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Alternatives to Utility Maximizing long-term growth

2.1 Maximising long-term growth

Learning Objectives

Formalisation

Geometric means versus Log utility

Kelly’s result and Samuelson’s objection

Questions
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Alternatives to Utility Maximizing long-term growth

Learning objectives

formulate the problem of maximising the long term growth of a
portfolio,

discuss how geometric means can be used to maximize long term
growth rates,

relate geometric means to log utility,

state Kelly’s theorem

illustrate the differences between maximising long term growth and
maximising expected growth for a fixed date long in the future,

solve problems involving portfolio selection for long term growth.
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Alternatives to Utility Maximizing long-term growth

Long-term Growth

Mean-variance analysis and utility theory are just two approaches to
choosing portfolios.

If we change criteria, we will get different portfolios.

Suppose we adopt as our criterion the requirement that the
investment should do best in the very long run. In other words, we
want to maximize the expected long-term growth rate.

The crucial phrase is long-term rate

⇓

We are not looking to win for any fixed time-horizon, but instead

we want to adopt a strategy that will do best if we wait for an
arbitrarily long amount of time.

Raquel M. Gaspar Financial Markets and Investments ISEG – ULisboa 76 / 150



Alternatives to Utility Maximizing long-term growth

Growth across several periods

Each period we will put our entire portfolio into a portfolio that
returns a random variable rj .

The returns are assumed to have the same distribution each period
and to be independent of each other.

OBS: this is quite a big assumption.

In other words, we assume the return variables rj are i.i.d.

If we start with 1, our wealth after N periods is therefore

(1 + r1)(1 + r2) . . . (1 + rN).

The expected value after N periods is therefore

E((1 + r1)(1 + r2) . . . (1 + rN)).
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Alternatives to Utility Maximizing long-term growth

Average growth rate

The average growth over N periods is

rg = ((1 + r1)(1 + r2) . . . (1 + rN))1/N − 1.

Clearly, we have

(1 + rg )N = (1 + r1) . . . (1 + rN).

We can identify 1 + rg , as the geometric mean of the numbers, 1 + rj .
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Alternatives to Utility Maximizing long-term growth

Long term growth rate

Suppose, for simplicity, returns can take only a finite discrete set of values.

For N very large, the fraction of times each value is taken is its
probability so if the possible values are

sj with probability pj for j = 1, . . . , k ,

then for N large we have that the total growth converges to

(1 + s1)Np1(1 + s2)Np2 . . . (1 + sk)Npk ,

To get the average growth we take 1/N power and subtract one, and
so it converges to

(1 + s1)p1(1 + s2)p2 . . . (1 + sk)pk − 1.

It is this quantity that we must maximize.
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Alternatives to Utility Maximizing long-term growth

Using logs

So the problem reduces to

max (1 + s1)p1(1 + s2)p2 . . . (1 + sk)pk

We can re-express the maximization problem using logs. Since log is
increasing it is enough to maximize

max log ((1 + s1)p1(1 + s2)p2 . . . (1 + sk)pk )

=
k∑

i=1

pi log(1 + si ),

= E(log(1 + r))
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Alternatives to Utility Maximizing long-term growth

Objective

We have shown that to maximize the long-term growth rate, we must
find the portfolio that maximizes

E(log(1 + r)),

and this gives a long term growth rate of

eE(log(1+r)) − 1.

It is important to realize that this portfolio need not be mean-variance
efficient nor utility maximizing, and generally will be neither.
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Alternatives to Utility Maximizing long-term growth

Geometric means and log utility

In fact, if one has a log utility function and our initial wealth is W0

then our expected utility at the end of the year will be

E(log(W0(1 + r))) =E(log(W0)) + E(log(1 + r)),

= log(W0) + E(log(1 + r)).

OBS: So, maximising the log utility is the same as maximising the
geometric mean.

OBS: Arithmetic and geometric means are different, and maximising
gives different answers.
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Alternatives to Utility Maximizing long-term growth

Example: applying the geometric mean

Consider a risky investment:

return R -0.2 -0.1 0 0.1 0.2
probabilities 0.1 0.2 0.3 0.3 0.1

and that you need to decide how much of your wealth you invest in it.

Problem: What proportion x of your wealth to put in the risky investment?

Assume that there are no short-selling restrictions

Consider there is no interest, i.e what you decide to keep in cash,
1− x has zero return.

We use the same proportions for every period.
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Alternatives to Utility Maximizing long-term growth

Example: applying the geometric mean

We tabulate the returns R and log(1 + R) for some x .

probabilities 0.1 0.2 0.3 0.3 0.1

x returns R

0.5 -0.1 -0.05 0 0.05 0.1
0.76 -0.152 -0.076 0 0.076 0.152

1 -0.2 -0.1 0 0.1 0.2
2 -0.4 -0.2 0 0.2 0.4

x log(1 + R) for varying R

0.5 -0.1054 -0.0513 0.0000 0.0488 0.0953
0.76 -0.1649 -0.0790 0.0000 0.0733 0.1415

1 -0.2231 -0.1054 0.0000 0.0953 0.1823
2 -0.5108 -0.2231 0.0000 0.1823 0.3365
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Alternatives to Utility Maximizing long-term growth

Example: applying the geometric mean

We compute to get

x E(log(1 + R)) Long-term g-rate expected return

0.5 0.003373 0.003379 0.005
0.76 0.003829 0.003836 0.0076

1 0.003439 0.003445 0.01
2 -0.007368 -0.007341 0.02

The bigger x is the bigger the expected return is.

However, the average long-term growth rate is maximized when
x = 0.76.

When x = 2.00, the long-term growth rate turns negative, so we will
eventually end up down a lot of money.
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Alternatives to Utility Maximizing long-term growth

Kelly’s theorem

Theorem

Given two investment strategies with annual return rates r and s. Let the
wealth after j years be W r

j ,W
s
j . Suppose

E(log(1 + r)) > E(log(1 + s)),

then with probability 1 there will be an N such that

j > N =⇒ W r
j >W s

j .

Kelly’s theorem says that if you wait long enough, the investment
with higher expected log return will win.

However, the theorem does not say anything about N.

So whilst if you adopt r , you will win, you may have to wait an
arbitrarily long amount of time to see your winnings.
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Alternatives to Utility Maximizing long-term growth

Samuelson’s objection

Samuelson objected to the Kelly argument in the following way.

The argument that we should use the geometric mean relied on the
law of large numbers.

With probability one, the fraction of draws that take a given value
converge to the probability of that value, as N tends to infinity.

This is a purely a statement about behaviour at infinity, NOT about
any finite N.

Q: What happens if we consider N finite?
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Alternatives to Utility Maximizing long-term growth

Maximising for a large N

Suppose we fix a finite N.

Returns from year to year should be independent (given a reasonable
level of market efficiency,) so our wealth after N years will be
(1 + r1)(1 + r2) . . . (1 + rN), with each rj distributed the same as r
and independent.

Since the random variables are independent, the expectation is

(E(1 + r))N .

This means that to maximize expected wealth, we should maximize

E(1 + r),

rather E(log(1 + r)).
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Alternatives to Utility Maximizing long-term growth

Kelly versus Samuelson

Since one statement deals with a fixed time horizon, and the other
with behaviour at infinity, they are not contradictory.

Kelly says to maximize long term gains, we must maximize
E(log(1 + r)).

Samuelson says to maximize expected gains for any fixed time
horizon, we should maximize E(1 + r).
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Alternatives to Utility Maximizing long-term growth

Extreme example

We illustrate the issues with an extreme example. We have a choice of two
investments:

Investment r has a fixed return of 1 percent.

Investment s has a return of −100% with probability 0.5 (i.e, lose all
money) and 300% with probability 0.5.

We compute:

E(1 + r) =1 + r = 1.01,

E(1 + s) =0.5× 4 = 2 ⇒ Samuelson recommends s

E(log(1 + r)) =log(1 + r) = 0.00995 ⇒ Kelly recommends r

E(log(1 + s)) =−∞
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Alternatives to Utility Maximizing long-term growth

Extreme example

After N years,

The expected values are E(1 + r)N = 1.01N , and E(1 + s)N = 2N .

The actual values are (1 + r)N = 1.01N and

(1 + s)N =4N with probability 2−N ,

(1 + s)N =0 with probability 1− 2−N .

So if we wait long enough investment s will have value zero with
probability 1, but for any fixed time horizon, it will win in expectation
terms.

Note that r wins in probability one but not with certainty; it is
possible to get an infinite string of heads when tossing a coin, but it
will only happen with probability zero.
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Alternatives to Utility Maximizing long-term growth

Example: Losing it all

Suppose two investments X and Y are such that X has a non-zero
probability of losing everything and Y does not.

What is the geometric mean for X?

E(log(1 + rX )) = −∞,

so the geometric mean is e−∞ − 1 = 0− 1 = −1 .

The geometric mean of Y will be greater than −1 since

E(log(1 + rY )) > −∞.

As we would expect, Y wins in the very long term since eventually X will
hit zero.

OBS: The geometric mean approach says that if we want to win in the
long-term then we should take a fair amount of risk but not so much that

we can lose everything.
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Alternatives to Utility Maximizing long-term growth

Levels of riskiness and long-term victory

The best portfolio according to the geometric mean criterion:

has the highest probability or reaching, or exceeding, any given wealth
level in the shortest possible time.
has the highest probability of exceeding any given wealth level over any
given period of time
is usually well diversified

But . . .

it may not be efficient from the ?mean-variance? point of view
Most investors would regard its level of riskiness as being high although
it is guaranteed to win ... eventually.
Most investors are interested in their lifetimes not eternity: you can’t
take it with you!
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Alternatives to Utility Maximizing long-term growth

Theory questions

1 Define the geometric mean return of an asset.

2 What does Kelly’s theorem say?

3 Which utility function is equivalent to maximizing long-term utility?

4 If we have iid returns every year and we want to maximize expected
return for precisely 1,000 years away what quantity should be
maximize?

5 If we have iid returns every year and we want to maximize returns in
the very long term, what quantity should we maximize?
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Alternatives to Utility Stochastic Dominance

2.2 Stochastic Dominance

Learning objectives

Dominance

First order stochastic dominance

Second order stochastic dominance

Third order stochastic dominance

Questions
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Alternatives to Utility Stochastic Dominance

Learning objectives

define dominance, first order stochastic dominance, and second order
stochastic dominance,

relate dominance and efficiency,

use stochastic dominance to show that investments are preferred by
certain classes of rational investors,

solve problems using first, second and third order stochastic
dominance.
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Alternatives to Utility Stochastic Dominance

Motivation

We have developed various methods of comparing investments. These
include

mean-variance efficiency,

safety first criteria,

expected utility,

geometric means.

There are other methodologies...

We now introduce the dominance approach which requires only very
weak assumptions on the investor, but strong assumptions on the
investments.

OBS: With SD we can get away from the fact that mean-variance
analysis penalizes upside variance as well as downside variance.
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Alternatives to Utility Stochastic Dominance

Dominance

Suppose, we have portfolios with returns RX and RY with the same
initial value W0, and suppose that always

WX ≤WY ,

at the end of the investment period.

One would never prefer X to Y .
We can say that Y dominates (or is dominant to) X .

Suppose we now add on the hypothesis that

Pr(WX <WY ) > 0.

Clearly any investor who prefers more to less would prefer Y to X .
We then say that Y is strictly dominantes X .
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Alternatives to Utility Stochastic Dominance

Dominance versus efficiency

Although Y is preferred to X , it need not be more efficient than X .

Example:

X returns 0 always,

Y returns 0 with probability 0.99,

Y returns 100 with probability 0.01.

Investment Y is higher in both mean and variance, so efficiency says
nothing.

OBS: Note that S(Y ) > 0, so switching to semi-variance would not help.
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Alternatives to Utility Stochastic Dominance

First-order stochastic Dominance (FOSD)

Suppose we have two portfolios with returns Y and Z .

Suppose they have the same cumulative distribution functions for
their returns, i.e., for all real numbers a,

Pr(RY ≤ a) = Pr(RZ ≤ a).

We would not be able to distinguish them using any of our
methodologies, since they all are based purely on functionals of our
estimates of their probability distributions. =⇒ We would be
indifferent between them.

If Y is strictly dominant to X , and we are indifferent between Y and
Z , then we should prefer Z to X .

This is the idea behind stochastic dominance.

We do not even need Y to exist, merely that such a hypothetical Y
could exist is enough.
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Alternatives to Utility Stochastic Dominance

The definition of FOSD

Definition

Z has first-order stochastic dominance (FOSD) over X if

Pr(RX ≤ a) ≥ Pr(RZ ≤ a), for all a,

Pr(RX ≤ b) > Pr(RZ ≤ b), for some b.

OBS: Note that this says nothing about Pr(RX ≤ RZ ).
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Alternatives to Utility Stochastic Dominance

Example 1: FOSD
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Alternatives to Utility Stochastic Dominance

Example 2: FOSD

Suppose we have

Probability Jetstar Exxon

0.2 15 10
0.2 14 10
0.2 13 12
0.2 12 14
0.2 10 15

⇒

R Jetstar Exxon

9 0 0
10 0.2 0.4
11 0.2 0.4
12 0.4 0.6
13 0.6 0.6
14 0.8 0.8
15 1 1
16 1 1

Clearly, there is no simple relationship between the returns of the two
companies.

The cumulative distribution function of Exxon is always at least as big
as Jetstar’s and sometimes bigger.

We have FOSD of Jetstar over Exxon!
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Alternatives to Utility Stochastic Dominance

FOSD theorem

Theorem

If portfolios X and Y have returns RX and RY and the investor has a
utility function U with U ′(s) > 0 for all s, and the cumulative probabilities
satisfy

Pr(RX ≤ a) ≤ Pr(RY ≤ a) for all a,

Pr(RX ≤ b) < Pr(RY ≤ b) for some b,

then X will be preferred to Y .
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Alternatives to Utility Stochastic Dominance

The proof

Notation:

We will write

FX (a) =Pr(RX ≤ a),

FY (a) =Pr(RY ≤ a).

We will also assume the distributions are continuous and

FX (a) =

∫ a

−∞
fX (s)ds.

So
fX (a) = F

′
X (a),

and fX is the density of RX . We make the analogous assumptions for Y .
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Alternatives to Utility Stochastic Dominance

The proof

Simplifying assumptions:

For simplicity, we assume that fX (s) = fY (s) = 0, for |s| ≥ K , This
implies

FX (−K ) = FY (−K ) = 0,

and
FX (K ) = FY (K ) = 1.

We will use integration by parts, for any u, v :

b∫
a

u(s)v ′(s)ds = u(b)v(b)− u(a)v(a)−
b∫

a

u′(s)v(s)ds.
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Alternatives to Utility Stochastic Dominance

The proof

If the initial wealth is W0, if we invest all our money X , after a year we
have

W0(1 + RX ).

The expected utility of investing in X is therefore

E(U(W0(1 + RX ))) =

∫ K

−K
U(W0(1 + s))fX (s)ds,

=

∫ K

−K
U(W0(1 + s))

d

ds
FX (s)ds.
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Alternatives to Utility Stochastic Dominance

The proof

Integration by parts:

Our hypotheses are on FX and U ′ so we need to move the derivative onto
U.

We Integrate by parts, with u(s) = U(W0(1 + s)), and v(s) = FX (s).
Since

u′(s) = W0U
′(W0(1 + s)),

we get∫ K

−K
U(W0(1 + s))

d

ds
FX (s)ds

= U(W0(1 + K ))−
∫ K

−K
W0U

′(W0(1 + s))FX (s)ds
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Alternatives to Utility Stochastic Dominance

The proof

Doing the same for Y and subtracting, we get

E(U(X ))− E(U(Y )) =

−
∫ K

−K
W0U

′(W0(1 + s))(FX (s)− FY (s))ds.

Since the derivative of U is positive and FX (s)− FY (s) is non-positive and
sometimes negative, we have that the difference in expected utilities is
positive and we are done. �
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Alternatives to Utility Stochastic Dominance

FOSD and means

Suppose we apply our result to the simplest increasing utility function:

U(W ) = W .

If X first-order stochastically dominates Y , we have by our theorem

E(1 + RX ) = E(U(1 + RX )) > E(U(1 + RY )) = E(1 + RY ).

This means that FOSD =⇒ a greater expected value.

Turning this round, if two portfolios have the same expected return,
FOSD cannot help us distinguish them.

Q: What is the risk profile of an investor with the above utility function?
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Alternatives to Utility Stochastic Dominance

FOSD versus efficiency
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Alternatives to Utility Second order stochastic dominance

Second-order stochastic dominance (SOSD)

The first-order stochastic dominance preference theorem only assumes
that the investor prefers more to less.

It does not assume risk aversion.

It therefore cannot help us to take risk into account when choosing
investments.

⇓
It is unlikely that investments satisfy such a strong hypothesis.

We can weaken the assumption on the returns at the cost of
strengthening the assumption on utility.
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Alternatives to Utility Second order stochastic dominance

SOSD theorem

Theorem

If portfolios X and Y have returns RX and RY , and the investor has a
utility function U with

U ′(s) > 0, U ′′(s) < 0,

for all s, and the cumulative probabilities satisfy∫ a

−∞
Pr(RX ≤ s)ds ≤

∫ a

−∞
Pr(RY ≤ s)ds for all a,

∫ b

−∞
Pr(RX ≤ s)ds <

∫ b

−∞
Pr(RY ≤ s)ds for some b,

then X will be preferred to Y .
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Alternatives to Utility Second order stochastic dominance

FOSD versus SOSD

HW: Prove SOSD theorem.

FOSD makes assumptions about cumulative distribution functions
and requires the investor to:

prefer more to less.

SOSD makes assumptions about the integral of the cumulative
distribution functions and requires the investor to:

prefer more to less, and
to be risk averse.

OBS: So, FOSD requires a stronger assumption on assets but needs
weaker assumptions on investors.
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Alternatives to Utility Second order stochastic dominance

FOSD versus SOSD

If X is first-order stochastic dominant to Y , then it is also second-order
stochastic dominant.

FOSD =⇒ SOSD

This is easy to prove: simply integrate!

Pr(RX ≤ a) ≤ Pr(RY ≤ a) for all a and,

Pr(RX ≤ b) < Pr(RY ≤ b) for some b.

OBS: So, SOSD is a weaker condition than FOSD.
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Alternatives to Utility Second order stochastic dominance

Using SOSD

When dealing with discrete random variables, we must replace
integrals with sums.

We simply have to compute the sums of the sums of the probability
that each value is taken, provided the values are uniformly spaced.

If they are not uniformly spaced, we either have to use a finer
subdivision to make them uniformly spaced, or to multiply the values
by the distances between them; this reflects the fact that we are
integrating step functions.
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Alternatives to Utility Second order stochastic dominance

Example 3: SOSD
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Alternatives to Utility Second order stochastic dominance

Example 3: SOSD
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Alternatives to Utility Second order stochastic dominance

SOSD and means

Q: If X SOSD Y , what can we say about their mean returns?

We compute

E(RX ) =

∫ K

−K
s fX (s)ds,

=FX (K )K −
∫ K

−K
FX (s)ds,

=K − F̃X (K ).

We assumed that F̃X (K ) ≤ F̃Y (K ), so

E(RX ) ≥ E(RY ).
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Alternatives to Utility Second order stochastic dominance

SOSD and means

This means that we can use second order stochastic dominance to
distinguish between investments with the same mean.

However, it will never tell us to prefer an investment with lower
expected return because it is less risky.

This is inevitable since we have made no assumptions about how risk
averse the investor is. They may have a tiny risk aversion or a huge
one.
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Alternatives to Utility Second order stochastic dominance

Third-order dominance

We can go one comparing now integrals of F̃X with F̃Y .

In discrete time that would mean computing the sums of the sums of
the cumulative probabilities.

And we already know lower order stochastic dominances imply higher
order dominances.

So, we only need to do it until we find the lowest possible stochastic
dominance.
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Alternatives to Utility Second order stochastic dominance

TOSD theorem

Theorem

If portfolios X and Y have returns RX and RY , and the investor has a
utility function U with

U ′(s) > 0, U ′′(s) < 0, and ARA′(s) < 0

for all s, where ARA(s) = −U′′(s)
U(s) , and the integral of the cumulative

probabilities F̃X , F̃Y satisfy∫ a

−∞
F̃X (s)ds ≤

∫ a

−∞
F̃Y (s)ds for all a,

∫ b

−∞
F̃X (s)ds <

∫ b

−∞
F̃Y (s)ds for some b,

then X will be preferred to Y .
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Alternatives to Utility Second order stochastic dominance

SD notation

Comparing

FX (a) =

∫ a

−∞
fX (s)ds, to FY (a) =

∫ a

−∞
fY (s)ds =⇒ FOSD

F̃X (a) =

∫ a

−∞
FX (s)ds, to F̃Y (a) =

∫ a

−∞
FY (s)ds =⇒ SOSD

˜̃FX (a) =

∫ a

−∞
F̃X (s)ds to ˜̃FY (a) =

∫ a

−∞
F̃Y (s)ds =⇒ TOSD

fX (a) = F
′
X (a) FX (a) = F̃

′
X (a) F̃X (a) = ˜̃F

′
X (a)

fY (a) = F
′
Y (a) FY (a) = F̃

′
Y (a) F̃Y (a) = ˜̃F

′
Y (a)

Recall
FOSD =⇒ SOSD =⇒ TOSD =⇒ etc .

Raquel M. Gaspar Financial Markets and Investments ISEG – ULisboa 123 / 150



Alternatives to Utility Second order stochastic dominance

Example 3 (revisited...we know there is a TOSD)
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Alternatives to Utility Second order stochastic dominance

Higher-order dominance

We can keep on integrating by parts.

Each time, we get more and more conditions on higher and
higher-order derivatives of U.

We get conditions on iterated integrals of the cumulative distribution
functions and so on.

Recall, however,

when using utility functions we profiled investors up to their absolute
and relative risk aversion, only.

We did not look into higher order derivatives of the utility function U.

So, any stochastic dominance of order higher than the third would be
hard to interpret.
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Alternatives to Utility Second order stochastic dominance

Interpretation summary

For higher orders we loose financial intuition ...
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Alternatives to Utility Second order stochastic dominance

Example 4

Compare X and Y using:

stochastic dominance,
long-term growth rate,
safety criteria of Roy, Kataoka and Telser
(with RL = 7, α = 0.25, when applicable)

mean-variance efficiency.

X Y

return probability return probability
5 0.1 5 0.1
6 0.3 6 0.1
8 0.1 7 0.1
9 0.2 8 0.3

12 0.3 10 0.1
11 0.3
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Alternatives to Utility Second order stochastic dominance

Example 4

To tackle this problem, we build a table.

Each row is

a possible return from either investment, in increasing order,

its probability for each investment,

its cumulative probability for each investment,

the sum of the cumulative probabilities for each investment from
higher rows.

We include log(1 + R), and R2 to compute expected long-term
growth and the variance of R.
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Alternatives to Utility Second order stochastic dominance

Example 4

R log(1+R) R2 fX FX F̃X fY FY F̃Y
2 0.020 4 0 0 0 0 0 0
3 0.030 9 0 0 0 0 0 0
4 0.039 16 0 0 0 0 0 0
5 0.049 25 0.1 0.1 0 0.1 0.1 0
6 0.058 36 0.3 0.4 0.1 0.1 0.2 0.1
7 0.068 49 0 0.4 0.5 0.1 0.3 0.3
8 0.077 64 0.1 0.5 0.9 0.3 0.6 0.6
9 0.086 81 0.2 0.7 1.4 0 0.6 1.2

10 0.095 100 0 0.7 2.1 0.1 0.7 1.8
11 0.104 121 0 0.7 2.8 0.3 1 2.5
12 0.113 144 0.3 1 3.5 0 1 3.5

. . . no need to go on to ˜̃FX ,
˜̃FY !
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Alternatives to Utility Second order stochastic dominance

Example 4

We can also compute using the table:

mean RX 8.5 mean RY 8.5
variance RX 6.85 variance RY 4.25

E(log(1 + RX )) 0.08129 E(log(1 + RY )) 0.08140
Pr(RX < 7%) 0.4 Pr(RY < 7%) 0.2

RL(X ) 6 RL(Y ) 7

SOSD: Y � X

long-term growth rate: Y � X

safety criteria of Roy, Kataoka and Telser: Y � X
(where X does not satisfy Telser condition)

mean-variance efficiency: Y � X

OBS: In this case it is not surprising we always get Y � X . Q:Why?
In general this does not need to be the case.
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Alternatives to Utility Second order stochastic dominance

Theory questions

1 What does it mean for an investment to be dominant, first order,
second order or third order stochastically dominant over another
investment?

2 If X is dominant to Y , must it be more efficient in a mean-variance
sense?

3 Under reasonable assumptions which should be stated clearly, prove
that a portfolio that FOSD another investment will be preferred.

4 Does FOSD imply SOSD? Justify your answer. What about the other
way round?

5 If X FOSD Y , what can we say about their expected returns? What
about SOSD? Justify your answers.

6 Financially interpret TOSD.

7 Why stochastic dominance analysis typically stops at third-order
dominances?
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Alternatives to Utility Risk Measures

2.3 Risk Measures

Learning Objectives

Value-at-risk (VaR)

Conditional expected shortfall (CES)

Connection of risk measures with safety first criteria and utility

Questions
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Alternatives to Utility Risk Measures

Learning objectives

Discuss shortcomings of variance as a risk measure.

Define value at risk (VAR).

Find the VAR of simple portfolios.

Define monotonicity and show that VAR is monotone.

Discuss the shortcomings of VAR.

Define an excess and be able to compute with the distribution of
excesses.

Relate kurtosis to VAR.

Define conditional expected shortfall and expected shortfall.

Relate utility functions to risk-measures.
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Alternatives to Utility Risk Measures

Value-at-Risk (VaR)

VaR = Value-at-Risk

This is the most popular measure used for controlling trading risk in
the finance industry.

Its essence is the idea of how much or more can we lose with some
probability, for example, five percent or one percent in one day.

Capital adequacy rules are sometimes based on 0.03 percent across a
year.

VaR is usually expressed in terms of wealth losses rather than returns.
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Alternatives to Utility Risk Measures

Defining VAR

If the value of our portfolio today is V0 and at time t is Vt .

The losses over the time interval (0, t) can be defined as:

Lt = V0 − Vt .

The VaR at probability p for time period t is the value x such that

Pr(Lt > x) = p.

By convention, we always take VaR to be positive or zero. So if at
probability p we make money, we will set the VaR to be zero.

OBS: VaR is many times defined in terms of 1− p, instead. So, at the 95
percent level or 99 percent level.
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Alternatives to Utility Risk Measures

Discrete distributions

The previous definition always works for losses with continuous
distribution functions.

Whenever we have discrete distributions there may not be a level x at
which the probability of losing x or more is precisely p.

However, there will be a level at which the probability jumps across p
and we use that instead.

I.e., in general the VaR at probability p for time period t is the lowest
value x satisfying

Pr(Lt > x) ≤ p.

HW: Establish a relationship between the safety criteria of Kataoka
(defined in terms of returns) and VaR (defined in terms of wealth losses).
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Alternatives to Utility Risk Measures

Example: Value-at-Risk

A portfolio A loses 10 million with probability 0.005, loses 5 million with
probability 0.02, loses 1 million with probability 0.05. Otherwise, it makes
1 million dollars. Find the VAR at 1 and 5 percent levels.

We have as possible losses {−1, 1, 5, 10} million (negative loss is a gain)

P(Lt > 10) =0

P(Lt > 5) =0.005,

· · ·0.01 · · ·
P(Lt > 1) =0.025 = 0.02 + 0.005

· · ·0.05 · · ·
P(Lt > −1) =0.075 = 0.005 + 0.02 + 0.05.

The one percent VaR level is thus 5 million.
Similarly, the 5 percent VaR level is 1 million.
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Alternatives to Utility Risk Measures

VaR: monotonicity

For each proposed risk measure, we can assess its properties:

1 One important property is monotonicity: if two portfolios are of the
same value and one portfolio always returns more than the other,
then it has less risk.

OBS: A risk measure should be monotone. This property holds for VaR
but not for variance.
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Alternatives to Utility Risk Measures

VaR: monotonicity

Proof. Consider the values of two portfolios V and W . Suppose

W0 = V0, Wt ≥ Vt . =⇒ −Vt ≥ −Wt .

Let LV be the losses for V and LW for W . We then have

LV = V0 − Vt ≥W0 −Wt = LW .

So if
P(LW > x) = p,

then
P(LV > x) ≥ p,

So the VaR for V is at least the VaR for W . �
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Alternatives to Utility Risk Measures

VaR: insensitivity beyond p

2 One problem with VaR is its insensitivity beyond p. I.e., it does not
pick up what happens beyond level p.

For example, asset A is worth 1 and at time t{
1.05 with probability 0.9,

0.9 with probability 0.1

whereas B is worth 1 and at time t{
1.1 with probability 0.99,

0 with probability 0.01

If we work at a 5% VaR level, B has no risk – its VAR is negative which
we take to be zero. But A has a VAR of 0.1.
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Alternatives to Utility Risk Measures

VaR: not sub-additive

Sub-additivity:

An intuitive and desirable property of risk measures is that the sum of the
risks of two portfolios considered separately should be more than or equal
to that of the two portfolios considered together.

So if ta risk-measure is called ω, we should have

ω(X + Y ) ≤ ω(X ) + ω(Y ).

=> We do NOT require equality because, X and Y could be natural
hedges that is have negative correlation. An extreme case is Y = −X , in
that case X + Y has no risk.
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Alternatives to Utility Risk Measures

VaR: not sub-additive

3 Unfortunately VaR is not sub-additive !

If we needed to show VaR were sub-additive, we needed to show it would
hold for all pairs of portfolios. So to show it is not, we need to construct
one example in which it fails.

Proof.

Suppose assets C and D are independent and worth 1 initially. Each is
worth {

1.1 with probability 0.96,

0.5 with probability 0.04

What is the VaR at 5% for each individually and for both together?
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Alternatives to Utility Risk Measures

VaR: not sub-additive

Clearly, each has zero VaR when considered on its own. What about
together?

Initial value is 2. Final values
2.2 with probability 0.962,

1.1 + 0.5 = 1.6 with probability 2 ∗ 0.96 ∗ 0.04,

1 with probability 0.042.

The VaR is
2− 1.6 = 0.4 > 0 + 0.

So sub-additivity fails. �
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Alternatives to Utility Risk Measures

VaR: excesses

Suppose we are market risk managers and we monitor a portfolio with
5% daily VaR (i.e. for the time period of a day) for 220 trading days.

We would expect the daily losses to exceed the VaR level a number of
times if the VaR is correct.

Concretely, we would expect excesses about 5% of the days

220× 0.05 = 11.

If there are a lot more we should be worried.

If there are a lot less our estimation of VAR is probably too
conservative and we should be worried too! Q: Why?

If we monitor at level p for N periods, we can compute the probability
distribution of excesses as it is simply binomial.

The probability of zero excesses in the example above is (1− 0.05)220.
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Alternatives to Utility Risk Measures

VaR: Normal distribution

One easy to estimate VaR is to assume asset values are normal or
log-normal.

Suppose the portfolio losses have mean µ and standard deviation σ
for the time period t.
One can then just read the VaR off a normal distribution table.
Let z denote a normal random variable with mean 0 and variance 1,
and then let Φ(·) be the cumulative distribution.
Let

z(1−p) = Φ−1(1− p)

with p the VaR-level, then the VaR is the value x,

x = µ+ σz(1−p).

OBS: Normal VAR is easy, but why bother? A normal distribution is
summarised by its mean and variance so using does VAR not add anything.
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Alternatives to Utility Risk Measures

VaR: fat tails

Distributions in finance often have fat tails, that is the probability of
being far from the mean is greater than that for a normal distribution
with the same mean and variance.

This can often be summarized by looking at the kurtosis or fourth
moment:

E((X − µ)4)

Var(X )2
.

For a normal distribution, this is equal to three. For fat-tailed
distributions it will be higher.

A normal approximation to a fat-tailed distribution will lead to VaR
numbers that are too low, as the probability of large moves is
underestimated.
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Alternatives to Utility Risk Measures

Conditional expected shortfall (CES)

Because of the short-comings of VaR, one alternative that has been
suggested is CES, also known as “tail-VaR”.

Here we take the expected losses given that we are in the worst part
of the distribution.

So the CES at level p for a time period t is

E(Lt |Lt > VARp(Lt)) .

This has a number of nice properties including sub-additivity, that is
the CES of the sum of two portfolios is less than or equal to the sum
of the two CESs.

We have also easy expressions if we rely in the Normal distribution.

OBS: Although mathematicians prefer CES, regulators prefer VAR for
historical reasons, ... up to now!
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Alternatives to Utility Risk Measures

Short fall

A simplification of CES is to simply use shortfall below a given fixed level,
x , so we take

E(Lt |Lt > x).

This has the virtue of simplicity without penalising upside risk.

Its big virtue is that it is easy to explain.
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Alternatives to Utility Risk Measures

Risk-measures and utility

We have previously seen that mean-variance efficiency analysis corresponds
to using quadratic utility functions (or a 2nd order Taylor approximations
of other utility functions).

Q: What about other risk measures?

Short fall – a discontinuous utility function that doesn’t look at
anything above x .

Semi-variances – a utility function that is linear above the expectation
and quadratic below it.

VAR – does not naturally correspond to a utility function.

CES – does not naturally correspond to a utility function.
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Alternatives to Utility Risk Measures

Theory questions

Define value at risk.

What does it mean for a risk-measure to be sub-additive? Prove or
disprove that each of VAR and variance is sub-additive.

What does it mean for a risk-measure to be monotone? Prove or
disprove that each of VAR and variance is monotone.

What does it mean for a distribution to be fat-tailed? How will the
VAR of such a distribution compare to that of a normal distribution?

What is a VAR excess? What form does the distribution of the
number of excess over a fixed period of time take?

If we change the size of a loss below the VAR level, what effect will it
have on the VAR?

For each of the following risk-measuares, discuss how they relate to
utility functions: short fall, semi-variance, VAR, CES.
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