
PART III

Selecting Optimal Portfolios

Raquel M. Gaspar Financial Markets and Instruments ISEG – ULisboa 1 / 71

Expected Utility Theory

1.

Expected Utility Theory (EUT)

Raquel M. Gaspar Financial Markets and Instruments ISEG – ULisboa 2 / 71

Expected Utility Theory

1. Expected Utility Theory

Foundations of Utility Theory

Utility Functions and Their Properties

Risk Tolerance Function and the Optimal Portfolio

Raquel M. Gaspar Financial Markets and Instruments ISEG – ULisboa 3 / 71

Expected Utility Theory Foundations of Utility Theory

1.1 Foundations of Utility Theory

Learning objectives

St. Petersburg Paradox

Defining Utility

Expected Utility Theory (EUT)

Questions

Raquel M. Gaspar Financial Markets and Instruments ISEG – ULisboa 4 / 71



Expected Utility Theory Foundations of Utility Theory

Learning objectives

say why mean-variance analysis is not su�cient,

discuss the St Petersburg paradox,

state the four axioms of a rational investor,

state the rational expectations theorem,

show that an investor deciding according to expected utility satisfies
the four axioms.

define a utility function,

explain how utility functions are used to choose between investments.
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The need for something more

Even if we accept that investors only care about mean and variance,
mean-variance analysis does not tell us which portfolio to hold.

It only reduces the set of investments worth considering – from the
full investment opportunity set it worth considering only the e�cient
portfolios.

Within that set, it says nothing.
Since that set –the e�cient frontier – is generally a combination of
line(s) and/or curve.

We still do not have enough information to decide our investments.

We therefore need an extra concept
– on investor preferences – to go further.
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The St Petersburg Paradox

How much is the right to play the following game worth?

You keep on tossing a coin until it comes up tails.

If there are n throws you receive 2n roubles.

The probability of terminating after exactly n throws is 2�n.

The expected pay-o↵ is therefore

1X

n=1

2�n2n = 1.

If all one cares about is expectation then one should be willing to pay
an arbitrarily large amount to play this game.

This paradox goes back to at least the 18th century.
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Interpreting the St Petersburg Paradox

Practical experiments suggest that people are not willing to pay very
much to play this game.
) In fact, 1.5 roubles is a typical response!

How can we explain people’s reluctance to pay very much?

One explanation is that not much value is ascribed to a very small
probability of winning a very large amount of money.

Another, related, explanation is that the prospect of getting two
million dollars is not viewed as being twice as good as getting one
million dollars.
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Defining utility

Interpreting utilities:
If U(A) > U(B), A is preferable over B : A � B
If U(A) = U(B), there is indiference between A and B : A ⇠ B
If U(A) < U(B), B is preferable over A: A � B

A utility function is, thus, a qualitative function.

When it comes to investment choice applications of Utility Theory, it
turns out that it is enough that utility functions map positive real
numbers, representing total wealth at the end of the period W , to the
real numbers.

U(W ) : R+ ! R

OBS: Utility is always defined in terms of investor’s wealth W and not in
terms of returns R .
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Expected Utility Theory (EUT)

We also need to be able to extend the standard Utility Theory under
certainty, to the uncertain setup, as outcomes of investments are
uncertain.

This extension is due to Von-Newman and Morgernstern and is
known as Expected Utility Theory (EUT).
The key idea is that we should use the principle of maximising
expected utility in investment decisions:

one chooses investing in the portfolio X over the portfolio Y , i.e.
X � Y , if

E(U(WX )) > E(U(WY )),

one is indi↵erent between portfolios X and Y , i.e. X ⇠ Y if

E(U(WX )) = E(U(WY )) ,

where WX refers to our total wealth if we adopt a certain investment
strategy X , and WY again refers to a total wealth under a di↵erent
strategy Y .
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Modelling Investment Decisions

Expected Utility Theory (EUT) is a convenient way to model
investors’ choices.

However, it is not the only way.

There are multiple ways to assess a model:
Does it correctly predict an investor’s choices?
Are an investor’s choices compatible with utility theory?
Does it follow from reasonable assumptions?
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The rational investor

So why is EUT so popular?

Under some fairly mild assumptions – on the rationality of investors – one
can prove that they make their decisions according to Expected Utility
Theory (EUT).

A rational investor is one whose preferences satisfy the four axioms.
These are:

1 Comparability

2 Transitivity

3 Independence

4 Certainty equivalence
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Expected Utility Theory Foundations of Utility Theory

Comparability

1 The first property is comparability

Given two investments, precisely one of

A � B ,

A ⇠ B ,

A � B ,

should hold.

OBS: This e↵ectively states that the investor should always be able to
express an opinion about the relative merits of two instruments.
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Transitivity

2 Our second property is transitivity.

If A is preferred to B and B is preferred to C then A must be preferred to
C . We also require that if A ⇠ B and B ⇠ C then A ⇠ C .

That is

A � B , B � C , =) A � C ,

A � B , B � C , =) A � C ,

A ⇠ B , B ⇠ C , =) A ⇠ C
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Independence

3 Another important property is independence.

If an investor is indi↵erent between A and B , and suppose we have a third
investment C .

Let D be A with probability p, and C otherwise,

Let E be B with probability p, and C otherwise.

Independence states that in this case, the investor should be indi↵erent
between D and E .

The idea is either that the investor receives C in both cases which clearly
suggests indi↵erence, or the investor receives one of two investments
between which he is indi↵erent so again he should be indi↵erent.
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Certainty equivalence

4 Another property sometimes used is certainty equivalence.

This states that the investor is indi↵erent between any investment and
some guaranteed cash sum – the investment certainty equivalent.

Roughly stated, this says that every investment has an indi↵erence price.

Certainty equivalence can be deduced from the other three axioms and the
Archimedean axiom.

=> The Archimedean axiom roughly states that no investment is infinitely
better than another investment.
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Rational expectations theorem

Rational Expectations Theorem

An investor’s preferences are given by expected utility if and only if their
preferences satisfy the axioms of comparability, transitivity, independence
and certainty equivalence.

That EUT implies the four axioms is quite easy.

That the four axioms imply expected utility is quite hard

Next we just check that EUT =) each of the axioms.
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EUT and Comparability

1 EUT =) comparability

If preferences are given by expected utility then we simply take the
investment with higher expected utility.

Since precisely one of
E(U(A)) < E(U(B)),

E(U(A)) = E(U(B)),

E(U(A)) > E(U(B)),

is true, we also have that precisely one of

A � B , A ⇠ B A � B ,

is true, and comparability follows.
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EUT and Transitivity

2 EUT =) transitivity

If preferences are given by expected utility and A � B � C , then

E((U(A)) < E(U(B)) and E(U(B)) < E(U(C )),

so
E(U(A)) < E(U(C ))

and
A � C .
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EUT and Independence

3 EUT =) independence

The investments A and B are equivalent so

E(U(A)) = E(U(B)).

D is A with probability p and C with probability 1� p

E is B with probability p and C with probability 1� p

So

E(U(D)) =pE(U(A)) + (1� p)E(U(C )),

=pE(U(B)) + (1� p)E(U(C )),

=E(U(E )).
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Expected Utility Theory Foundations of Utility Theory

EUT and Certainty equivalence

4 EUT =) certainty equivalence

For this one we need the utility function, U, to be increasing and
continuous. Given these properties, the function U has an inverse U�1.

For an investment A, we set

C = U�1(E(U(A)).

Note C is a constant, so it bears no risk.

We then have
E(U(C )) = U(C ) = E(U(A)),

so the investor is indi↵erent between C and A, as required.
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Certainty equivalence

We can also see the certainty equivalence in the following way:

For any fixed C , we can:

Fix h and evaluate b that guarantees indi↵erence, or

Fix b and evaluate h that guarantees indi↵erence.
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Certainty equivalence
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Example: EUT decisions
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Theory questions

1 What four axioms does a rational investor’s behaviour satisfy?

2 What does the rational expectations theorem say?

3 What does the axiom of comparability say? Show that an investor
deciding according to expected utility satisfies this axiom.

4 What does the axiom of transitivity say? Show that an investor
deciding according to expected utility satisfies this axiom.

5 What does the axiom of independence say? Show that an investor
deciding according to expected utility satisfies this axiom.
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1.2 Utility Functions and their Properties

Learning Objectives

Properties of Utility Functions

Indi↵erence pricing

Risk aversion and curvatures: measuring absolute and relative risk
aversion

Questions
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Learning objectives

relate the properties of utility functions to investor behaviour,

state when two utility functions are equivalent,

give some examples of utility functions.

define indi↵erence prices and risk premia,

compute indi↵erence prices.

define and derive absolute risk aversion,

define and derive relative risk aversion,

classify the risk profile of investors given his/her utility function.
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Properties of Utility Functions

We cannot observe utility functions!

Facing a particular investor we need to choose and utility function
that fits his preferences .

Utility are just qualitative functions.

Utility functions are only needed as a tool to decide the optimal (for a
particular investor) investment strategy.

We only care about the ranking of alternative investments.

Two utility functions are said to be equivalent if they lead to the
same decisions, and it that case any such function would do the job.

OBS: To be able to assign an mathematical function U(·) to model the
preferences of a particular investor, we need to what how to interpret the

mathematical properties of U(·) in terms of risk profiles.
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First derivative: U 0(·)

Investors will generally prefer more to less.

So we require,

WX < WY =) U(WX ) < U(WY ),

i.e., U is increasing =) U 0(W ) =
@U

@W
> 0.

OBS: A decreasing U(·) would therefore say that the investor actually
prefer less money under certain circumstances.
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Second derivative: U 00(·)

We also need to understand what di↵erent U functions may mean in
terms of the investor’s atitude towards risk.

Let us consider two investments X and Y such that, WX is risky, but
WY is not, and

E(WX ) = E(WY ) = WY

A risk-neutral investor would not care about varianceso, the investor
would be indi↵erent between the two investments, X ⇠ Y , and

E(U(WX )) = E(U(WY )).

However, the risk averse investor would prefer Y to X , i.e. X � Y and

E(U(X )) < E(U(Y )).

Finally, the risk lover investor would instead prefer X to Y , i.e. X � Y
and

E(U(X )) > E(U(Y )).
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Second derivative: U 00(·)

What property on U(·) di↵erent attitudes towards risk imply?

Suppose we have WA < WY < WB , and p is such that

WY = (1� p)WA + pWB .

Let X pay WA with probability 1� p and WB with probability p. We
then have

E(WX ) = E(WY ) = WY .

But X is risky whereas Y is not, so recall
A risk-neutral investor would be indi↵erent Y over X : X ⇠ Y
A risk-averse investor would therefore choose Y over X : X � Y
A risk-loving investor would therefore choose X over Y : X � Y
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Utility curvature

Let us take the case of the risk averse, we want

E(U(WX )) < E(U(WY )) = U(WY ) .

This is equivalent to

(1� p)U(WA) + pU(WB) < U(WY ) .

However, this is precisely the definition of (strict) concavity, since it
states that points on the graph of U between WA and WB will lie
above the chord from A to B .

Thus, a risk averse investor will have a concave utility function.

U 00(W ) =
@2U

@W 2
< 0
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Utility curvature

If the utility function was a straight line then we would have

U 00(W ) =
@2U

@W 2
= 0 ,

E(U(WX )) = E(U(WY )) ,

and the investor is then said to be risk-neutral.

If the utility function is convex then we have

U 00(W ) =
@2U

@W 2
> 0 ,

E(U(WX )) > E(U(WY )) ,

and the investor prefers a risky asset with the same expectation to a
non-risky one, and is said to be risk-seeking.
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Utility curvature

(1) risk lover, (2) risk neutral, (3) risk averse
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Examples of utility functions

Some typical utility functions are

U(W ) = log(W ), log utility

U(W ) = 1� e�W , exponential utility

U(W ) = aW � bW 2, with b > 0,W  a

2b
, quadratic utility

OBS: All the above functions are concave, i.e. only appropriate for risk
averse investors. HW: Suggest good utility functions for risk lovers.
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Example: log utility and the St Petersburg paradox

Recall St Peterburg paradox Suppose we take a log utility function,
the utility then ascribed to a value W is log(W ).

So the expected utility is

E(logV ) =
1X

n=1

log(2n)2�n,

=
1X

n=1

n log(2)2�n.

OBS:This is finite and not too hard to compute
(exercise for the enthusiastic...)
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Equivalence

Theorem

If U is a utility function and we take

V (W ) = a+ bU(W )

with a, b 2 R, and b > 0, then U and V are equivalent.

Proof. If
E(U(WX )) > E(U(WY ))

then
a+ bE(U(WX )) > a+ bE(U(WY )),

so
E(V (WX )) > E(V (WY )).

U and V lead to the same investment decisions, they are equivalent. ⌅
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Indi↵erence pricing

For an initial wealth W0, we can think of investments as a choice
between:

investing in a portfolio which changes our wealth by a random variable
X , or
putting it into something worth a fixed amount C

The value of C which makes

E(U(W0 + X )) = E(U(C )) = U(C ),

is the wealth at which the investor is indi↵erent.

The value of X to the investor is then IP(X ) = C �W0 and is called
the indi↵erence price for X . This could be either positive or negative.

Since is always U increasing it will be invertible, so we can write

C = U�1(E(U(W0 + X ))).
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Risk premia

If the utility function is linear then

U(W ) = aW + b, a > 0,

then

E(U(W0 + X )) = a(W0 + E(X )) + b = U(W0 + E(X )) .

So the indi↵erence price is IP(X ) = E(X ) .

For a general utility function, we define the risk premium to be the
di↵erence between what a risk-neutral investor would pay and the
non-neutral indi↵erence price so it equals

⇡ = E(X )� (C �W0) = E(W )� C
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Illustration
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Indi↵erence price

Example:

Suppose an investor has 100 000 and has a log utility function.

Consider an investment, Y , that pays 150, or �50 with probability
0.5.

What is the indi↵erence price?

We need to know

initial wealth,

utility function,

distribution of final value of investment.
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Computing the indi↵erence price

Example (cont.): We need to:

Compute E(log(100 000 + Y )) , since we have

log(100 000 + 150) = 11.51442434 ,

log(100 000� 50) = 11.51242534 ,

the expected utility is E(U(W )) = 11.51342484.

and then exponentiate – since exp is the inverse of log – to get the
indi↵erence wealth is C = 100 049.95.

This means that the indi↵erence price of Y is

IP(Y ) = C �W0 = 49.95.

And the risk premium is ⇡ = E(Y )� IP(Y ) = 0.05 .
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Modified example

Suppose instead the wealth was 1 000.

We now must compute E(log(1 000 + Y ))

log(1 000 + 150) = 7.047517221,

log(1 000� 50) = 6.856461985 ,

to get the expected utility E(U(W )) = 6.951989603.

The indi↵erence wealth is C = 1 045.227248.

This means that the indi↵erence price is C �W0 = 45.23.

The risk premium has increased to ⇡ = 4.77.
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Equivalence and curvature

We know that concavity leads to risk aversion.

We also know that replacing the function U(W ) by aU(W ) + b leads
to identical decisions and so identical indi↵erence prices.

Searching for a measure of risk aversion:

We would expect that the making U 00 more negative would increase
risk premia.

But, since U and V = aU + b give the same preferences, any attempt
to quantify risk aversion must assign the same risk aversion to both
these functions.

+
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Absolute Risk Aversion

If we consider V = aU + b
Di↵erentiating makes the b disappear: V 0 = aU 0

Di↵erentiating once more we get: V 00 = aU 00

To get rid of the a we can take ratios: V 00

V 0 = aU00

aU0 = U00

U

Since U 00 < 0 the fraction �U00

U is positive and can be seen as a
measure of risk aversion, and this is the same for U and V .

Absolute Risk Aversion (ARA)

A(W ) =
�U 00(W )

U 0(W )

OBS: It turns out the absolute risk aversion, at a given level of wealth,
tells us how much to multiply the variance of an investment by to get the

risk premium (check the proof in the textbook).
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Interpreting ARA

If A0(W ) < 0, as wealth increases the lower it is the degree of ARA .
The higher the wealth the higher the amount (in euros) one is willing
to invest in risky assets.

If A0(W ) = 0 that is ARA is constant then the risk premium does not
vary with wealth.
No matter the wealth level one invests always the same amount (in
euros) in risky assets.

If A0(W ) > 0 as wealth increases the higher it is the degree of ARA .
The higher the wealth the lower the amount (in euros) one is willing
to invest in risky assets.

Raquel M. Gaspar Financial Markets and Instruments ISEG – ULisboa 46 / 71

Expected Utility Theory Utility Functions and Their Properties

Example: ARA for log utility

Suppose we take log-utility, i.e,

U(W ) = logW .

Then

U 0(W ) =
1

W
,

U 00(W ) =� 1

W 2
.

We therefore have

A(W ) =
1

W
=) A0(W ) = � 1

W 2
< 0

so, we get a decreasing ARA function.
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Example: ARA for exponential utility

Suppose we take exponential-utility, i.e,

U(W ) = 1� e�aW with a > 0.

Then

U 0(W ) =ae�aW ,

U 00(W ) =� a2e�aW .

We therefore have

A(W ) = a =) A0(W ) = 0

and we get a constant ARA.
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ARA and utility functions
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Relative risk aversion

It is also useful to think in terms of relative risk aversion where the
aversion is in terms of fractions or proportions of current wealth that
might be lost instead of absolute amounts.

Relative Risk Aversion (RRA)

R(W ) = �WU 00(W )

U 0(W )
.

OBS:Note that an investor with constant absolute risk aversion will display
increasing relative risk aversion.
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Interpreting RRA

If R 0(W ) < 0, as wealth increases the lower it is the degree of RRA .
The higher the wealth, the higher is the proportion (in %) one is
willing to invest in risky assets.

If R 0(W ) = 0 that is RRA is constant, so the degree of RRA is the
same no matter the level of wealth.
No matter the wealth, one invests always the same proportion (in %)
in risky assets.

If R 0(W ) > 0 as wealth increases the higher it is the degree of RRA .
The higher the wealth, the lower the proportion (in %) one is willing
to invest in risky assets.
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Examples: RRA for log and exponential utility

We saw that for log utility, A(W ) = W�1, so the associated relative
risk aversion is

R(W ) = WA(W ) = 1 =) R 0(W ) = 0 ,

so, we have a constant RRA.

On the other hand, for exponential utility, the relative risk aversion is
equal to

R(W ) = WA(W ) = aW =) R 0(W ) = a > 0

so, in this case RRA increases with wealth levels.

Raquel M. Gaspar Financial Markets and Instruments ISEG – ULisboa 52 / 71



Expected Utility Theory Utility Functions and Their Properties

RRA and utility functions
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Theory questions

1 What properties would you expect a utility function to have and why?

2 What does it mean for two utility functions to be equivalent?

3 Give examples for three typical utility functions.

4 If an investor is risk-neutral, what can we say about his utility
function?

5 If an investor is risk-averse, what can we say about his utility function?

6 Define the indi↵erence price.

7 Define the risk premium of an investment.
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Theory questions

9 Define and derive the absolute risk aversion function associated to a
utility function.

10 Define and derive the relative risk aversion function associated to a
utility function.

11 How do we compute the indi↵erence price given the absolute risk
aversion?

12 How do we compute the indi↵erence price given the relative risk
aversion?

13 Suppose an investor has constant absolute risk aversion, what does
this tell us about this behaviour?
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1.3 Risk Tolerance Function and the Optimal Portfolio

Learning Objectives

Risk Tolerance Functions

Finding optimal portfolios

Quadratic utility and portfolio theory

Questions
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Learning objectives

establish the connection between utility functions and risk tolerance
functions (RTFs).

understand the di�culties associated with deriving closed-form RTFs.

relate quadratic RTFs to mean-variance analysis,

find second-order Taylor approximations to utility functions and the
associated quadratic RTFs.

for closed-form RTFs directly determine optimal portfolios.

use indi↵erence curves of RTFs to find optimal portfolios.
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Maximal Expected Utility Principle

Let us use EUT in MVT context.

MVT allows us to get the set of e�cient portfolios one should
consider.

EUT tells us we should use the maximal expected utility principle, to
find the optimal portfolio – the one the investor prefers over all others.

Formally we have

max
p

E [U(W )]

s.t. p 2 EF
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Getting it all together

MVT e�cient frontiers are defined in
�
�, R̄

�
.

It would be nice to redefine E [U(W )] as a function of
�
�, R̄

�
.

Risk Tolerance function (RTF)

The RTF f : (�, R̄) ! R is defined as

f (�, R̄) = E (U(W )).

RTF indi↵erence curves are the level curves for which

f (�, R̄) = K

for some fixed expected utility level K .

OBS: The above definition does not guarantee that RTF are easy to
obtain in closed-form.
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RTF: quadratic utility

Sometimes we can do it ...

f (�, R̄) = E (U(W ))

= E(W � bW 2),

= E(W0(1 + R))� bE(W 2
0 (1 + R)2),

= W0(1 + E(R))� bW 2
0 E(1 + 2R + R2),

= W0(1 + R̄)� bW 2
0

�
1 + 2R̄ + E(R2)

�

= W0(1 + R̄)� bW 2
0

�
1 + 2R̄ + �2 + R̄2)

�

= �bW 2
0 (�

2 + R̄2) +W0(1� 2bW0)R̄ +W0(1� bW0)

where we have used W = W0(1 + R), and
the statistical property �2 = E(R2)� R̄2.

OBS: This means that for quadratic investors, choice between portfolios is
purely determined by expected return and volatility.
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RTF: log utility

Sometimes we get stuckt ...

f (�, R̄) = E (U(W ))

= E(log(W ))

= E(log(W0(1 + R)))

= log(W0) + E(log(1 + R))| {z }
this cannot be written in term of �, R̄ .

What can we do when this happens?

1 Add the assumptions that returns follow a distribution for which �, R̄
are su�cient statistics.

2 Numerically evaluate it.

3 Approximate it.
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Approximating RTFs

One justification for quadratic utility is that it can be viewed as an
approximation to any other utility function.

Two functions U and V agree to second order at W0 if

U(W )� V (W ) = o((W �W0)
2,

where o((W �W0)2) means something small compared to
(W �W0)2, i.e.

U(W )� V (W )

(W �W0)2
! 0

as W ! W0.
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Taylor and quadratic utility

If U is a general utility function, we can always approximate by a
quadratic:

U(W ) = U(W0) + U
0
(W0)(W �W0)

+ U
00
(W0)(W �W0)

2/2 + o((W �W0)
2).

And we can derive its second-order Taylor expansion around W0

U(W ) ⇡ U(W0) + U
0
(W0)(W � W0) +

1

2
U

00
(W0)(W � W0)

2 .

Note the above approximation is always quadratic, for any general
utility U.

As long as W �W0 is small the approximation will be good.
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Equivalence of RTFs

Risk tolerance functions (RTFs) just like utility functions are
qualitative functions.

Two RTFs that lead to the same ranking of portfolios in the�
�, R̄

�
–space are considered to be equivalent as they lead to the same

investment decisions. An important result is

Theorem

The RTF resulting from a second-order Taylor approximation of a generic
utility function U is equivalent to

f (R̄ ,�) = R̄ � 1

2
r0
⇥
R̄2 + �2

⇤
,

where r0 is the coe�cient of relative risk aversion evaluated at W0.

HW: Formally show this.

Raquel M. Gaspar Financial Markets and Instruments ISEG – ULisboa 64 / 71



Expected Utility Theory Risk Tolerance Function and the Optimal Portfolio

Graphically representing RTF

Note RTF has domain in our usual space
�
�, R̄

�
. To represent it

graphically we would need to be able to do a 3D representation.

Alternatively we can use the ideia of level curves.

We can plot curves where all investments have the same level of
expected utility => indi↵erence curves

For closed-form RTFs – expressed in terms of � and R̄ – we can turn
the equation round to get:

� as a function of R̄ and a fixed expected utility level K ,

f (�, R̄) = K =) � = IC (R̄ ,K ).

OR, R̄ as a function of � and a fixed expected utility level K

f (�, R̄) = K =) R̄ = IC (�,K ).

for fixed K – varying R̄ or � – we get indi↵erence curves.
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Indi↵erence curves

(1) risk lovers; (2) risk lovers ; (3) risk averse
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Finding Optimal Portfolios

We need to find the point on the e�cient frontier that maximizes the RTF

max
p

f (�p, R̄p)

s.t. p 2 EF

1 We can use direct maximisation of RTF

2 We can use indi↵erence curves.
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Finding Optimal Portfolios

1 Use direct maximisation of RTF

max
p

f (�p, R̄p)

s.t. p 2 EF

Recall the EF can be written as:

�p = EF (R̄p) or R̄p = EF (�p)

So including the restriction, the problem reduces to:

max
R̄p

f (EF (R̄p), R̄p) or max
�p

f (�p,EF (�p))
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Finding Optimal Portfolios

2 Using indi↵erence curves

We need that the slope of our indi↵erence curves (IC) and that of the
e�cient frontier (EF) match in the

�
�, R̄

�
space.

Since we have

�p = EF (R̄p) or R̄p = EF (�p)

and
�p = IC (R̄p,K ) or R̄p = IC (�p,K )

So, optimal portfolios solve

@EF

@R̄p
=

@IC

@R̄p
or

@EF

@�p
=

@IC

@�p
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Optimal Portfolios using IC
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Theory questions

1 Define risk tolerance functions(RTFs) in terms of utility functions.

2 Derive and interpret the indi↵erence curves associated with a given
RTF.

3 What can you conclude about the shape of indi↵erence curves or risk
averse, risk neutral and risk loving investors, in the

�
�, R̄

�
– space?

4 Why are quadratic RTFs so important in mean-variance analysis?

5 Given the equation(s) for the e�cient frontier (EF) and a RTF, how
to find the optimal investment?

6 Given the equation(s) for the e�cient frontier (EF) and a set of
indi↵erence curves (IC), how to find the optimal investment?
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