Lecture 7: Options

Bernardino Adao

ISEG, Lisbon School of Economics and Management
May 5, 2023

Options

- Options are a very useful set of instruments as they allow multiple distribution of returns
- To find the price of the option by arbitrage, we take as given the values of other securities, and in particular the price of the stock on which the option is written and an interest rate

Call Option

- European call option: Gives the right to buy an underlying security at a given price at a given date (maturity date).
- American call option: You can exercise your right to buy the underlying security at any point before, and on, the day of maturity.
- Let X denote strike price and the underlying security be a stock,
- Let S_{T} denote stock value on expiration day.
- Payoff (or value at T) is

$$
C_{T}=\max \left(S_{T}-X, 0\right)
$$

Put Option

- An European put option: Gives the right to sell an underlying security at a given price at a given date (maturity date).
- American put option: You can exercise your right to sell the underlying security at any point before, and on, the day of maturity
- Instead of buying you can sell (or write) options. The payoffs of writing options are the negative of buying the options.
- If the strike price X exceeds the final asset price S_{T}, i.e., if $S_{T}<X$, this means that the put-option holder is able to sell the asset for a higher price than he/she would be able to in the market.
- In fact, in perfectly liquid markets, he/she would be able to purchase the asset for S_{T} and immediately sell it to the put writer for the strike price X.

Moneyness

- Moneyness. The moneyness of an option reflects whether an option would cause a positive, negative or zero payoff were to be exercised immediately. More precisely, at any time $t \in[0, T]$, an option is said to be:
- (1) in-the-money - if there is strictly positive payoff if the option is exercised immediately;
- (2) at-the-money- if there is zero payoff if exercised immediately;
- (3) out-of-the money-if there is negative payoff if exercised immediately.

Put Option

- The payoff is, thus,

$$
P_{T}=\max \left(X-S_{T}, 0\right)
$$

- Why are they useful?
- Example: Buying "Disaster Insurance": With the strategy of Buying Stock + Buying a Out of the Money Put Option. The price of this insurance is the price of the option.
- The writer of this put option most of the time (95% of the time) makes little profit (because it is very out of the money option), but with a very small probability (the disaster happens) and makes a large loss.

Payoff vs. Profit

- Payoff \neq Profit. The profit is the difference between the payoff of the option, C_{T}, and its price, C.

Write Call

Price

- The call option is worth more the higher the underlying security price rises above the strike price
- The probability of that happening is higher the longer the horizon during which you can exercise it and the more volatile the underlying asset.
- Usefulness:
- Trading: Options are useful for individuals that do not have a lot of funds and know that the underlying asset is going to rise in value. Example: Suppose the underlying asset is worth 100 euros and the price of the call is 10 euros. If the underlying stock rises 10% you get a 10% profit when you buy the underlying asset directly. However, if instead you invest in the call option you get a 100% profit.
- Hedging, insurance, etc...

Bet on volatility

- Straddle: Buy a put and call at the same strike price

Straddle

Put-call parity

- The payoff of buying a call and selling a put with the same strike price is the same as buying the stock and shorting the strike price (borrow money)

$$
C_{T}-P_{T}=\max \left(S_{T}-X, 0\right)-\max \left(X-S_{T}, 0\right)=S_{T}-X
$$

- if $S_{T}>X$ then $P_{T}=0$ and $C_{T}-P_{T}=S_{T}-X$
- if $X>S_{T}$ then $C_{T}=0$ and $C_{T}-P_{T}=-\left(X-S_{T}\right)$

Put-call parity

- Because they generate the same payoff they must have the same price.
- Apply the pricing operator

$$
E(m \bullet)
$$

to both sides of the equation to get the prices

$$
\begin{gathered}
E\left(m C_{T}\right)-E\left(m P_{T}\right)=E\left(m S_{T}\right)-E(m X) \\
C-P=S-\frac{X}{R^{f}}
\end{gathered}
$$

This equation is known as the put-call parity

Put-call parity

Arbitrage Bounds

- Would like to know the price C without information about the price P
- Arbitrage bounds:

$$
\begin{aligned}
& C>0 \\
& C<S \\
& C>S-\frac{X}{R^{f}}
\end{aligned}
$$

- As time approaches maturity the value of the call moves within the bounds toward its value at maturity

Early Exercise

- Absence of arbitrage implies that you should never exercise an American call option on a stock that pays no dividends before the expiration date

$$
C>S-\frac{X}{R^{f}}
$$

- $S-X$ is what you get if you exercise now but the price of an European call is larger because
- you can delay paying the strike,
- and because exercising early loses the option value.
- From now on we concentrate on call options because of the Put-call parity and on European call options because when the underlying security does not pay dividends is never optimal to exercise early

Continuous time

- As we assume continuous trading: need to consider continuous time now instead of discrete time
- Diffusion models are a standard way to represent random variables in continuous time
- The ideas are analogous to discrete-time stochastic processes
- The basic building block of a diffusion model is a Brownian motion (or Wiener process), which is a real-valued continuous-time stochastic process

Brownian motion

- A Brownian motion is the natural generalization of a random walk in discrete time
- For a random walk

$$
\begin{gathered}
z_{t}-z_{t-1}=\varepsilon_{t} \\
\varepsilon_{t} \sim N(0,1), E\left(\varepsilon_{t} \varepsilon_{s}\right)=0, \quad s \neq t
\end{gathered}
$$

in discrete time

- A Brownian motion z_{t} :

$$
z_{t+\Delta}-z_{t} \sim N(0, \Delta)
$$

As $E\left(\varepsilon_{t} \varepsilon_{s}\right)=0$ in discrete time, increments to z for nonoverlapping intervals are also independent

$$
\operatorname{cov}\left(z_{t+\Delta}-z_{t}, z_{s+\Delta}-z_{s}\right)=0
$$

Brownian motion

- The variance of a random walk scales with time, so the standard deviation scales with the square root of time
- The variance scales with time

$$
\operatorname{var}\left(z_{t+k \Delta}-z_{t}\right)=k \operatorname{var}\left(z_{t+\Delta}-z_{t}\right), k>0
$$

- The standard deviation is the "typical size" of a movement in a normally distributed random variable
- The "typical size" of $z_{t+\Delta}-z_{t}$ in time interval Δ is $\sqrt[2]{\Delta}$
- This means that $\frac{z_{t+\Delta}-z_{t}}{\Delta}$ has "typical size" $1 / \sqrt[2]{\Delta}$
- Thus, the sample path of z_{t} is continuous but is not differentiable: moves infinitely fast (up and down)
- Definition: Differential $d z_{t}$ is the forward difference

$$
d z_{t}=\lim _{\Delta \searrow 0}\left(z_{t+\Delta}-z_{t}\right)
$$

Brownian motion

- Can be represented as an integral

$$
z_{t}=z_{0}+\int_{0}^{t} d z_{t}
$$

- Define $d t$ as the smallest positive real number such that $d t^{\alpha}=0$ if $\alpha>1$.
- Properties of $d z$:

$$
\begin{aligned}
d z_{t} & \sim O(\sqrt[2]{d t}), \text { the magnitude of } d z_{t} \text { is of order } \sqrt[2]{d t} \\
E_{t}\left(d z_{t}\right) & =0 \\
E_{t}\left(d z_{t} d t\right) & =d t E_{t}\left(d z_{t}\right)=0, d t \text { is a constant }
\end{aligned}
$$

Brownian motion

- Properties of $d z$:

$$
\begin{aligned}
\operatorname{var}\left(d z_{t}\right) & =E_{t}\left[z_{t+\Delta}-z_{t}-E_{t}\left(z_{t+\Delta}-z_{t}\right)\right]^{2} \\
& =E_{t}\left(z_{t+\Delta}-z_{t}\right)^{2}-E_{t}\left[E_{t}\left(z_{t+\Delta}-z_{t}\right)\right]^{2} \\
& =E_{t}\left(z_{t+\Delta}-z_{t}\right)^{2}=E_{t}\left(d z_{t}^{2}\right)=d t
\end{aligned}
$$

for any distribution with mean zero the expected value of the squared random variable is the same as the variance.

- Observation: notation $d z_{t}^{2}=\left(d z_{t}\right)^{2}$

Brownian motion

- Additional properties of $d z$:

$$
\operatorname{var}\left(d z_{t}^{2}\right)=E\left(d z_{t}^{4}\right)-E^{2}\left(d z_{t}^{2}\right)=3 d t^{2}-d t^{2}=0
$$

fourth central moment of a normal is $3 \sigma^{2}$ and $d t^{2}$ is 0

$$
\begin{gathered}
E_{t}\left(d z_{t} d t\right)^{2}=d t^{2} E_{t}\left(d z_{t}^{2}\right)=0 \\
\operatorname{var}\left(d z_{t} d t\right)=E_{t}\left(d z_{t} d t\right)^{2}-E^{2}\left(d z_{t} d t\right)=0
\end{gathered}
$$

$d z_{t}^{2}=d t$, because the variance of $d z_{t}^{2}$ is zero and $E_{t}\left(d z_{t}^{2}\right)=d t$
$d z_{t} d t=0$, because the variance of $d z_{t} d t$ is zero and $E_{t}\left(d z_{t} d t\right)=0$

Diffusion model

- Can construct more complicated time-series processes by adding drift and volatility terms to $d z_{t}$,

$$
d x_{t}=\mu(\cdot) d t+\sigma(\cdot) d z_{t}
$$

- Some examples:
- Random walk with drift

$$
d x_{t}=\mu d t+\sigma d z_{t}, \text { continuous time }
$$

-

$$
x_{t+1}-x_{t}=\mu+\sigma \varepsilon_{t+1}, \text { discrete time }
$$

- Geometric Brownian motion with drift

$$
d x_{t}=x_{t} \mu d t+x_{t} \sigma d z_{t}
$$

Geometric Brownian motion

Can simulate a diffusion process by approximating it for a small time interval,

Price of stock

- Let P_{t} be the price of a generic stock at any moment in time that pays dividends at the rate $D_{t} d t$
The instantaneous return is

$$
\frac{d P_{t}}{P_{t}}+\frac{D_{t}}{P_{t}} d t
$$

Let the price be a geometric Brownian motion

$$
\frac{d P_{t}}{P_{t}}=\mu_{p} d t+\sigma_{p} d z_{t}
$$

The risk-free rate can be thought as the return on an asset that does not pay dividend and has the price

$$
\frac{d P_{t}}{P_{t}}=r_{t}^{f} d t
$$

Ito's Lemma

- Suppose we have a diffusion representation for one variable, say

$$
d x_{t}=\mu(\cdot) d t+\sigma(\cdot) d z_{t}
$$

- Define a new variable in terms of the old one,

$$
y_{t}=f\left(x_{t}\right)
$$

- What is the diffusion representation for y_{t}. Ito's lemma tells you how to get it
- Use a second-order Taylor expansion, and think of $d z$ as $\sqrt[2]{d t}$; thus as $\Delta t \rightarrow 0$, keep terms $d z, d t$, and $d z^{2}=d t$, but terms $d t \times d z, d t^{2}$, and higher go to zero

Ito's Lemma

- Start with the second order Taylor expansion

$$
d y=\frac{d f}{d x} d x+\frac{1}{2} \frac{d^{2} f}{d x^{2}} d x^{2}
$$

- Expanding the second term

$$
d x^{2}=\left[\mu d t+\sigma d z_{t}\right]^{2}=\mu^{2} d t^{2}+\sigma^{2} d z_{t}^{2}+2 \mu \sigma d z_{t} d t=\sigma^{2} d t
$$

- Substituting for $d x^{2}$ and $d x$

$$
\begin{aligned}
d y & =\frac{d f}{d x}\left[\mu d t+\sigma d z_{t}\right]+\frac{1}{2} \frac{d^{2} f}{d x^{2}} \sigma^{2} d t \\
& =\left(\frac{d f}{d x} \mu+\frac{1}{2} \frac{d^{2} f}{d x^{2}} \sigma^{2}\right) d t+\frac{d f}{d x} \sigma d z_{t}
\end{aligned}
$$

Pricing

- The utility function in continuous time is

$$
E_{0} \int_{0}^{\infty} e^{-\delta t} u\left(c_{t}\right) d t
$$

- Let P_{t} be the price of an asset that pays dividends D_{t}
- The price must satisfy

$$
P_{t} e^{-\delta t} u^{\prime}\left(c_{t}\right)=E_{t} \int_{s=0}^{\infty} D_{t+s} e^{-\delta(t+s)} u^{\prime}\left(c_{t+s}\right) d s
$$

In discrete time we have:

$$
P_{t}=E_{t} \sum_{s=0}^{\infty} D_{t+s}\left[\frac{\beta^{s} u^{\prime}\left(c_{t+s}\right)}{u^{\prime}\left(c_{t}\right)}\right]
$$

Pricing

- Define $\Lambda_{t} \equiv e^{-\delta t} u^{\prime}\left(c_{t}\right)$ as the discount factor in continuous time. It follows that

$$
P_{t} \Lambda_{t}=E_{t} \int_{s=0}^{\Delta} D_{t+s} \Lambda_{t+s} d s+E_{t} \int_{s=\Delta}^{\infty} D_{t+s} \Lambda_{t+s} d s
$$

or

$$
P_{t} \Lambda_{t}=E_{t} \int_{s=0}^{\Delta} D_{t+s} \Lambda_{t+s} d s+E_{t}\left[P_{t+\Delta} \Lambda_{t+\Delta}\right]
$$

- For small Δ the integral above can be approximated by $D_{t} \Lambda_{t} \Delta$

$$
P_{t} \Lambda_{t} \approx D_{t} \Lambda_{t} \Delta+E_{t}\left[P_{t+\Delta} \Lambda_{t+\Delta}\right]
$$

or

$$
0 \approx D_{t} \Lambda_{t} \Delta+E_{t}\left[P_{t+\Delta} \Lambda_{t+\Delta}-\Lambda_{t} P_{t}\right]
$$

- For $\Delta \longrightarrow d t$

$$
0=D_{t} \Lambda_{t} d t+E_{t}\left[d\left(\Lambda_{t} P_{t}\right)\right]
$$

Pricing

- Let

$$
f\left(\Lambda_{t} P_{t}\right)=\Lambda_{t} P_{t}
$$

where

$$
d \Lambda_{t}=\mu_{\Lambda} d t+\sigma_{\Lambda} d z_{t} \text { and } d P_{t}=\mu_{P} d t+\sigma_{P} d z_{t}
$$

Taylor expansion of $d \Lambda_{t} P_{t}$

$$
\begin{aligned}
d \Lambda_{t} P_{t}= & \frac{\partial f}{\partial \Lambda_{t}} d \Lambda_{t}+\frac{\partial f}{\partial P_{t}} d P_{t}+\frac{\partial^{2} f}{\partial \Lambda_{t}^{2}}\left(d \Lambda_{t}\right)^{2}+\frac{\partial^{2} f}{\partial P_{t}^{2}}\left(d P_{t}\right)^{2}+ \\
& \frac{1}{2} \frac{\partial^{2} f}{\partial P_{t} \partial \Lambda_{t}} d P_{t} d \Lambda_{t}+\frac{1}{2} \frac{\partial^{2} f}{\partial \Lambda_{t} \partial P_{t}} d \Lambda_{t} d P_{t} \\
& + \text { higher order terms }
\end{aligned}
$$

Replacing the derivatives and since higher order terms $=0$

$$
d \Lambda_{t} P_{t}=\Lambda_{t} d P_{t}+P_{t} d \Lambda_{t}+d \Lambda_{t} d P_{t}
$$

Pricing

- Replacing $d \Lambda_{t} P_{t}$ in the pricing equation and dividing by $\Lambda_{t} P_{t}$ get

$$
0=\frac{D_{t}}{P_{t}} d t+E_{t}\left[\frac{d P_{t}}{P_{t}}+\frac{d \Lambda_{t}}{\Lambda_{t}}+\frac{d \Lambda_{t}}{\Lambda_{t}} \frac{d P_{t}}{P_{t}}\right]
$$

or

$$
\frac{D_{t}}{P_{t}} d t+E_{t}\left[\frac{d P_{t}}{P_{t}}\right]=-E_{t}\left[\frac{d \Lambda_{t}}{\Lambda_{t}}+\frac{d \Lambda_{t}}{\Lambda_{t}} \frac{d P_{t}}{P_{t}}\right]
$$

For the risk free rate:

$$
D_{t}=0, \frac{d P_{t}}{P_{t}}=r_{t}^{f} d t
$$

implying

$$
\frac{d \Lambda_{t}}{\Lambda_{t}} \frac{d P_{t}}{P_{t}}=0
$$

Thus:

$$
r_{t}^{f} d t=-E_{t}\left[\frac{d \Lambda_{t}}{\Lambda_{t}}\right]
$$

Pricing

- Replacing

$$
r_{t}^{f} d t=-E_{t}\left[\frac{d \Lambda_{t}}{\Lambda_{t}}\right]
$$

in

$$
\frac{D_{t}}{P_{t}} d t+E_{t}\left[\frac{d P_{t}}{P_{t}}\right]=-E_{t}\left[\frac{d \Lambda_{t}}{\Lambda_{t}}+\frac{d \Lambda_{t}}{\Lambda_{t}} \frac{d P_{t}}{P_{t}}\right]
$$

- get:

$$
\frac{D_{t}}{P_{t}} d t+E_{t}\left[\frac{d P_{t}}{P_{t}}\right]=r_{t}^{f} d t-E_{t}\left[\frac{d \Lambda_{t}}{\Lambda_{t}} \frac{d P_{t}}{P_{t}}\right]
$$

which is the equivalent in discrete time to

$$
E_{t} R_{t+1}=R_{t+1}^{f}-R_{t+1}^{f} \operatorname{cov}_{t}\left(m_{t+1}, R_{t+1}\right)
$$

Black-Scholes formula

- The Black-Scholes formula provides the price of an option
- We are going to use the discount factor approach to derive the formula
- The risk free bond price follows the process:

$$
\frac{d B_{t}}{B_{t}}=r d t
$$

- The stochastic discount factor follows the process:

$$
\frac{d \Lambda_{t}}{\Lambda_{t}}=-r d t-\frac{\mu-r}{\sigma} d z_{t}
$$

- Recall that $\frac{d \Lambda_{t}}{\Lambda_{t}}$ is a discount factor if it can price the bond and the stock

Black-Scholes formula

- Let S_{t} be the price of a stock that pays no dividends (alternatively can think that the dividend is already included in the drift: μ_{S})
- We established that $\frac{d \Lambda_{t}}{\Lambda_{t}}$ must satisfy the condition

$$
E_{t}\left[\frac{d S_{t}}{S_{t}}\right]=-E_{t}\left[\frac{d \Lambda_{t}}{\Lambda_{t}}+\frac{d \Lambda_{t}}{\Lambda_{t}} \frac{d S_{t}}{S_{t}}\right]
$$

- Thus, for $\frac{d\left(\Lambda_{t}\right)}{\Lambda_{t}}$ to be a stochastic discount factor must satisfy

$$
\begin{gathered}
-r d t=E_{t}\left[\frac{d \Lambda_{t}}{\Lambda_{t}}\right] \\
E_{t}\left[\frac{d S_{t}}{S_{t}}\right]-r d t=-E_{t}\left[\frac{d\left(\Lambda_{t}\right)}{\Lambda_{t}} \frac{d S_{t}}{S_{t}}\right]
\end{gathered}
$$

Exercise: Check that these 2 conditions are satisfied. Remember $E_{t}\left(d z_{t}\right)=0, d z_{t}^{2}=d t, d z_{t} d t=0$ and $d t^{\alpha}=0$, if $\alpha>1$

Black-Scholes formula

- To find the value of

$$
\begin{aligned}
C_{0} \Lambda_{0} & =E_{0} \Lambda_{T} \max \left(S_{T}-X, 0\right) \\
& =\int_{0}^{\infty} \Lambda_{T} \max \left(S_{T}-X, 0\right) d f\left(\Lambda_{T}, S_{T}\right)
\end{aligned}
$$

- we need to find the values Λ_{T} and S_{T}
- we need the solution of the stochastic differential equation for Λ_{t} and S_{t} :

A little Math

$$
\begin{aligned}
d \ln S_{t} & =\frac{1}{S_{t}} d S_{t}-\frac{1}{2} \frac{1}{S_{t}^{2}} d S_{t}^{2} \\
& =\left(\mu-\frac{1}{2} \sigma^{2}\right) d t+\sigma d z_{t}
\end{aligned}
$$

Black-Scholes formula

- Integrating

$$
d \ln S_{t}=\left(\mu-\frac{1}{2} \sigma^{2}\right) d t+\sigma d z_{t}
$$

from 0 to T gives

$$
\begin{aligned}
& \int_{0}^{T} d \ln S_{t}=\left(\mu-\frac{1}{2} \sigma^{2}\right) \int_{0}^{T} d t+\sigma \int_{0}^{T} d z_{t} \\
& \ln S_{T}=\ln S_{0}+\left(\mu-\frac{1}{2} \sigma^{2}\right) T+\sigma\left(z_{T}-z_{0}\right)
\end{aligned}
$$

where $z_{T}-z_{0}$ is a normally distributed random variable with mean zero and variance T.

- Thus, $\ln S_{T}$ is conditionally (on the information at date 0) normal with mean $\ln S_{0}+\left(\mu-\frac{1}{2} \sigma^{2}\right) T$ and variance $\sigma^{2} T$.

Black-Scholes formula

- The solutions can be written as

$$
\begin{gathered}
\ln S_{T}=\ln S_{0}+\left(\mu-\frac{1}{2} \sigma^{2}\right) T+\sigma \sqrt[2]{T \varepsilon} \\
\ln \Lambda_{T}=\ln \Lambda_{0}-\left(r+\frac{1}{2}\left(\frac{\mu-r}{\sigma}\right)^{2}\right) T-\frac{\mu-r}{\sigma} \sqrt[2]{T} \varepsilon
\end{gathered}
$$

where

$$
\varepsilon=\frac{z_{T}-z_{0}}{\sqrt[2]{T}} \sim N(0,1)
$$

Recall

$$
\frac{d \Lambda_{t}}{\Lambda_{t}}=-r d t-\frac{\mu-r}{\sigma} d z_{t}
$$

Black-Scholes formula

- Now we can do the integral:

$$
\begin{aligned}
C_{0} & =\int_{0}^{\infty} \frac{\Lambda_{T}}{\Lambda_{0}} \max \left(S_{T}-X, 0\right) d f\left(\Lambda_{T}, S_{T}\right) \\
& =\int_{S_{T}=x}^{\infty} \frac{\Lambda_{T}}{\Lambda_{0}}\left(S_{T}-X\right) d f\left(\Lambda_{T}, S_{T}\right) \\
& =\int_{S_{T}=X}^{\infty} \frac{\Lambda_{T}(\varepsilon)}{\Lambda_{0}}\left(S_{T}(\varepsilon)-X\right) f(\varepsilon) d \varepsilon
\end{aligned}
$$

where f is the density of ε

- We know the joint distribution of the terminal stock price S_{T} and discount factor Λ_{T} on the right hand side, so we have all the information we need to calculate this integral.

Black-Scholes formula

Start by breaking up the integral into two terms

$$
C_{0}=\int_{S_{T}=X}^{\infty} \frac{\Lambda_{T}(\varepsilon)}{\Lambda_{0}} S_{T}(\varepsilon) f(\varepsilon) d \varepsilon-X \int_{S_{T}=x}^{\infty} \frac{\Lambda_{T}(\varepsilon)}{\Lambda_{0}} f(\varepsilon) d \varepsilon
$$

use

$$
\begin{gathered}
\frac{S_{T}}{S_{0}}=e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) T+\sigma \sqrt{T} \varepsilon} \\
\frac{\Lambda_{T}}{\Lambda_{0}}=e^{-\left(r+\frac{1}{2}\left(\frac{\mu-r}{\sigma}\right)^{2}\right) T-\frac{\mu-r}{\sigma} \sqrt{T} \varepsilon} \\
C_{0}=S_{0} \int_{X}^{\infty} e^{-\left(r+\frac{1}{2}\left(\frac{\mu-r}{\sigma}\right)^{2}\right) T-\frac{\mu-r}{\sigma} \sqrt{T} \varepsilon} e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) T+\sigma \sqrt{T} \varepsilon} f(\varepsilon) d \varepsilon \\
-X \int_{X}^{\infty} e^{-\left(r+\frac{1}{2}\left(\frac{\mu-r}{\sigma}\right)^{2}\right) T-\frac{\mu-r}{\sigma} \sqrt{T} \varepsilon} f(\varepsilon) d \varepsilon
\end{gathered}
$$

Black-Scholes formula

- or

$$
\begin{aligned}
C_{0}= & S_{0} \int_{X}^{\infty} e^{\left(\mu-r-\frac{1}{2}\left(\sigma^{2}+\left(\frac{\mu-r}{\sigma}\right)^{2}\right)\right) T+\left(\sigma-\frac{\mu-r}{\sigma}\right) \sqrt{T} \varepsilon} f(\varepsilon) d \varepsilon \\
& -X \int_{X}^{\infty} e^{-\left(r+\frac{1}{2}\left(\frac{\mu-r}{\sigma}\right)^{2}\right) T-\frac{\mu-r}{\sigma} \sqrt{T} \varepsilon} f(\varepsilon) d \varepsilon
\end{aligned}
$$

Now we add up the formula for $f(\varepsilon)$

$$
\begin{gathered}
f(\varepsilon)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \varepsilon^{2}} \\
C_{0}=\frac{S_{0}}{\sqrt{2 \pi}} \int_{X}^{\infty} e^{\left[\mu-r-\frac{1}{2}\left(\sigma^{2}+\left(\frac{\mu-r}{\sigma}\right)^{2}\right)\right] T+\left(\sigma-\frac{\mu-r}{\sigma}\right) \sqrt{T} \varepsilon-\frac{1}{2} \varepsilon^{2}} d \varepsilon \\
-\frac{X}{\sqrt{2 \pi}} \int_{X}^{\infty} e^{-\left(r+\frac{1}{2}\left(\frac{\mu-r}{\sigma}\right)^{2}\right) T-\frac{\mu-r}{\sigma} \sqrt{T} \varepsilon-\frac{1}{2} \varepsilon^{2}} d \varepsilon
\end{gathered}
$$

Black-Scholes formula

- or

$$
\begin{aligned}
C_{0}= & \frac{S_{0}}{\sqrt{2 \pi}} \int_{X}^{\infty} e^{-\frac{1}{2}\left(\varepsilon-\left(\sigma-\frac{\mu-r}{\sigma}\right) \sqrt{T}\right)^{2}} d \varepsilon \\
& -\frac{X}{\sqrt{2 \pi}} e^{-r T} \int_{X}^{\infty} e^{-\frac{1}{2}\left(\varepsilon+\frac{\mu-r}{\sigma} \sqrt{T}\right)^{2}} d \varepsilon
\end{aligned}
$$

- Notice that the integrals have the form of a normal distribution with nonzero mean and variance 1.
- Recall: $x \sim N\left(\tilde{\mu}, \widetilde{\sigma}^{2}\right)$ if

$$
f(x)=\frac{1}{\sqrt{2 \pi} \widetilde{\sigma}} e^{-\frac{1}{2} \frac{\left(x-\tilde{\mu^{2}}\right)^{2}}{\tilde{\sigma}^{2}}}
$$

Black-Scholes formula

- The lower bound X can be expressed in terms of ε

$$
\ln X=\ln S_{T}=\ln S_{0}+\left(\mu-\frac{1}{2} \sigma^{2}\right) T+\sigma \sqrt{T}_{\varepsilon}
$$

implies

$$
\varepsilon=\frac{\ln X-\ln S_{0}-\left(\mu-\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}
$$

- The integrals can be expressed using the cumulative standard normal, Φ

$$
\Phi(a-\mu)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{a} e^{-\frac{(x-\mu)^{2}}{2}} d x
$$

- where $\Phi(\cdot)$ is the area under the left tail of the standard normal distribution.

Black-Scholes formula

- because Φ is symmetric around zero

$$
\begin{gathered}
\Phi(a-\mu)=1-\Phi(\mu-a) \\
\Phi(\mu-a)=\frac{1}{\sqrt{2 \pi}} \int_{a}^{\infty} e^{-\frac{(x-\mu)^{2}}{2}} d x
\end{gathered}
$$

Black-Scholes formula

- Substituting in

$$
\begin{gathered}
C_{0}=\frac{S_{0}}{\sqrt{2 \pi}} \int_{X}^{\infty} e^{-\frac{1}{2}\left(\varepsilon-\left(\sigma-\frac{\mu-r}{\sigma}\right) \sqrt{T}\right)^{2}} d \varepsilon \\
-\frac{X}{\sqrt{2 \pi}} e^{-r T} \int_{X}^{\infty} e^{-\frac{1}{2}\left(\varepsilon+\frac{\mu-r}{\sigma} \sqrt{T}\right)^{2}} d \varepsilon \\
C_{0}=S_{0} \Phi\left(-\frac{\ln X-\ln S_{0}-\left(\mu-\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}+\left(\sigma-\frac{\mu-r}{\sigma}\right) \sqrt{T}\right) \\
-X e^{-r T} \Phi\left(-\frac{\ln X-\ln S_{0}-\left(\mu-\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}-\frac{\mu-r}{\sigma} \sqrt{T}\right)
\end{gathered}
$$

- Simplifying, we get the Black-Scholes formula

$$
C_{0}=S_{0} \Phi\left(\frac{\ln \frac{S_{0}}{X}+\left(r+\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}\right)-X e^{-r T} \Phi\left(\frac{\ln \frac{S_{0}}{X}+\left(r-\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}\right)
$$

Black-Scholes formula

- We repeat the formula again here:

$$
C_{0}=S_{0} \Phi\left(\frac{\ln \frac{S_{0}}{X}+\left(r+\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}\right)-X e^{-r T} \Phi\left(\frac{\ln \frac{S_{0}}{X}+\left(r-\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}\right)
$$

- The price is a function:
- S_{0} (stock price)
- r (risk free rate)
- X (strike price)
- T (time to expiration date)
- σ (volatility of the underlying stock)

Black-Scholes formula

$$
C_{0}=S_{0} \Phi\left(\frac{\ln \frac{S_{0}}{X}+\left(r+\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}\right)-X e^{-r T} \Phi\left(\frac{\ln \frac{S_{0}}{X}+\left(r-\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}\right)
$$

- This formula is useful to assess how the price of the option changes when the variables in the r.h.s. of the equation change

Black-Scholes formula

- The price is a monotonic increasing function of the σ
- This formula is often used to solve for σ (once C_{0} is known). The σ is the implied volatility
- Typically options are quoted in units of sigma

Black-Scholes formula

Exercise:

Determine the price of an European call option with $S_{0}=50$ euros, $r=4 \%, X=48$ euros, $T=60$ days and $\sigma=30 \%$. What is the price of an European put option on the same stock, with the same exercise price and time to maturity?

$$
\begin{gathered}
\frac{\ln \frac{S_{0}}{X}+\left(r+\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}=\frac{\ln \frac{50}{48}+\left(0.04+\frac{1}{2}(0.3)^{2}\right) \frac{60}{365}}{0.3 \sqrt{\frac{60}{365}}}=0.45049 \\
\frac{\ln \frac{S_{0}}{X}+\left(r-\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}=\frac{\ln \frac{50}{48}+\left(0.04-\frac{1}{2}(0.3)^{2}\right) \frac{60}{365}}{0.3 \sqrt{\frac{60}{365}}}=0.32886 \\
\Phi(0.45049)=0.67382
\end{gathered}
$$

Black-Scholes formula

In Excel the command to get the cumulative normal is
" =NORM.S.DIST(0,45049;TRUE)"

$$
\begin{gathered}
\Phi(0.32886)=0.62886 \\
C_{0}=50(0.67382)-48 e^{-0.04 \frac{60}{365}}(0.62886)=3.7035
\end{gathered}
$$

To compute the put price must use the put-call parity formula

$$
\begin{gathered}
C_{0}-P_{0}=S_{0}-\frac{X}{R^{f}} \\
P_{0}=C_{0}+\frac{X}{R^{f}}-S_{0} \\
P_{0}=3.7035+48 e^{-0.04 \frac{60}{365}}-50=1.3889
\end{gathered}
$$

Spanning

- Given contingent prices can get discount factors, contingent claims and risk neutral probabilities

Proposition: The second derivative of the call option price with respect to the exercise price gives a stochastic discount factor.
Proof: We can construct a contingent claim. Consider the strategy of buying 2 call options, one with strike price $X-\varepsilon$ and another with strike price $X+\varepsilon$, and selling 2 call options with strike price X. The payoff of that portfolio (known as butterfly) is

Spanning

Butterfly

Spanning

As $\varepsilon \searrow 0$ we are creating a contingent claim. The payoff of the contingent claim is the area of the triangle ε^{2}. The cost of this portfolio is

$$
C(X-\varepsilon)-2 C(X \varepsilon)+C(X+\varepsilon)
$$

But this is $\varepsilon^{2} \frac{\partial^{2} C}{\partial X^{2}}$. Recall that $f^{\prime \prime}(x)=\lim _{\varepsilon \longrightarrow 0} \frac{f^{\prime}(x+\varepsilon)-f^{\prime}(x)}{\varepsilon}$ and
$f^{\prime}(x)=\lim _{\varepsilon \longrightarrow 0} \frac{f(x)-f(x-\varepsilon)}{\varepsilon}$. Thus, $f^{\prime \prime}(x)=\lim _{\varepsilon \longrightarrow 0} \frac{\frac{f(x+\varepsilon)-f(x)}{\varepsilon}-\frac{f(x)-f(x-\varepsilon)}{\varepsilon}}{\varepsilon}$.

Spanning

Thus, if we buy $\frac{1}{\varepsilon^{2}}$ we get a payoff of 1 if the $S_{T}=X$ and a payoff zero for any other value of S_{T}.
Conclusion: The price of this contingent claim is $\frac{\partial^{2} C}{\partial X^{2}}$.

- Once we have contingent claims we can price any payoff that is a function of $S_{T}, x\left(S_{T}\right)$
- The price of a portfolio with payments $x\left(S_{T}\right)$ is

$$
P=\int_{S_{T}} \frac{\partial^{2} C}{\partial X^{2}}\left(X=S_{T}\right) \times\left(S_{T}\right) d S_{T}
$$

Spanning

- Discount factor $m_{S_{T}}=\frac{\frac{\partial^{2} c}{\partial \chi^{2}}\left(X=S_{T}\right)}{f\left(S_{T}\right)}$
- Risk neutral probabilities $p_{S_{T}}=(1+r)^{T} \frac{\partial^{2} C}{\partial X^{2}}\left(X=S_{T}\right)$

$$
P=\frac{E^{p}\left(x\left(S_{T}\right)\right)}{(1+r)^{T}}
$$

Data

- Are actual prices equal to the ones predicted by the Black-Scholes formula?
- When options with the same maturity T, same S, but different X, are graphed for implied volatility the tendency is for that graph to show a smile.
- The smile shows that the options that are furthest in- or out-of-the-money have the highest implied volatility.
- Options with the lowest implied volatility have strike prices at- or near-the-money.
- The Black-Scholes model predicts that the implied volatility curve is flat when plotted against varying strike prices

Data

- This means that calls near the money have a lower price than the others
- Solution: Consider that the underlying asset price follows a distribution with fatter tails

