(u?) = &g + 61x1 + ... + Sxx + e,

where E(e) = 0 and e is independent of
x.(ag = log(c?) + 6o + E(log(v)) and e = log(v) — E(log(v))).

@ Now, we know that the residuals I is an estimate of u, so if we
replace u by fi, we can estimate this equation by OLS. That is, we
run the regression of log(%?) on an intercept x1, x, ..., X.

—

e Denote the fitted values for the observation i by log(#1?).
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Multiple Regression Analysis: Heteroskedasticity

Feasible GLS (continued)

—

e Now, an estimate of c2h(x;) is just exp (log(ﬁ?)) , and the
inverse of this is our weight.
So, what did we do?

@ Run the original OLS model, save the residuals, #I, square them
and take the log .

@ Regress log(#?) on all of the independent variables and get the

fitted values, log(#17).

@ Do WLS using 1/ exp (1@)) ,i=1,..,nas weights.
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Multiple Regression Analysis: Heteroskedasticity

Feasible GLS (continued)

Example: Financial Wealth

We would like to explain the net total financial wealth (nettfa)
Observations: 9275.

Regressors

e401k = 1 if eligible for 401(k) (pension plan for people in US)
inc =annual family income, $1000s

male = 1 if male respondent

(age — 25)? where age in years

Data set: 1991 US Survey of Income and Program Participation
(SIPP).
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Multiple Regression Analysis: Heteroskedasticity

Feasible GLS (continued)
Example: Financial Wealth

Dependent Variable: nettfa

Independent 1) 2) 3) @
Variables OLS WLS OLS WLS
inc 821 187 771 740
(.104) (.063) (.100) (.064)
(age — 25)° — — 0251 0175
(.0043) (.0019)
male — — 2.48 1.84
(2.06) (1.56)
ed01k — — 6.89 5.19
(2.29) (1.70)
intercept -10.57 -9.58 —20.98 —16.70
(2.53) (1.65) (3.50) (1.96)
Observations 2,017 2,017 2,017 2,017
R-squared .0827 .0709 1279 1115
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Multiple Regression Analysis: Heteroskedasticity

WLS Wrapup

@ When doing F tests with WLS, form the weights from the
unrestricted model and use those weights to do WLS on the
restricted model as well as the unrestricted model.

@ Remember we are using WLS just for efficiency — OLS is still
unbiased & consistent.

o If the Heteroskedastic function is not correct and we estimated
the parameters using WLS, we have to use robust standard
errors to test hypothesis on the parameters.

o If the Heteroskedastic function is not correct it is not guaranteed
that WLS is more efficient than OLS.
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Multiple Regression Analysis: Heteroskedasticity

Prediction and Prediction Intervals with Heteroskedasticity.

1- Suppose that we want an estimate of

E(ylx1 = x10,...,% = Xk0) = By + B1X10+ - + BrXko = 0.

That is, we would like to estimate the the mean of y when the
regressors are equal to known values x1 g, ..., X o-
@ This is easy to obtain by substituting the x’s in our estimated
model with x;’s ,

0 = By + Brx10 + - - - + Bexeo-

@ We would like to construct confidence intervals for 6.
@ But what about a standard error of jy under heteroskedasticity?

@ 0 isjust a linear combination of the parameters.
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Multiple Regression Analysis: Further Issues

Standard Errors for Predictions in the Multiple Regression Model

o Can rewrite
Bo + Bixro+ -+ Brxro =0
as
Bo =0 = Brx1,0 — .. — BiXio
@ Substitute in
y=pBy+px1+...+Bxx+u

to obtain

y=0+p(x1 —x10) +... + Bplxx —xx0) +u

@ So, if you regress y on (x]- — ]-,0), j=1,...,k the intercept will
give the predicted value. The robust standard errors of the
intercept correspond to the standard errors of the prediction
under heteroskedasticity.
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Multiple Regression Analysis: Further Issues

Standard Errors for Predictions in the Multiple Regression Model

2- Suppose now that we would like to construct a confidence interval
for y when when the regressors are equal to known values
xo = (x1,0, .., Xk0) and denote this value as .
@ How can we construct a confidence interval for y(?
o Notice that
Yo = By + Brx10+ .- + B + o

@ Our best prediction for y is the regression line

9o = BO + ,319(1,0 +...+ kak,O
@ The prediction error is given by

A~

iy = Yyo—o
= BotBix10+ .-+ Brxko + o — Yo

@ Therefore, The variance of iy conditional on the in-sample
values of the independent variables is:

Var(ig) = Var(ug) + Var(ijo)
= ?h(xg) + Var(fp).
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Multiple Regression Analysis: Further Issues

Standard Errors for Predictions in the Multiple Regression Model

Vﬂr(flo) = O'Zh(XO) + Vm’(yo).

@ Hence an estimator for Var(ilg) is given by

se3 = exp (log(ﬁ%)) +se(0)?,
where se(f)p) is the robust standard error of the intercept in the
regression of y on (x; — xj9),j = 1,...,k, and exp <log(ﬁ%)> is an

estimator of 0?h(xg), computed as in the case of Feasable WLS.
@ It can be shown that if u ~ N(0,0?h(xg)),

Yo — Yo 'EJN(O,l)
s€q

@ Hence the (1 — a)% prediction interval for y is given by
(B0 — zas25€0, J0 + za /25€0),

where z, /, is the percentile (1 — a/2)" of the standard normal

distribution.



Multiple Regression Analysis: Further Issues

Predicting y in a log model
Suppose that we have the model
log(y) = By + P11 + ...+ Brxe + 1,

E (u|xq, ..., x) = 0, Var (u|xq, ..., xx) = 0?h(xy, ..., x) and we would like
to estimate the the mean of y when the regressors are equal to known
values X1,07 +++r Xk 0- E(y|x1 =X1,0/ -+, Xk = xk,O)‘

What can we do?

Given the OLS estimators the predicted value for the mean of log(y)
for any values of the regressors is

log(y) = By + Brx1 + ... + B
If u ~ N(0,0%h(x1, ..., x;)), in can be shown that
E (y|x1, ., i) = exp(0.502h(x1, ..., X)) exp(By + Byx1 + - - - + Brxx)-

Therefore, a simple way to predict E(y|x; = x1,..., % = Xkp) is

—

o = exp (0.5 exp <log(ﬁ%)>> exp(By + Bix10 + - + Brxio)
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