
GD 2023/24 - 1Carlos J. Costa (ISEG)

NOSQL
(VERSION 2023)

Carlos J. costa

GD 2023/24 - 2Carlos J. Costa (ISEG)

NoSQL

• Next Generation Databases mostly

addressing some of the points:

– being non-relational,

– distributed,

– open-source and

– horizontal scalable.

• The original intention has

been modern web-scale databases.

GD 2023/24 - 3Carlos J. Costa (ISEG)

NoSQL

• The movement began early 2009 and is

growing rapidly.

• Often more characteristics apply as:

– schema-free,

– easy replication support,

– simple API,

– eventually consistent / BASE (not ACID),

– a huge data amount, and more.

GD 2023/24 - 4Carlos J. Costa (ISEG)

Relational Databases: ACID

Properties
• Atomic

– All of the work in a transaction completes (commit) or none of it completes

• Consistent
– A transaction transforms the database from one consistent state to another

consistent state.

– Consistency is defined in terms of constraints.

• Isolated
– The results of any changes made during a transaction are not visible until the

transaction has committed.

• Durable
– The results of a committed transaction survive failures

GD 2023/24 - 5Carlos J. Costa (ISEG)

NoSQL: BASE Transactions

• Acronym opposite of ACID

– Basically Available,

– Soft state (State of the system may change

over time)

– Eventually Consistent (asynchronous

propagation)

GD 2023/24 - 6Carlos J. Costa (ISEG)

Brewer’s CAP Theorem

A distributed system can support only two of the following

characteristics:

•Consistency

– All replicas contain the same version of data

– Client always has the same view of the data (no matter what node)

•Availability

– Systems remains operational on failing notes

– All clients can always read and write

•Partition tolerance

– Multiple entry points

– System remains operational on system communication malfunction

– System works well across physical network partitions

GD 2023/24 - 7Carlos J. Costa (ISEG)

Brewer’s CAP Theorem

GD 2023/24 - 8Carlos J. Costa (ISEG)

Brewer’s CAP Theorem

• What the CAP theorem really says:

– If you cannot limit the number of faults and

requests can be directed to any server and

you insist on serving every request you

receive then you cannot possibly be

consistent

• How it is interpreted:

– You must always give something up:

consistency, availability or tolerance to failure

and reconfiguration

GD 2023/24 - 9Carlos J. Costa (ISEG)

RDBMS vs NoSQL

GD 2023/24 - 10Carlos J. Costa (ISEG)

Taxonomy of NoSQL

•Key-Value

•Graph Database

•Document-oriented

•Column Family

http://nosql-database.org/

GD 2023/24 - 11Carlos J. Costa (ISEG)

Taxonomy of NoSQL

•Key-Value

•Graph Database

•Document-oriented

•Column Family

http://nosql-database.org/

GD 2023/24 - 12Carlos J. Costa (ISEG)

Taxonomy of NoSQL

GD 2023/24 - 13Carlos J. Costa (ISEG)

Taxonomy of NoSQL

Key-Value – is

a hash table of

keys

GD 2023/24 - 14Carlos J. Costa (ISEG)

Taxonomy of NoSQL

Key-Value

GD 2023/24 - 15Carlos J. Costa (ISEG)

Taxonomy of NoSQL

Graph

Database

- uses graph

structures for

queries with

nodes, edges

and properties

to represent

and store

data.

GD 2023/24 - 16Carlos J. Costa (ISEG)

Taxonomy of NoSQL

Graph

Database

- uses graph

structures for

queries with

nodes, edges

and properties

to represent

and store

data.

GD 2023/24 - 17Carlos J. Costa (ISEG)

Taxonomy of NoSQL

Document-

oriented –

stores data in

flexible

hierarchical

data structures

GD 2023/24 - 18Carlos J. Costa (ISEG)

Taxonomy of NoSQL

Document-

oriented

GD 2023/24 - 19Carlos J. Costa (ISEG)

Taxonomy of NoSQL

Column

Family – Each

storage block

contains data from

only one column

A wide-column store

can be interpreted

as a two-

dimensional key–

value store

GD 2023/24 - 20Carlos J. Costa (ISEG)

Taxonomy of NoSQL

Column

Family

GD 2023/24 - 21Carlos J. Costa (ISEG)

• Is a document database

• Stores data in flexible, JSON-like

documents
– meaning fields can vary from document to document

and data structure can be changed over time

• Is a distributed database at its core
– high availability, horizontal scaling, and geographic

distribution are built in and easy to use

GD 2023/24 - 22Carlos J. Costa (ISEG)

• Free and open-source, published under

the GNU Affero General Public License

• The document model maps to the

objects in your application code,

making data easy to work with

• Ad hoc queries, indexing, and real time

aggregation provide powerful ways to

access and analyze your data

GD 2023/24 - 23Carlos J. Costa (ISEG)

• Here we are connecting to a locally

hosted MongoDB database called test with

a collection named restaurants.

1. Connect to MongoDB instance running on localhost

client = pymongo.MongoClient()

Access the 'restaurants' collection in the 'test' database

collection = client.test.restaurants

GD 2023/24 - 24Carlos J. Costa (ISEG)

• 5 example documents are being inserted into the restaurants collection.

Each document represents a restaurant with a name, star rating, and

categories (stored as an array).
2. Insert

new_documents = [

{

"name": "Sun Bakery Trattoria",

"stars": 4,

"categories": ["Pizza","Pasta","Italian","Coffee","Sandwiches"]

}, {

"name": "Blue Bagels Grill",

"stars": 3,

"categories": ["Bagels","Cookies","Sandwiches"]

}, {

"name": "Hot Bakery Cafe",

"stars": 4,

"categories": ["Bakery","Cafe","Coffee","Dessert"]

}, {

"name": "XYZ Coffee Bar",

"stars": 5,

"categories": ["Coffee","Cafe","Bakery","Chocolates"]

}, {

"name": "456 Cookies Shop",

"stars": 4,

"categories": ["Bakery","Cookies","Cake","Coffee"]

}

]

collection.insert_many(new_documents

GD 2023/24 - 25Carlos J. Costa (ISEG)

• In this example, we run a simple query to get all of the documents in the

restaurants collection and store them as an array.

3. Query

for restaurant in collection.find():

pprint.pprint(restaurant)

• Indexes in MongoDB are similar to indexes in other database systems.

MongoDB supports indexes on any field or sub-field of a document in a

collection.

• Here, we are building an index on the name field with sort order ascending.

4. Create Index

collection.create_index([('name', pymongo.ASCENDING)])

GD 2023/24 - 26Carlos J. Costa (ISEG)

• Using MongoDB’s aggregation pipeline, you can filter and analyse data

based on a given set of criteria.

• In this example, we pull all the documents in the restaurants collection that

have a category of Bakery using the $match operator and then group them

by their star rating using the $group operator. Using the accumulator

operator, $sum, we can see how many bakeries in our collection have each

star rating.

5. Perform aggregation

pipeline = [

{"$match": {"categories": "Bakery"}},

{"$group": {"_id": "$stars", "count": {"$sum": 1}}}

]

pprint.pprint(list(collection.aggregate(pipeline)))

GD 2023/24 - 27Carlos J. Costa (ISEG)

Find Someone in your

Network Who Can Help

You Learn Neo4j

MATCH (you {name:"You"})

MATCH (expert)-[:WORKED_WITH]->(db:Database

{name:"Neo4j"})

MATCH path = shortestPath((you)-[:FRIEND*..5]-(expert))

RETURN db,expert,path

GD 2023/24 - 28Carlos J. Costa (ISEG)

GD 2023/24 - 29Carlos J. Costa (ISEG)

GD 2023/24 - 30Carlos J. Costa (ISEG)

References

• Node.js MongoDB Get Started. (n.d.). Retrieved November 26, 2017, from

https://www.w3schools.com/nodejs/nodejs_mongodb.asp

• What Is MongoDB? (n.d.). Retrieved November 26, 2017, from

https://www.mongodb.com/what-is-mongodb

• What is a Graph Database? A Property Graph Model Intro. (n.d.). Retrieved

November 26, 2017, from https://neo4j.com/developer/graph-database/

• NOSQL Databases. (n.d.). Retrieved November 26, 2017, from http://nosql-

database.org/

