Lecture 6: Recursive Preferences

Bernardino Adao

ISEG, Lisbon School of Economics and Management

April 14, 2023

Overview

- Epstein and Zin (1989 JPE, 1991 Ecta) introduced a class of preferences which allow to break the link between risk aversion and intertemporal substitution.
- These preferences have proved very useful in applied work in asset pricing, portfolio choice, and macroeconomics

Value function

- The standard expected utility time-separable preferences are defined as

$$
V_{t}=\sum_{s=0}^{\infty} \beta^{s} E_{t} u\left(c_{t+s}\right)
$$

Alternatively can write it as

$$
\begin{aligned}
V_{t} & =(1-\beta) \sum_{s=0}^{\infty} \beta^{s} E_{t} u\left(c_{t+s}\right) \\
& =(1-\beta) u\left(c_{t}\right)+\beta E_{t}\left(V_{t+1}\right)
\end{aligned}
$$

- V_{t} is known as value function or lifetime utility

EZ Preferences

- EZ preferences generalize this: they are defined recursively over current (known) consumption and a certainty equivalent $H_{t}\left(V_{t+1}\right)$ of tomorrow's utility V_{t+1} :

$$
V_{t}=F\left(c_{t}, H_{t}\left(V_{t+1}\right)\right)
$$

where

$$
H_{t}\left(V_{t+1}\right)=G^{-1}\left(E_{t} G\left(V_{t+1}\right)\right)
$$

with F and G increasing and concave, and F homogeneous of degree one

EZ Preferences

- Observation: F is homogeneous of degree one if

$$
F(t X, t Y)=t F(X, Y), \text { for } t>0
$$

and

$$
F=X \cdot F_{X}^{\prime}+Y \cdot F_{Y}^{\prime}
$$

Also known as Euler's theorem

- Note that

$$
\begin{gathered}
H_{t}\left(V_{t+1}\right)=G^{-1}\left(E_{t} G\left(V_{t+1}\right)\right) \\
H_{t}\left(V_{t+1}\right)=V_{t+1}
\end{gathered}
$$

if there is no uncertainty on V_{t+1}

- The more concave G is, and the more uncertain V_{t+1} is, the lower is $H_{t}\left(V_{t+1}\right)$

Functional forms

- Most of the literature considers simple functional forms for F and G

$$
\begin{gathered}
G(x) \equiv \frac{x^{1-\alpha}}{1-\alpha}, \alpha>0 \\
F(c, z) \equiv\left((1-\beta) c^{1-\gamma}+\beta z^{1-\gamma}\right)^{\frac{1}{1-\gamma}}, \gamma>0
\end{gathered}
$$

- For example

$$
V_{t} \equiv\left((1-\beta) c_{t}^{1-\gamma}+\beta\left(E_{t}\left(V_{t+1}^{1-\alpha}\right)\right)^{\frac{1-\gamma}{1-\alpha}}\right)^{\frac{1}{1-\gamma}}
$$

Functional forms

Proposition: If c_{t} is deterministic we have the standard time-separable expected discounted utility with discount factor β, and IES $=1 / \gamma$ and risk aversion $=\gamma$. Also, when $\alpha=0$ have the standard utility function.
Proof: Given

$$
V_{t} \equiv\left((1-\beta) c_{t}^{1-\gamma}+\beta\left(E_{t}\left(V_{t+1}^{1-\alpha}\right)\right)^{\frac{1-\gamma}{1-\alpha}}\right)^{\frac{1}{1-\gamma}}
$$

If c_{t} is deterministic then

$$
\left(V_{t}\right)^{1-\gamma}=(1-\beta) c_{t}^{1-\gamma}+\beta\left(V_{t+1}\right)^{1-\gamma}=(1-\beta) \sum_{s=0}^{\infty} \beta^{s} c_{t+s}^{1-\gamma}
$$

when $\alpha=0$ iterate forward to get

$$
\left(V_{t}\right)^{1-\gamma}=(1-\beta) c_{t}^{1-\gamma}+\beta E_{t}\left(V_{t+1}\right)^{1-\gamma}=(1-\beta) \sum_{s=0}^{\infty} \beta^{s} E_{t} u\left(c_{t+s}\right)
$$

Limits

If

- $\gamma=1$

$$
F(c, z)=c^{1-\beta} z^{\beta}
$$

- $\alpha=1$

$$
G(x)=\log x
$$

Thus:

- $\alpha>0$

$$
H_{t}\left(V_{t+1}\right)=\left[E_{t}\left(V_{t+1}\right)^{1-\alpha}\right]^{\frac{1}{1-\alpha}}
$$

- $\alpha=1$

$$
H_{t}\left(V_{t+1}\right)=\exp \left(E_{t} \log \left(V_{t+1}\right)\right)
$$

Proof

Define

$$
F(c, z)=\left((1-\beta) c^{1-\gamma}+\beta z^{1-\gamma}\right)^{\frac{1}{1-\gamma}}
$$

divide and multiply by c

$$
\begin{aligned}
F(c, z) & =c\left((1-\beta)+\beta x^{1-\gamma}\right)^{\frac{1}{1-\gamma}} \\
& =c f(x)
\end{aligned}
$$

where

$$
x=z / c \text { and } f(x)=\left(1-\beta+\beta x^{1-\gamma}\right)^{\frac{1}{1-\gamma}}
$$

SO

$$
\begin{aligned}
\frac{f^{\prime}(x)}{f(x)} & =\frac{1}{1-\gamma} \frac{\left(1-\beta+\beta x^{1-\gamma}\right)^{\frac{1}{1-\gamma}-1}(1-\gamma) \beta x^{-\gamma}}{\left(1-\beta+\beta x^{1-\gamma}\right)^{\frac{1}{1-\gamma}}} \\
& =\frac{\beta x^{-\gamma}}{\left(1-\beta+\beta x^{1-\gamma}\right)}
\end{aligned}
$$

Proof

- And

$$
\begin{aligned}
\lim _{\gamma \rightarrow 1} \frac{f^{\prime}(x)}{f(x)} & =\lim _{\gamma \rightarrow 1} \frac{\beta x^{-\gamma}}{\left(1-\beta+\beta x^{1-\gamma}\right)} \\
& =\lim _{\gamma \rightarrow 1} \frac{\beta}{(1-\beta) x^{\gamma}+\beta x^{1}}=\frac{\beta}{x}
\end{aligned}
$$

- Since f is continuous then

$$
\lim _{\gamma \rightarrow 1} f(x)=x^{\beta}
$$

or

$$
F(c, z)=c f(x)=c(z / c)^{\beta}=c^{1-\beta} z^{\beta}
$$

Cobb-Douglas function

Risk Aversion vs IES

- In general α is the relative risk aversion coefficient for static gambles and γ is the inverse of the intertemporal elasticity of substitution for deterministic variations
- Suppose consumption is c today and consumption tomorrow is uncertain: $\left\{c_{L}, c, c, \ldots.\right\}$ or $\left\{c_{H}, c, c, \ldots.\right\}$, each has prob. 0.5
- Lifetime utility today

$$
V_{t}=F\left(c, G^{-1}\left(0.5 G\left(V_{L}\right)+0.5 G\left(V_{H}\right)\right)\right)
$$

where

$$
V_{L}=F\left(c_{L}, \bar{c}\right), V_{H}=F\left(c_{H}, \bar{c}\right)
$$

- Curvature of G determines how adverse you are to the uncertainty.
- If G is linear you only care about the expected value
- If not, it is the certainty equivalent:

$$
G(\widehat{V})=0.5 G\left(V_{L}\right)+0.5 G\left(V_{H}\right)
$$

Special Case: Deterministic consumption

- If consumption is deterministic: we have the usual standard time-separable expected discounted utility with discount factor β and $I E S=1 / \gamma$, risk aversion $=\alpha$.
- Proof: Without uncertainty, then

$$
\begin{array}{r}
H_{t}\left(V_{t+1}\right)=G^{-1}\left(E_{t} G\left(V_{t+1}\right)\right)=V_{t+1} \text { and } \\
\quad V_{t}=F\left(c_{t}, H_{t}\left(V_{t+1}\right)\right)
\end{array}
$$

With a CES functional form for F, we recover CRRA preferences:

$$
\begin{gathered}
V_{t}=\left[(1-\beta) c_{t}^{1-\gamma}+\beta\left(V_{t+1}\right)^{1-\gamma}\right]^{\frac{1}{1-\gamma}} \\
U_{t}=(1-\beta) c_{t}^{1-\gamma}+\beta U_{t+1}=(1-\beta) \sum_{s=0}^{\infty} \beta^{s} c_{t+s}^{1-\gamma}
\end{gathered}
$$

where

$$
U_{t}=\left(V_{t}\right)^{1-\gamma}
$$

Special Case: RRA=1/IES

- if $\alpha=\gamma$, then the formula

$$
V_{t} \equiv\left((1-\beta) c_{t}^{1-\gamma}+\beta\left(E_{t}\left(V_{t+1}^{1-\alpha}\right)\right)^{\frac{1-\gamma}{1-\alpha}}\right)^{\frac{1}{1-\gamma}}
$$

simplifies to

$$
\left(V_{t}\right)^{1-\gamma} \equiv(1-\beta) c_{t}^{1-\gamma}+\beta\left(E_{t} V_{t+1}^{1-\gamma}\right)
$$

- Define

$$
U_{t}=V_{t}^{1-\gamma}
$$

then

$$
U_{t}=(1-\beta) c_{t}^{1-\gamma}+\beta E_{t}\left(U_{t+1}\right)
$$

is the expected utility

Simple example with two lotteries

Lotteries:

- lottery A pays in each period $t=1,2, \ldots$ either c_{h} or c_{l}, with probability 0.5 and the outcome is iid across periods;
- lottery B pays starting at $t=1$ either c_{h} at all future dates for sure, or c_{l} at all future dates for sure; there is a single draw at time $t=1$
- With expected utility, you are indifferent between these lotteries, but with EZ lottery B is preferred iff $\alpha>\gamma$.
- In general, early resolution of uncertainty is preferred if and only if $\alpha>\gamma$ i.e. risk aversion $>\frac{1}{\text { IES }}$
- This is another way to motivate these preferences, since early resolution seems intuitively preferable.

Resolution of uncertainty

$$
V_{t} \equiv\left((1-\beta) c_{t}^{1-\gamma}+\beta\left(E_{t}\left(V_{t+1}^{1-\alpha}\right)\right)^{\frac{1-\gamma}{1-\alpha}}\right)^{\frac{1}{1-\gamma}}
$$

- For lottery B, the utility once you know your consumption is either c_{h}, or c_{l} forever,

$$
V_{h}=F\left(c_{h}, V_{h}\right)=\left((1-\beta) c_{h}^{1-\gamma}+\beta V_{h}^{1-\gamma}\right)^{\frac{1}{1-\gamma}}
$$

or

$$
V_{l}=F\left(c_{l}, V_{l}\right)=\left((1-\beta) c_{l}^{1-\gamma}+\beta V_{l}^{1-\gamma}\right)^{\frac{1}{1-\gamma}}
$$

- The certainty equivalent before playing the lottery is

$$
G^{-1}\left(0.5 G\left(c_{h}\right)+0.5 G\left(c_{l}\right)\right)=\left(0.5 c_{h}^{1-\alpha}+0.5 c_{l}^{1-\alpha}\right)^{\frac{1}{1-\alpha}}
$$

Resolution of uncertainty

- Given

$$
W_{t} \equiv\left((1-\beta) c_{t}^{1-\gamma}+\beta\left(E_{t}\left(W_{t+1}^{1-\alpha}\right)\right)^{\frac{1-\gamma}{1-\alpha}}\right)^{\frac{1}{1-\gamma}}
$$

- For lottery A, the values satisfy

$$
\begin{gathered}
W_{h}^{1-\gamma}=(1-\beta) c_{h}^{1-\gamma}+\beta\left(0.5 W_{h}^{1-\alpha}+0.5 W_{l}^{1-\alpha}\right)^{\frac{1-\gamma}{1-\alpha}} \\
W_{l}^{1-\gamma}=(1-\beta) c_{l}^{1-\gamma}+\beta\left(0.5 W_{h}^{1-\alpha}+0.5 W_{l}^{1-\alpha}\right)^{\frac{1-\gamma}{1-\alpha}}
\end{gathered}
$$

Resolution of uncertainty

- We want to compare

$$
G^{-1}\left(0.5 G\left(c_{h}\right)+0.5 G\left(c_{l}\right)\right)
$$

with

$$
G^{-1}\left(0.5 G\left(W_{h}\right)+0.5 G\left(W_{l}\right)\right)
$$

- notice that function

$$
x^{\frac{1-\gamma}{1-\alpha}}
$$

is concave if $1-\gamma<1-\alpha$, i.e. $\gamma>\alpha$, and convex otherwise. As a result, if $\gamma>\alpha$

$$
\begin{aligned}
\left(0.5 W_{h}^{1-\alpha}+0.5 W_{l}^{1-\alpha}\right)^{\frac{1-\gamma}{1-\alpha}} & >0.5\left(W_{h}^{1-\alpha}\right)^{\frac{1-\gamma}{1-\alpha}}+0.5\left(W_{l}^{1-\alpha}\right)^{\frac{1-\gamma}{1-\alpha}} \\
& =0.5 W_{h}^{1-\gamma}+0.5 W_{l}^{1-\gamma}
\end{aligned}
$$

Resolution of uncertainty

Since

$$
W_{h}^{1-\gamma}=(1-\beta) c_{h}^{1-\gamma}+\beta\left(0.5 W_{h}^{1-\alpha}+0.5 W_{l}^{1-\alpha}\right)^{\frac{1-\gamma}{1-\alpha}}
$$

and

$$
W_{l}^{1-\gamma}=(1-\beta) c_{l}^{1-\gamma}+\beta\left(0.5 W_{h}^{1-\alpha}+0.5 W_{l}^{1-\alpha}\right)^{\frac{1-\gamma}{1-\alpha}}
$$

Then

$$
W_{h}^{1-\gamma}>(1-\beta) c_{h}^{1-\gamma}+\beta\left(0.5 W_{h}^{1-\gamma}+0.5 W_{l}^{1-\gamma}\right)
$$

and

$$
W_{l}^{1-\gamma}>(1-\beta) c_{l}^{1-\gamma}+\beta\left(0.5 W_{h}^{1-\gamma}+0.5 W_{l}^{1-\gamma}\right)
$$

Resolution of uncertainty

- Multiplying both equations by 0.5 and summing them up

$$
(1-\beta)\left(0.5 W_{h}^{1-\gamma}+0.5 W_{l}^{1-\gamma}\right)>(1-\beta)\left(0.5 c_{h}^{1-\gamma}+0.5 c_{l}^{1-\gamma}\right)
$$

- These results imply that if $\gamma>\alpha$ then

$$
0.5 W_{h}^{1-\gamma}+0.5 W_{l}^{1-\gamma}>0.5 c_{h}^{1-\gamma}+0.5 c_{l}^{1-\gamma}
$$

- In this case the certainty equivalent of lottery A is higher than the certainty equivalent of lottery B and agents prefer late to early resolution of uncertainty.

Stochastic Discount Factor

- The stochastic discount factor with these preferences turns out to be slightly different:

$$
m_{t+1}=\beta \frac{c_{t+1}^{-\gamma}}{c_{t}^{-\gamma}}\left[\frac{V_{t+1}}{\left(E_{t} V_{t+1}^{1-\alpha}\right)^{\frac{1}{1-\alpha}}}\right]^{\gamma-\alpha}
$$

- The first term is familiar. The second term is next period's value (lifetime utility) relative to its certainty equivalent.

Stochastic Discount Factor

- Proof: Since F is homogenous of degree one,

$$
V_{t}=\left((1-\beta) c_{t}^{1-\gamma}+\beta\left(H_{t}\left(V_{t+1}\right)\right)^{1-\gamma}\right)^{\frac{1}{1-\gamma}}
$$

where

$$
H_{t}\left(V_{t+1}\right)=\left[E_{t}\left(V_{t+1}\right)^{1-\alpha}\right]^{\frac{1}{1-\alpha}}
$$

Euler's theorem implies

$$
\begin{gathered}
V_{t}=\frac{\partial V_{t}}{\partial c_{t}} c_{t}+E_{t} \frac{\partial V_{t}}{\partial V_{t+1}} V_{t+1} \\
\frac{\partial V_{t}}{\partial c_{t}}=(1-\beta) V_{t}^{\gamma} c_{t}^{-\gamma}
\end{gathered}
$$

and

$$
\frac{\partial V_{t}}{\partial V_{t+1}}=\frac{\partial V_{t}}{\partial H_{t}\left(V_{t+1}\right)} \frac{\partial H_{t}\left(V_{t+1}\right)}{\partial V_{t+1}}
$$

Stochastic Discount Factor

- Since

$$
V_{t}=\left((1-\beta) c_{t}^{1-\gamma}+\beta\left(H_{t}\left(V_{t+1}\right)\right)^{1-\gamma}\right)^{\frac{1}{1-\gamma}}
$$

where

$$
H_{t}\left(V_{t+1}\right)=\left[E_{t}\left(V_{t+1}\right)^{1-\alpha}\right]^{\frac{1}{1-\alpha}}
$$

then

$$
\frac{\partial V_{t}}{\partial H_{t}\left(V_{t+1}\right)}=\beta V_{t}^{\gamma}\left(H_{t}\left(V_{t+1}\right)\right)^{-\gamma}
$$

and

$$
\frac{\partial H_{t}\left(V_{t+1}\right)}{\partial V_{t+1}}=\left(H_{t}\left(V_{t+1}\right)\right)^{\alpha} V_{t+1}^{-\alpha}
$$

this implies

$$
\frac{\partial V_{t}}{\partial V_{t+1}}=\beta V_{t}^{\gamma}\left(H_{t}\left(V_{t+1}\right)\right)^{\alpha-\gamma} V_{t+1}^{-\alpha}
$$

Stochastic Discount Factor

- Divide the value function

$$
V_{t}=\frac{\partial V_{t}}{\partial c_{t}} c_{t}+E_{t} \frac{\partial V_{t}}{\partial V_{t+1}} V_{t+1}
$$

by $\frac{\partial V_{t}}{\partial c_{t}}$

$$
\frac{V_{t}}{\frac{\partial V_{t}}{\partial c_{t}}}=c_{t}+E_{t} \frac{\frac{\partial V_{t}}{\partial V_{t+1}} \frac{\partial V_{t+1}}{\partial c_{t+1}}}{\frac{\partial V_{t}}{\partial c_{t}}} \frac{V_{t+1}}{\frac{\partial V_{t+1}}{\partial c_{t+1}}}
$$

- Let W_{t} be the wealth, then by definition

$$
W_{t}=c_{t}+E_{t} m_{t+1} W_{t+1}
$$

This implies that

$$
W_{t}=\frac{V_{t}}{\frac{\partial V_{t}}{\partial c_{t}}}=\frac{V_{t}}{(1-\beta) V_{t}^{\gamma} c_{t}^{-\gamma}}=\frac{V_{t}^{1-\gamma} c_{t}^{\gamma}}{(1-\beta)}
$$

Stochastic Discount Factor

- And the stochastic discount factor

$$
\begin{aligned}
m_{t+1} & =\frac{\frac{\partial V_{t}}{\partial V_{t+1}} \frac{\partial V_{t+1}}{\partial c_{t+1}}}{\frac{\partial V_{t}}{\partial c_{t}}}=\frac{\left[\beta V_{t}^{\gamma}\left(H_{t}\left(V_{t+1}\right)\right)^{\alpha-\gamma} V_{t+1}^{-\alpha}\right]\left[(1-\beta) V_{t+1}^{\gamma} c_{t+1}^{-\gamma}\right]}{(1-\beta) V_{t}^{\gamma} c_{t}^{-\gamma}} \\
& =\beta \frac{c_{t+1}^{-\gamma}}{c_{t}^{-\gamma}} \frac{\left(H_{t}\left(V_{t+1}\right)\right)^{\alpha-\gamma}}{V_{t+1}^{\alpha-\gamma}}=\beta \frac{c_{t+1}^{-\gamma}}{c_{t}^{-\gamma}}\left(\frac{\left(E_{t} V_{t+1}^{1-\alpha}\right)^{\frac{1}{1-\alpha}}}{V_{t+1}}\right)^{\alpha-\gamma}
\end{aligned}
$$

Thus

$$
m_{t+1}=\beta \frac{c_{t+1}^{-\gamma}}{c_{t}^{-\gamma}}\left[\frac{V_{t+1}}{\left(E_{t} V_{t+1}^{1-\alpha}\right)^{\frac{1}{1-\alpha}}}\right]^{\gamma-\alpha}
$$

Stochastic Discount Factor

- Define the cumulative dividend return on wealth

$$
W_{t+1}=R_{m, t+1}\left(W_{t}-c_{t}\right)
$$

or

$$
\frac{V_{t+1}^{1-\gamma} c_{t+1}^{\gamma}}{(1-\beta)}=R_{m, t+1}\left(\frac{V_{t}^{1-\gamma} c_{t}^{\gamma}}{(1-\beta)}-c_{t}\right)
$$

hence

$$
\begin{aligned}
R_{m, t+1} & =\frac{V_{t+1}^{1-\gamma} c_{t+1}^{\gamma}}{V_{t}^{1-\gamma} c_{t}^{\gamma}-(1-\beta) c_{t}} \\
& =\frac{c_{t+1}^{\gamma}}{c_{t}^{\gamma}} \frac{V_{t+1}^{1-\gamma}}{V_{t}^{1-\gamma}-(1-\beta) c_{t}^{1-\gamma}}
\end{aligned}
$$

Stochastic Discount Factor

- Now use the fact that

$$
V_{t}^{1-\gamma} \equiv(1-\beta) c_{t}^{1-\gamma}+\beta\left(H_{t}\left(V_{t+1}\right)\right)^{1-\gamma}
$$

to replace in the equation:

$$
\begin{aligned}
R_{m, t+1} & =\frac{c_{t+1}^{\gamma}}{c_{t}^{\gamma}} \frac{V_{t+1}^{1-\gamma}}{V_{t}^{1-\gamma}-(1-\beta) c_{t}^{1-\gamma}} \\
& =\frac{c_{t+1}^{\gamma}}{\beta c_{t}^{\gamma}}\left(\frac{V_{t+1}}{H_{t}\left(V_{t+1}\right)}\right)^{1-\gamma}
\end{aligned}
$$

Use this equation to solve for the value function relative to its certainty equivalent:

$$
\frac{V_{t+1}}{H_{t}\left(V_{t+1}\right)}=\left[\beta \frac{c_{t}^{-\gamma}}{c_{t+1}^{-\gamma}} R_{m, t+1}\right]^{\frac{1}{1-\gamma}}
$$

Stochastic Discount Factor

$$
m_{t+1}=\beta \frac{c_{t+1}^{-\gamma}}{c_{t}^{-\gamma}}\left(\frac{V_{t+1}}{H_{t}\left(V_{t+1}\right)}\right)^{\gamma-\alpha}
$$

can be written using the expression for

$$
\frac{V_{t+1}}{H_{t}\left(V_{t+1}\right)}=\left[\beta \frac{c_{t}^{-\gamma}}{c_{t+1}^{-\gamma}} R_{m, t+1}\right]^{\frac{1}{1-\gamma}}
$$

as

$$
\begin{aligned}
m_{t+1} & =\beta \frac{c_{t+1}^{-\gamma}}{c_{t}^{-\gamma}}\left[\beta \frac{c_{t+1}^{-\gamma}}{c_{t}^{-\gamma}} R_{m, t+1}\right]^{\frac{\gamma-\alpha}{1-\gamma}} \\
& =\beta^{\theta}\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma \theta} R_{m, t+1}^{\theta-1}
\end{aligned}
$$

where

$$
\theta=\frac{1-\alpha}{1-\gamma}
$$

Stochastic Discount Factor

- Now take logs

$$
m_{t+1}=\beta^{\theta}\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma \theta} R_{m, t+1}^{\theta-1}
$$

to obtain

$$
\log m_{t+1}=\theta \log \beta-\gamma \theta \log \left(\frac{c_{t+1}}{c_{t}}\right)+(\theta-1) \log R_{m, t+1}
$$

- In lecture 2 (where $\alpha=\gamma$)

$$
\begin{gathered}
m_{t+1}=\beta \frac{c_{t+1}^{-\gamma}}{c_{t}^{-\gamma}} \\
\log m_{t+1}=\log \beta-\gamma \log \left(\frac{c_{t+1}}{c_{t}}\right)
\end{gathered}
$$

Risk free rate

- Assume that both $\log \left(\frac{c_{t+1}}{c_{t}}\right)$ is normal distributed and $\log \left(R_{m, t+1}\right)$ is normal distributed and they are independent distributed.
- Remember: If z is normal distributed then $\exp (z)$ is lognormal. Also $E \exp (z)=\exp \left(E z+0.5 \sigma^{2}(z)\right)$.
- Let $\Delta c_{t+1}=\log \left(\frac{c_{t+1}}{c_{t}}\right)$ and $\log \left(R_{m, t+1}\right)=r_{m, t+1}$.
- Then $\exp \left(\Delta c_{t+1}\right)$ and $\exp \left(r_{m, t+1}\right)$ are lognormal distributed.

$$
\begin{gathered}
\left(R_{t+1}^{f}\right)^{-1}=E_{t}\left(m_{t+1}\right) \\
\left(R_{t+1}^{f}\right)^{-1}=E_{t} \exp \left(\log \left(\beta^{\theta}\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma \theta} R_{m, t+1}^{\theta-1}\right)\right) \\
\left(R_{t+1}^{f}\right)^{-1}=e^{\log \beta^{\theta}} E_{t} e^{-\gamma \theta\left(\Delta c_{t+1}\right)} E_{t} e^{-(1-\theta) r_{m, t+1}}
\end{gathered}
$$

using the fact that for independent variables $E x y=E x E y$.

Risk free rate

$$
\left(R_{t+1}^{f}\right)^{-1}=e^{\log \beta^{\theta}} e^{-\gamma \theta E_{t}\left(\Delta c_{t+1}\right)+\frac{1}{2}(\gamma \theta)^{2} \sigma^{2}\left(\Delta c_{t+1}\right)} e^{-(1-\theta) E_{t} r_{m, t+1}+\frac{1}{2}(1-\theta)^{2} \sigma^{2}\left(r_{m, t+1}\right)}
$$

- taking logarithms

$$
\begin{aligned}
r_{t+1}^{f}= & -\theta \log \beta+\gamma \theta E_{t}\left(\Delta c_{t+1}\right)-\frac{1}{2}(\gamma \theta)^{2} \sigma^{2}\left(\Delta c_{t+1}\right) \\
& +(1-\theta) E_{t} r_{m, t+1}-\frac{1}{2}(1-\theta)^{2} \sigma^{2}\left(r_{m, t+1}\right)
\end{aligned}
$$

- if $r_{m, t+1}$ and Δc_{t+1} are jointly lognormal distributed (not independent) then there is an additional term

$$
r_{t+1}^{f}=\ldots-\gamma \theta(1-\theta) \operatorname{cov}_{t}\left(\Delta c_{t+1}, r_{m, t+1}\right)
$$

Equity premium

- Assume that consumption growth and asset returns are jointly log-normally distributed like in lecture 2.

$$
\left[\begin{array}{l}
\Delta c_{t+1} \\
r_{t+1}^{i}
\end{array}\right] \sim N\left(\left[\begin{array}{l}
\overline{\Delta c}_{t+1} \\
\bar{r}_{t+1}^{i}
\end{array}\right],\left[\begin{array}{cc}
\operatorname{var}\left(\Delta c_{t+1}\right) & \operatorname{cov}\left(\Delta c_{t+1}, r_{t+1}^{i}\right) \\
\operatorname{cov}\left(\Delta c_{t+1}, r_{t+1}^{i}\right) & \operatorname{var}\left(r_{t+1}^{i}\right)
\end{array}\right]\right.
$$

- We established (in lecture 2) that,

$$
\bar{r}_{t+1}^{i}-r_{t+1}^{f}=-\frac{1}{2} \operatorname{var}\left(r_{t+1}^{i}\right)+\gamma \operatorname{cov}_{t}\left(x_{t+1}, r_{t+1}^{i}\right)
$$

Equity premium

- If $\log \left(R_{t+1}^{i}\right)$ and $\log m_{t+1}$ are normal distributed
- The Euler equations become

$$
\begin{gathered}
1=\exp \left(E_{t} \log m_{t+1}+r_{t+1}^{f}+\frac{1}{2} \operatorname{var}\left(\log m_{t+1}\right)\right) \\
1=\exp \left(E_{t} \log m_{t+1}+\bar{r}_{t+1}^{i}+\frac{1}{2} \operatorname{var}\left(\log m_{t+1}+r_{t+1}^{i}\right)\right)
\end{gathered}
$$

Equity premium

- Take logs and equate these equations:

$$
\left.\begin{array}{rl}
E_{t} \log m_{t+1}+r_{t+1}^{f}+\frac{1}{2} \operatorname{var}\left(\log m_{t+1}\right)= & E_{t} \log m_{t+1}+\bar{r}_{t+1}^{i} \\
& +\frac{1}{2} \operatorname{var}\left(\log m_{t+1}+r_{t+1}^{i}\right)
\end{array}\right] \begin{aligned}
r_{t+1}^{f}+\frac{1}{2} \operatorname{var}\left(\log m_{t+1}\right)=\bar{r}_{t+1}^{i}+\frac{1}{2} \operatorname{var}\left(\log m_{t+1}+r_{t+1}^{i}\right) \\
r_{t+1}^{f}+\frac{1}{2} \operatorname{var}\left(\log m_{t+1}\right)=\bar{r}_{t+1}^{i}+\frac{1}{2}\left[\begin{array}{c}
\operatorname{var}\left(\log m_{t+1}\right)+\operatorname{var}\left(r_{t+1}^{i}\right) \\
\\
+2 \operatorname{cov}\left(\log m_{t+1}, r_{t+1}^{i}\right)
\end{array}\right] \\
\bar{r}_{t+1}^{i}-r_{t+1}^{f}=-\frac{1}{2} \operatorname{var}\left(r_{t+1}^{i}\right)-\operatorname{cov}\left(\log m_{t+1}, r_{t+1}^{i}\right) \\
\bar{r}_{t+1}^{i}+\frac{1}{2} \operatorname{var}\left(r_{t+1}^{i}\right)-r_{t+1}^{f}=-\operatorname{cov}\left(\log m_{t+1}, \log \left(R_{t+1}^{i}\right)\right)
\end{aligned}
$$

Equity premium

$$
\log E_{t} R_{t+1}^{i}-\log R_{t+1}^{f}=-\operatorname{cov}\left(\log m_{t+1}, \log \left(R_{t+1}^{i}\right)\right)
$$

since

$$
\log m_{t+1}=\theta \log \beta-\gamma \theta \log \left(\frac{c_{t+1}}{c_{t}}\right)+(\theta-1) \log R_{m, t+1}
$$

Then:

$$
\log \left(\frac{E_{t} R_{t+1}^{i}}{R_{t+1}^{f}}\right)=\gamma \theta \operatorname{cov}_{t}\left(\Delta c_{t+1}, r_{t+1}^{i}\right)+(1-\theta) \operatorname{cov}_{t}\left(r_{m, t+1}, r_{t+1}^{i}\right)
$$

Conclusion: Epstein-Zin is a linear combination of the CAPM and the CCAPM model

Market return

For the market return we have

$$
\log \left(\frac{E_{t} R_{m, t+1}}{R_{t+1}^{f}}\right)=\gamma \theta \operatorname{cov}_{t}\left(\Delta c_{t+1}, r_{m, t+1}\right)+(1-\theta) \sigma_{t}^{2}\left(r_{m, t+1}\right)
$$

or

$$
\begin{aligned}
E_{t} r_{m, t+1}+\frac{1}{2} \sigma^{2}\left(r_{m, t+1}\right)-r_{t+1}^{f}= & \gamma \theta \operatorname{cov}_{t}\left(\Delta c_{t+1}, r_{m, t+1}\right) \\
& +(1-\theta) \sigma_{t}^{2}\left(r_{m, t+1}\right)
\end{aligned}
$$

which we solve for

$$
\begin{aligned}
(1-\theta) E_{t} r_{m, t+1}= & (1-\theta) r_{t+1}^{f}-\frac{(1-\theta)}{2} \sigma^{2}\left(r_{m, t+1}\right)+ \\
& (1-\theta) \gamma \theta \operatorname{cov}_{t}\left(\Delta c_{t+1}, r_{m, t+1}\right)+(1-\theta)^{2} \sigma_{t}^{2}\left(r_{m, t+1}\right)
\end{aligned}
$$

Risk free rate

From a previous "slide" we got the riskless rate

$$
\begin{aligned}
r_{t+1}^{f}= & -\theta \log \beta+\gamma \theta E_{t}\left(\Delta c_{t+1}\right)+(1-\theta) E_{t} r_{m, t+1}-\frac{1}{2}(\gamma \theta)^{2} \sigma^{2}(\Delta c \\
& -\frac{1}{2}(1-\theta)^{2} \sigma^{2}\left(r_{m, t+1}\right)-\gamma \theta(1-\theta) \operatorname{cov}_{t}\left(\Delta c_{t+1}, r_{m, t+1}\right)
\end{aligned}
$$

- replacing $(1-\theta) E_{t} r_{m, t+1}$

$$
\begin{aligned}
r_{t+1}^{f}= & -\theta \log \beta+\gamma \theta E_{t}\left(\Delta c_{t+1}\right)+(1-\theta) E_{t} r_{m, t+1} \\
& (1-\theta) r_{t+1}^{f}-\frac{(1-\theta)}{2} \sigma^{2}\left(r_{m, t+1}\right)+ \\
& (1-\theta) \gamma \theta \operatorname{cov}_{t}\left(\Delta c_{t+1}, r_{m, t+1}\right)+(1-\theta)^{2} \sigma_{t}^{2}\left(r_{m, t+1}\right) \\
& -\frac{1}{2}(\gamma \theta)^{2} \sigma^{2}\left(\Delta c_{t+1}\right) \\
& -\frac{1}{2}(1-\theta)^{2} \sigma^{2}\left(r_{m, t+1}\right)-\gamma \theta(1-\theta) \operatorname{cov}_{t}\left(\Delta c_{t+1}, r_{m, t+1}\right)
\end{aligned}
$$

Risk free rate

$$
\begin{aligned}
\theta r_{t+1}^{f}= & -\theta \log \beta+\gamma \theta E_{t}\left(\Delta c_{t+1}\right)-\frac{(1-\theta)}{2} \sigma^{2}\left(r_{m, t+1}\right)+ \\
& -\frac{1}{2}(\gamma \theta)^{2} \sigma^{2}\left(\Delta c_{t+1}\right)+\frac{1}{2}(1-\theta)^{2} \sigma^{2}\left(r_{m, t+1}\right) \\
r_{t+1}^{f}= & -\log \beta+\gamma E_{t}\left(\Delta c_{t+1}\right)-\frac{(1-\theta)}{2 \theta} \sigma^{2}\left(r_{m, t+1}\right)+ \\
& -\frac{1}{2} \gamma^{2} \theta \sigma^{2}\left(\Delta c_{t+1}\right)+\frac{1}{2 \theta}(1-\theta)^{2} \sigma^{2}\left(r_{m, t+1}\right) \\
r_{t+1}^{f}=-\log \beta+ & \gamma E_{t}\left(\Delta c_{t+1}\right)-\frac{1}{2} \gamma^{2} \theta \sigma^{2}\left(\Delta c_{t+1}\right)-\frac{(1-\theta)}{2} \sigma^{2}\left(r_{m, t+1}\right)
\end{aligned}
$$

Again if $\gamma=\alpha$ then $\theta=1$ we have the standard risk-free rate equation. If $\alpha>\gamma$ then $\theta<1$ and the volatility from the market return reduces the real interest rate.

EZ preference and riskless rate

US Historical data

$$
\begin{aligned}
E_{t}\left(\Delta c_{t+1}\right) & =0.02 \\
\sigma^{2}\left(\Delta c_{t+1}\right) & =(0.036)^{2}=0.0013 \\
\sigma^{2}\left(r_{m, t+1}\right) & =(0.167)^{2}=0.0279
\end{aligned}
$$

with $\beta=0.98, \alpha=2$ and $\gamma=0.5$ (which are reasonable) get 1% riskless interest rate

EZ preference and equity premium

Equity premium

$$
\log \left(\frac{E_{t} R_{m, t+1}}{R_{t+1}^{f}}\right)=\gamma \theta \operatorname{cov}_{t}\left(\Delta c_{t+1}, r_{m, t+1}\right)+(1-\theta) \sigma_{t}^{2}\left(r_{m, t+1}\right)
$$

US Historical data

$$
\begin{aligned}
E_{t}\left(\Delta c_{t+1}\right) & =0.02, \sigma_{r}=0.167 \\
\sigma^{2}\left(\Delta c_{t+1}\right) & =(0.036)^{2}=0.0013 \\
\sigma^{2}\left(r_{m, t+1}\right) & =(0.167)^{2}=0.0279 \\
\operatorname{corr}(x, r) & =0.4
\end{aligned}
$$

with $\beta=0.98, \alpha=2$ and $\gamma=0.5$ (which are reasonable) get 7.4% equity premium

