

Estatística II	Nome:
Época de Recurso	
3 de Julho de 2019	
Duração da prova: 1 hora	Número:

- Esta prova contém 7 páginas e 3 questões;
- Caso nada seja dito em contrário considere um nível de singificância de 5% nos testes;
- Fundamente e formalize devidamente as suas respostas;
- Cada resposta de escolha múltipla correcta tem a cotação de 1 valor, cada resposta errada é penalizada em 0.25 valores;
- Pode utilizar a última página para continuar a resposta a qualquer questão desde que o indique explicitamente.

Boa sorte!

Pergunta	Cotação	Classificação
1	7	
2	1	
3	2	
Total:	10	

1. Com o objetivo de se explicarem os determinantes dos salários, foram estimadas as seguintes regressões (erros padrão entre de parênteses):

Tabela 1

	Variável de	pendente:				
	$\log(\text{wage})$					
	(1)	(2)	(3)			
educ	0.093	0.087	0.087			
	(0.008)	(0.007)	(0.007)			
exper	0.004					
•	(0.002)					
tenure	$0.02{+}1.6{ imes}{ m e}(\hat{eta}_{tenure})$???	???			
	(???)	(0.003)	(0.003)			
numdep	0.010	0.005				
•	(0.016)	(0.016)				
Constant	0.257	0.393	0.404			
	(0.113)	(0.099)	(0.092)			
Observations	526	526	526			
R^2	0.317	0.309	0.309			
F Statistic	60.321	77.682	116.674			

onde: wage=salário/hora; educ=anos de escolaridade; exper=experiência profissional em anos; tenure= número de anos no emprego actual; numdep=número de dependentes.

(a) (3 pontos) Considerando a equação (1), interprete a estimativa associada a educ. Comente ainda a seguinte afirmação: Apesar de exper e numdep não serem individualmente relevantes para explicar os salários, são conjuntamente relevantes.

(h)	(2 pontos) Teste a significância global do modelo (1).
(n)	(2 pointos) Teste a significancia giobal do modelo (1).

e) (1	2 pontos)	Teste H_0 :	: β_{tenure} =	= 0.02 cont	ra H_1 : β_{ten}	ure > 0.02.	Considere	o modelo (1).

2. (1 valor) Considere o seguinte modelo:

$$y_i = \beta_0 + \beta_1 x_{i1} + u_i, i = 1, \dots, n.$$
 (1)

Estando interessado em testar $H_0: \beta_1 = 0$ contra uma alternativa bilateral, um investigador obteve a 95% de confiança:

$$\beta_1 \in (-0.5; 1.5)$$

podemos afirmar que, a 95% de confiança:

- O intervalo de confiança não permite que o investigador teste hipótese estatística alguma.
- O A hipótese nula deve ser rejeitada
- \bigcirc Tem-se $\beta_1 = 1$
- O Nenhuma das anteriores
- 3. (2 pontos) Considere a equação (3) da Tabela 1 (Questão 1). Com o objetivo de testar a heterocedasticidade dos erros desse modelo efetuou um teste que estudou no contexto de Estatística II. Sabe-se que a respectiva estatística de teste tinha uma uma distribuição assimptótica do qui-quadrado com 5 graus de liberdade. Observou ainda $LM_{obs} = 9.82$.
 - Que teste está em causa? Seja específico.
 - Escreva a regressão auxiliar e o respectivo R^2 .
 - Efetue o teste e comente o seu resultado, em particular as implicações sobre as propriedades do estimador OLS desse modelo.

Continuação da questão: