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Multiple Regression Analysis: Heteroskedasticity. Wooldridge (2013),
Chapter 8.
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Multiple Regression Analysis: Heteroskedasticity
What is Heteroskedasticity?

Recall the Gauss-Markov assumptions:
1 Population model is linear in parameters:

y = β0 + β1x1 + β2x2 + . . .+ βkxk + u.
2 We can use a random sample of size

n,f(xi1, xi2, . . . , xik, yi) : i = 1, 2, . . . , ng, from the population
model, so that the sample model is

yi = β0 + β1xi1 + β2xi2 + . . .+ βkxik + ui.

3 E(ujx1, x2, . . . xk) = 0.
4 None of the x’s is constant, and there are no exact linear

relationships among them (no perfect multicollinearity).
5 Homoskedasticity implied that conditional on the explanatory

variables, the variance of the unobserved error, u, was constant
Var(ujx1, ..., xk) = σ2.
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Multiple Regression Analysis: Heteroskedasticity
What is Heteroskedasticity?

If 5 is not true, that is if the conditional variance of u is different
for different values of the x’s, then the errors are heteroskedastic.
Notice that

Var(ujx1, ..., xk) = Var(yjx1, ..., xk).

Is the assumption of homoskedasticity realistic?
In cross-sectional data usually the errors are heteroskedastic, that
is Var(ujx1, ..., xk) varies with the regressors.
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Multiple Regression Analysis: Heteroskedasticity

Example:
Let us consider the regression model

log(wage) = β0 + β1female+ u,

where female is a dummy variable:

female =
�

1 if female
0 otherwise .

Homoskedasticy implies that

Var(log(wage)jfemale = 1) = Var(log(wage)jfemale = 0)

which is equivalent to

Var(log(wage)jfemales) = Var(log(wage)jmales).
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Multiple Regression Analysis: Heteroskedasticity
Example: Let us consider the a sample taken from the 1976 US
Current Population Survey (n = 526).

ScatterPlot
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Multiple Regression Analysis: Heteroskedasticity

Example:Sample regression line:

\log(wage) = 1.8136� 0.3972female

The sample variance of log(wage) for males is 0.28602.
The sample variance of log(wage) for females is 0.19734.
This is an indication that the assumption of Homoskedasticity
does not hold.
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Multiple Regression Analysis: Heteroskedasticity

Homoskedastic Case: Var(ujx) = σ2.

.
.

x1 x2

E(y|x) = β0 + β1x

y

f(y)
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Multiple Regression Analysis: Heteroskedasticity

Heteroskedastic Case: Var(ujx) varies with x.

.
xx1 x2

yf(y|x)

x3

. .
E(y|x) = β0 + β1x
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Multiple Regression Analysis: Heteroskedasticity
Why Worry About Heteroskedasticity?

OLS is still unbiased and consistent, even if we do not assume
homoskedasticity.
Now OLS is not BLUE.
The standard errors of the estimates proposed before are biased if
we have heteroskedasticity and hence not valid.
If the standard errors are biased, we cannot use the usual t
statistics or F statistics or LM statistics for drawing inferences.
We have to propose standard errors that are valid even under
heteroskedasticity.

9 / 42



Multiple Regression Analysis: Heteroskedasticity
Variance the OLS estimator with Heteroskedasticity in the simple regression model

Consider the simple linear regression model

y = β0 + β1x+ u,

E(ujx) = 0, Var(ujx) = σ2(x).

For this model

β̂1 = β1 +
∑n

i=1(xi � x̄)ui

∑n
i=1(xi � x̄)2

,

Hence conditional on x1, ..., xn

Var(β̂1) =
∑n

i=1(xi � x̄)2σ2(xi)

SST2
x

,

SSTx = ∑n
i=1(xi � x̄)2. Notice that σ2(xi) is unknown.

A valid estimator for Var(β̂1) is

dVar(β̂1) =
∑n

i=1(xi � x̄)2û2
i

SST2
x

.

where ûi are the OLS residuals.
Remark: E(u2jx) = σ2(x).
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Multiple Regression Analysis: Heteroskedasticity
Variance with Heteroskedasticity in the multiple regression model

y = β0 +∑k
i=1 βixi + u,

E(ujx) = 0, Var(ujx) = σ2(x),
x = (x1, ..., xk).

For the general multiple regression model, a valid estimator of
Var(β̂j) with heteroskedasticity is

dVar(β̂j) =
∑n

i=1 r̂2
ijû

2
i

SSR2
j

where r̂ij is the ith residual from regressing xj on all other
independent variables and SSRj is the sum of squared residuals from
this regression.
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Multiple Regression Analysis: Heteroskedasticity
Robust Standard Errors

Now that we have a consistent estimate of the variance, the
square root can be used as a standard error for inference, that is

se(β̂j) =
qdVar(β̂j).

Typically call these robust standard errors or White, Huber or Eicker
standard errors.
Once the heteroskedastic robust standard errors are obtained the
heteroskedastic-robust t statistic is computed in the usual way

t =
estimator� hypothesized value

standard error
.

One can show that t a� N(0, 1).
These robust standard errors only have asymptotic justification –
with small sample sizes t statistics formed with robust standard
errors will not have a distribution close to the t, and inferences
will not be correct.
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Multiple Regression Analysis: Heteroskedasticity
Heteroskedastic-robust Wald statistic.

Consider the multiple regression model

y = β0 +∑k
i=1 βixi + u.

Suppose that we would like to test H0 : β1 = β2 = ... = βq = 0.

It is possible to obtain F and LM statistics that are robust to
heteroskedasticity of an unknown arbitrary form.
The heteroskedastic robust F statistic (or a simple transformation
of it) is called a heteroskedastic-robust Wald statistic.
The specific formula of the Wald statistic requires matrix algebra
and will not be given here, though most of the Econometric
software have procedures to compute it.
Since we are testing the validity of q restrictions, the asymptotic
distribution of the heteroskedastic-robust Wald statistic is χ2(q).
This can also used to test other types of restrictions on the
parameters.
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Multiple Regression Analysis: Heteroskedasticity
Testing Hypothesis

Regressing log(wage) on education experience and tenure we obtain
(n=526):

Regressors Estimates Usual Robust
Std. Err. Std. Err.

Intercept 0.28436 0.10419 0.11171
education 0.09203 0.00733 0.00792
experience 0.00412 0.00172 0.00175
tenure 0.02207 0.00309 0.00378

Tests of joint zero restrictions on exper and tenure:

Value of the usual F-Statistic Fact = 49.6852 (F � F(2, 522))
Value of the heteroskedastic-robust Wald statistic:Wact = 74.1037.
(W � χ2(2))
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Multiple Regression Analysis: Heteroskedasticity
A Robust Lagrange Multiplier Statistic

Suppose that we would like to test H0 : β1 = β2 = ... = βq = 0.

1 Run OLS on the restricted model and save the residuals û.
2 Regress each of the excluded variables on all of the included

variables (q different regressions) and save each set of residuals
r̂1, r̂2, . . . , r̂q.

3 Regress a variable defined to be = 1 on r̂1û, r̂2û, . . . , r̂qû, with no
intercept.

4 The LM statistic is n� SSR1, where SSR1 is the sum of squared
residuals from this final regression.

5 Under H0, LM a� χ2(q).
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Multiple Regression Analysis: Heteroskedasticity
Heteroskedasticity.

Let x = (x1, x2, ..., xk) and consider the linear regression model

y = β0 + β1x1 + β2x2 + ...+ βkxk + u,
E(ujx) = 0.

There is heteroskedasticity if Var(ujx) = σ2(x).
There is homoskedasticity if Var(ujx) = σ2.
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Multiple Regression Analysis: Heteroskedasticity
Testing for Heteroskedasticity

Essentially want to test H0 : Var(ujx1, x2, . . . , xk) = σ2, which is
equivalent to H0 : E(u2jx1, x2, . . . , xk) = E(u2) = σ2.
If assume the relationship between u2 and xj will be linear, can
test as a linear restriction.
So, for u2 = δ0 + δ1x1 + . . .+ δkxk + v, E(vjx1, x2, . . . xk) = 0, this
means testing H0 : δ1 = δ2 = . . . = δk = 0.
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Multiple Regression Analysis: Heteroskedasticity
The Breusch-Pagan Test

Don’t observe the error, but can estimate it with the residuals
from the OLS regression, that is we replace u by û.
After regressing the residuals squared on all of the x’s, can use
the R2 to form an F or LM test.
The F statistic is just the reported F statistic for overall
significance of the regression, F = [R2/k]/[(1� R2)/(n� k� 1)],
which is distributed F(k, n� k� 1).
The LM statistic is LM = nR2, which is distributed χ2(k).
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Multiple Regression Analysis: Heteroskedasticity
The Breusch-Pagan Test

Example 1:Consider the following regression, where Res2 are the
squares of the residuals of the regression of log(wages) on female.Test
the null hypothesis of homoskedasticity at 5% level.

dRes2 = 0.2850� 0.0884female,

R2 = 0.012744,
n = 526.

Example 2: Let Res2 be the squares of the residuals of the regression
of log(wages) on an intercept, educ, exper and tenure (n = 526). We run
the regression of Res2 on an intercept, educ, exper and tenure and
obtain R2 = 0.0205.Test the null hypothesis of homoskedasticity at
5% level.
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Multiple Regression Analysis: Heteroskedasticity
The White Test

The Breusch-Pagan test will detect any linear forms of
heteroskedasticity.
The White test allows for nonlinearities by using squares and
crossproducts of all the x’s, that is, we run the regression

û2 = δ0 + δ1x1 + . . .+ δkxk + δk+1x2
1 + . . .+ δ2kx2

k + δ2k+1x1x2 +

...δk+k(k+1)/2xkxk�1 + error

Want to test H0 : δ1 = δ2 = . . . = δk+k(k+1)/2 = 0.

The F statistic is just the reported F statistic for overall
significance of the regression, F = [R2/q]/[(1� R2)/(n� q� 1)],
which is distributed F(q, n� q� 1), where q = k+ k(k+ 1)/2.
The LM statistic is LM = nR2, which is distributed χ2(q).
Example: if k = 3, we run the regression of û2 on an intercept
and x1, x2, x3, x2

1, x2
2, x2

3, x1x2, x2x3, x1x3.
We are testing if 9 parameters are equal to zero so
F a� F(9, n� 9� 1) and LM a� χ2(9).
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Multiple Regression Analysis: Heteroskedasticity
The White Test

Example: Let Res2 be the squares of the residuals of the regression of
log(wages) on an intercept, educ, exper and tenure (n = 526). We run
the regression of Res2 on an intercept, educ, exper, tenure, educ2, exper2,
tenure2, educ� exper, educ� tenure and exper� tenure and obtain
R2 = 0.0394. Test the null hypothesis of homoskedasticity at 5% level.
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Multiple Regression Analysis: Heteroskedasticity
Alternative form of the White test

The power of the White test is usually not high because we are testing
the significance of a large number of regressors. For instance if k = 6
we are testing the significance of 27 regressors.
A possible remedy is to drop the cross terms, if k = 6 we are testing
the significance of 12 regressors.

In this case we run the regression

û2 = δ0 + δ1x1 + . . .+ δkxk + δk+1x2
1 + . . .+ δ2kx2

k + error

Want to test H0 : δ1 = δ2 = . . . = δ2k = 0.

The F statistic is just the reported F statistic for overall
significance of the regression,
F = [R2/2k]/[(1� R2)/(n� 2k� 1)], which is distributed
F(2k, n� 2k� 1).
The LM statistic is LM = nR2, which is distributed χ2(2k).
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Multiple Regression Analysis: Heteroskedasticity
Alternative form of the White test

Example: Let Res2 be the squares of the residuals of the regression of
log(wages) on an intercept, educ, exper and tenure (n = 526). We run
the regression of Res2 on an intercept, educ, exper, tenure, educ2, exper2

and tenure2 and obtain R2 = 0.0268. Test the null hypothesis of
homoskedasticity at 5% level.
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Multiple Regression Analysis: Heteroskedasticity
Alternative form of the White test

An alternative is the following:

Consider that the fitted values from OLS, ŷ, are a function of all
the x’s.
Thus, ŷ2 will be a function of the squares and crossproducts and
ŷ and ŷ2 can proxy for all of the xj, x2

j , and xjxh.

Regress the residuals squared on ŷ and ŷ2 and use the R2 to form
an F or LM statistic. In this case F a� F(2, n� 2� 1) and
LM a� χ2(2).
Note only testing for 2 restrictions now.
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Multiple Regression Analysis: Heteroskedasticity
Alternative form of the White test

Example:Let Res2 and \log(wages) be the squares of the residuals and
the fitted values, respectively, of the regression of log(wages) on an
intercept, educ, exper and tenure (n = 526). We run the regression of

Res2 on an intercept, \log(wages) and
�

\log(wages)
�2

and obtain

R2 = 0.0127. Test the null hypothesis of homoskedasticity at 5% level.
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Multiple Regression Analysis: Heteroskedasticity
Heteroskedasticity (Main Points)

Under heteroskedasticity the usual formula for the standard
errors is not valid.
We need to compute robust standard errors, that are consistent
under heteroskedasticity.
Once the heteroskedastic robust standard errors are obtained the
heteroskedastic-robust t statistic is computed in the usual way

t =
estimator� hypothesized value

standard error
.

The F and LM statistics introduced under the Gauss-Markov
Assumptions are also not valid.
The heteroskedastic robust F statistic (or a simple transformation
of it) is called a heteroskedastic-robust Wald statistic .
One can also use a LM test statistic which is valid under
heteroskedasticity.
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Multiple Regression Analysis: Heteroskedasticity
Heteroskedasticity (Main Points)

We can test for Homoskedasticity by testing the joint significance
of the independent variables in the regression of the squared
residuals û2

i on:
All the regressors.
All the regressors, squares of the regressors and crossproducts.
All the regressors, squares of the regressors.
The fitted values and squares of the fitted values.
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Multiple Regression Analysis: Heteroskedasticity
Weighted Least Squares

We can always estimate robust standard errors for OLS.
However, if we know something about the specific form of the
heteroskedasticity, we can obtain more efficient estimates than
OLS.
The basic idea is going to be to transform the model into one that
has homoskedastic errors – called weighted least squares.
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Multiple Regression Analysis: Heteroskedasticity
Case of form being known up to a multiplicative constant

Let x = (x1, x2, ..., xk) and consider the linear regression model

y = β0 + β1x1 + β2x2 + ...+ βkxk + u,
E(ujx) = 0.

Suppose the heteroskedasticity can be modeled as
Var(ujx) = σ2h(x).
Example:

Wage = β0 + β1Education+ β2Experience+ β3Tenure+ u

where Var(ujEducation, Experience, Tenure) = σ2 exp(Education).

E(u/
p

h(x)jx) = 0, because h(x) is only a function of x, and
Var(u/

p
h(x)jx) = σ2.
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Multiple Regression Analysis: Heteroskedasticity
Case of form being known up to a multiplicative constant

So, if we divide our whole regression equation by
p

h(x) we
have a model where the error is homoskedastic.

y� = β0x�0 + β1x�1 + β2x�2 + ...+ βkx�k + u�

where

y� = y/
q

h(x)

x0 = 1/
q

h(x)

x�j = xj/
q

h(x), j = 1, ..., k

u� = u/
q

h(x)

as E[u�jx] = 0 and var[u�jx] = σ2.
Estimating the transformed equation by OLS leads to the
generalized least squares (GLS) estimator.
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Multiple Regression Analysis: Heteroskedasticity
Generalized Least Squares

GLS will be BLUE in this case, while OLS is not efficient.
The GLS estimator for the particular case where we divide the
regression equation by h(xi) is called a weighted least squares
(WLS) estimator. Why?

∑n
i=1(y

�
i � β̂0/

p
h(xi)� β̂1x�i1 � ...� β̂kx�ik)

2,where y�i = yi
�p

h(xi)

and x�ij = xij
�p

h(xi)

= ∑n
i=1(yi � β̂0 � β̂1xi1 � ...� β̂kxik)

2/h(xi).
Individuals with larger variance are given a smaller weight

WLS is great if we know what Var(uijxi) looks like.
In most cases, won’t know form of heteroskedasticity.
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Multiple Regression Analysis: Heteroskedasticity
Feasible GLS

We need to estimate σ2h(xi).
Typically, we start with the assumption of a fairly flexible model,
such as Var(ujx) = σ2 exp(δ0 + δ1x1 + . . .+ δkxk).
Example:

Wage = β0 + β1Education+ β2Experience+ β3Tenure+ u

where
Var(ujEducation, Experience, Tenure) = σ2 exp(δ0 + δ1Education).
Since we don’t know the δ0s, we must estimate them.
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Multiple Regression Analysis: Heteroskedasticity
Feasible GLS (continued)

Our assumption implies that u2 = σ2exp(δ0 + δ1x1 + . . .+ δkxk)v,
where E(vjx) = 1.
We assume further that v is independent of x.
Taking logs we obtain

log(u2) = α0 + δ1x1 + . . .+ δkxk + e,

where E(e) = 0 and e is independent of
x.(α0 = log(σ2) + δ0 + E(log(v)) and e = log(v)� E(log(v))).
Now, we know that the residuals û is an estimate of u, so if we
replace u by û, we can estimate this equation by OLS. That is, we
run the regression of log(û2) on an intercept x1, x2, ..., xk.

Denote the fitted values for the observation i by \log(û2
i ).
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Multiple Regression Analysis: Heteroskedasticity
Feasible GLS (continued)

Now, an estimate of σ2h(xi) is just exp
�
\log(û2

i )

�
, and the

inverse of this is our weight.

So, what did we do?

Run the original OLS model, save the residuals, û, square them
and take the log .
Regress log(û2) on all of the independent variables and get the

fitted values, \log(û2
i ).

Do WLS using 1/ exp
�
\log(û2

i )

�
, i = 1, ..., n as weights.
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Multiple Regression Analysis: Heteroskedasticity
Feasible GLS (continued)

Example: Financial Wealth
We would like to explain the net total financial wealth (nettfa)
Observations: 9275.
Regressors
e401k = 1 if eligible for 401(k) (pension plan for people in US)
inc =annual family income, $1000s
male = 1 if male respondent
(age� 25)2 where age in years
Data set: 1991 US Survey of Income and Program Participation
(SIPP).
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Multiple Regression Analysis: Heteroskedasticity
Feasible GLS (continued)

Example: Financial Wealth
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Multiple Regression Analysis: Heteroskedasticity
WLS Wrapup

When doing F tests with WLS, form the weights from the
unrestricted model and use those weights to do WLS on the
restricted model as well as the unrestricted model.
Remember we are using WLS just for efficiency – OLS is still
unbiased & consistent.
If the Heteroskedastic function is not correct and we estimated
the parameters using WLS, we have to use robust standard
errors to test hypothesis on the parameters.
If the Heteroskedastic function is not correct it is not guaranteed
that WLS is more efficient than OLS.
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Multiple Regression Analysis: Heteroskedasticity
Prediction and Prediction Intervals with Heteroskedasticity.

1- Suppose that we want an estimate of

E(yjx1 = x1,0, . . . , xk = xk,0) = β0 + β1x1,0 + . . .+ βkxk,0 = θ.

That is, we would like to estimate the the mean of y when the
regressors are equal to known values x1,0, ..., xk,0.

This is easy to obtain by substituting the x’s in our estimated
model with x0’s ,

ŷ0 = β̂0 + β̂1x1,0 + . . .+ β̂kxk,0.

We would like to construct confidence intervals for θ.
But what about a standard error of ŷ0 under heteroskedasticity?
θ is just a linear combination of the parameters.
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Multiple Regression Analysis: Further Issues
Standard Errors for Predictions in the Multiple Regression Model

Can rewrite
β0 + β1x1,0 + . . .+ βkxk,0 = θ

as
β0 = θ � β1x1,0 � . . .� βkxk,0

Substitute in
y = β0 + β1x1 + . . .+ βkxk + u

to obtain

y = θ + β1(x1 � x1,0) + . . .+ βk(xk � xk,0) + u

So, if you regress y on (xj � xj,0), j = 1, ..., k, the intercept will
give the predicted value. The robust standard errors of the
intercept correspond to the standard errors of the prediction
under heteroskedasticity.
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Multiple Regression Analysis: Further Issues
Standard Errors for Predictions in the Multiple Regression Model

2- Suppose now that we would like to construct a confidence interval
for y when when the regressors are equal to known values
x0 = (x1,0, ..., xk,0) and denote this value as y0.

How can we construct a confidence interval for y0?
Notice that

y0 = β0 + β1x1,0 + . . .+ βkxk,0 + u0

Our best prediction for y0 is the regression line

ŷ0 = β̂0 + β̂1x1,0 + . . .+ β̂kxk,0

The prediction error is given by

û0 = y0 � ŷ0

= β0 + β1x1,0 + . . .+ βkxk,0 + u0 � ŷ0

Therefore, The variance of û0 conditional on the in-sample
values of the independent variables is:

Var(û0) = Var(u0) +Var(ŷ0)

= σ2h(x0) +Var(ŷ0).
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Multiple Regression Analysis: Further Issues
Standard Errors for Predictions in the Multiple Regression Model

Var(û0) = σ2h(x0) +Var(ŷ0).

Hence an estimator for Var(û0) is given by

se2
0 = exp

�
\log(û2

0)

�
+ se(ŷ0)

2,

where se(ŷ0) is the robust standard error of the intercept in the

regression of y on (xj � xj,0), j = 1, ..., k, and exp
�
\log(û2

0)

�
is an

estimator of σ2h(x0), computed as in the case of Feasable WLS.
It can be shown that if u � N(0, σ2h(x0)),

y0 � ŷ0

se0

a� N(0, 1)

Hence the (1� α)% prediction interval for y0 is given by

(ŷ0 � zα/2se0, ŷ0 + zα/2se0),

where zα/2 is the percentile (1� α/2)th of the standard normal
distribution.

41 / 42



Multiple Regression Analysis: Further Issues
Predicting y in a log model

Suppose that we have the model

log(y) = β0 + β1x1 + . . .+ βkxk + u,

E (ujx1, ..., xk) = 0, Var (ujx1, ..., xk) = σ2h(x1, ..., xk) and we would like
to estimate the the mean of y when the regressors are equal to known
values x1,0, ..., xk,0: E(yjx1 = x1,0, . . . , xk = xk,0).
What can we do?
Given the OLS estimators the predicted value for the mean of log(y)
for any values of the regressors is

\log(y) = β̂0 + β̂1x1 + . . .+ β̂kxk

If u � N(0, σ2h(x1, ..., xk)), in can be shown that

E (yjx1, ..., xk) = exp(0.5σ2h(x1, ..., xk)) exp(β0 + β1x1 + . . .+ βkxk).

Therefore, a simple way to predict E(yjx1 = x1,0, . . . , xk = xk,0) is

ŷ0 = exp
�

0.5 exp
�
\log(û2

0)

��
exp(β̂0 + β̂1x1,0 + . . .+ β̂kxk,0)
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