

Aula 12:

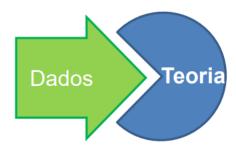
'A Nossa Política de GRH está a ter os Resultados Esperados?'

Modelo Geral de Equações Estruturais (MARÔCO, 2013)

Docente: Daniela Craveiro dcraveiro@iseg.ulisboa.pt

Objetivos da Aula

- Parte Teórica
 - Introdução aos modelos de equações estruturais
- Parte Prática
 - Saber implementar os estudo dos pressupostos do modelo no SPSS



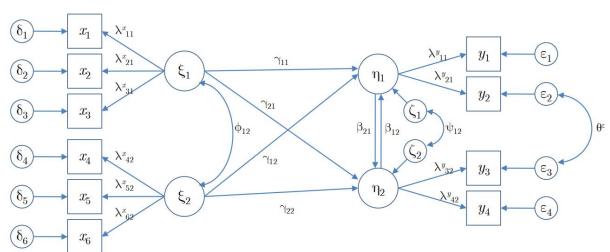
MODELOS DE EQUAÇÕES ESTRUTURAIS (Structural Equation Modelling):

extensão dos modelos GLM; técnica de modelação generalizada, para testar a validade de modelos teóricos.

Segue uma abordagem diferente:

Estatística Clássica:

- 1. Qual o modelo que descreve os dados observados? Método Exploratório
- 2. Dados levam à dedução de Teorias
- 3. Novos dados, novas teorias


- 1. Poderá este modelo explicar/gerar os dados observados? Método Confirmatório
- 2. A teoria é o "motor" do processo
- 3. Teorias diferentes podem ser testadas por formalização e avaliação de modelos distintos

MODELOS DE EQUAÇÕES ESTRUTURAIS

Vantagens face às abordagens clássicas

- 1. Inclui no modelo variáveis latentes e manifestas (e o erro previsto)
- 2. Permite testar modelos complexos com vários tipo de variável e de relações (Permite testar ajustamento global de modelos e significância individual de parâmetros num enquadramento teórico que engloba vários tipos de modelos lineares)
- 3. Softwares intuitivos AMOS e SMART PLUS

AS VARIÁVEIS

- Variáveis manifestas ou variáveis observadas: São variáveis medidas, manipuladas ou observadas diretamente.
- Variáveis latentes, fatores ou constructos: São variáveis não diretamente observáveis ou mensuráveis, sendo a sua existência indicada pela sua manifestação em variáveis indicadoras ou manifestas.
- Variáveis independentes ou exógenas: as causas destas variáveis residem fora do modelo, i.e. não são influenciadas por nenhuma outra variável no modelo.
- Variáveis dependentes ou endógenas: as causas da variação destas variáveis residem no modelo, i.e. a variação destas variáveis é explicada por variáveis presentes no modelo

AS COMPONENTES

- Modelo de Medida: define a forma como os constructos hipotéticos ou variáveis latentes são operacionalizados pelas variáveis observadas ou manifestas
- Modelo Estrutural : define as relações causais ou de associação entre as variáveis latentes
- Formalmente:

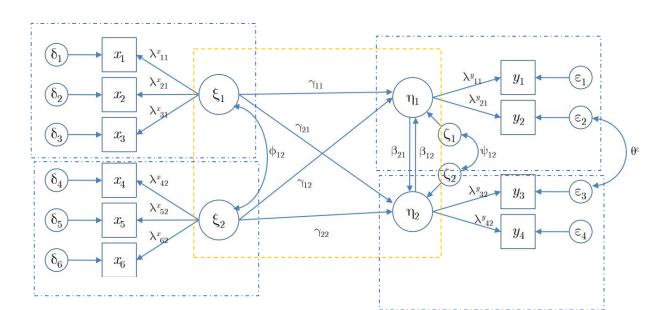
Modelo de Medida:

v.d.: $\mathbf{y} = \mathbf{\Lambda}_{_{\boldsymbol{y}}} \boldsymbol{\eta} + \boldsymbol{arepsilon}$

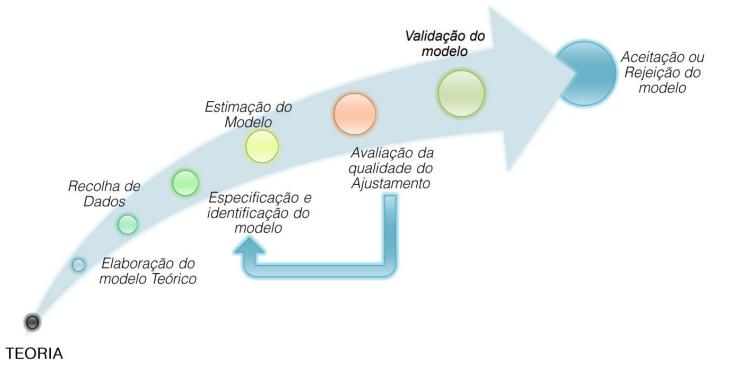
V.i.: $\mathbf{x} = \mathbf{\Lambda}_{_{x}} \boldsymbol{\xi} + \boldsymbol{\delta}$

Modelo Estrutural:

$$\eta = \mathbf{B} \eta + \Gamma \xi + \zeta$$

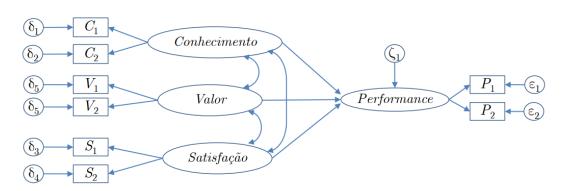

assumindo que (pressupostos):

- a. ϵ e η são independentes
- b. δ e ξ são independentes
- c. ζ e ξ são independentes
- d. ζ , ϵ e δ são mutuamente independentes
- e. Os valores esperados dos erros é 0.
- f. B_{ii} =0 (uma v.d. não é causa e efeito dela mesmo) e (I-B) é não singular (i.e. tem inversa)


AS COMPONENTES

- Modelo de Medida: define a forma como os constructos hipotéticos ou variáveis latentes são operacionalizados pelas variáveis observadas ou manifestas - . -
- Modelo Estrutural: define as relações causais ou de associação entre as variáveis latentes -
- Graficamente:

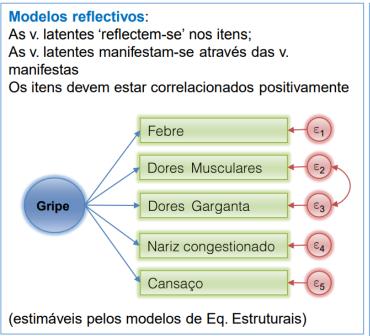
A ESTRATÉGIA

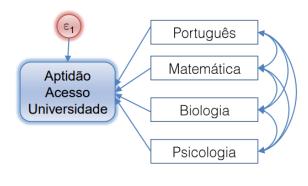


1. DEFINIR O MODELO TEÓRICO

 "Desenho" formal do modelo, que ilustra as hipóteses sobre o modelo de medida e sobre o modelo estrutural:

Decidir:


Que variáveis manifestas operacionalizam que variáveis latentes; erros correlacionados?
 Que relações causais entre v. latentes e/ou v. manifestas devem ser incluídas / excluídas?
 Que associações (não-causais) devem ser incluídas/omitidas do modelo?

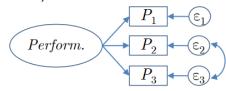

2. ESPECIFICAÇÃO

- Uma das etapas mais complexas...
- Implica tomar decisões e assumir alguns pressupostos
- Em primeiro lugar temos de definir que tipo de modelo de medida: Modelo reflectivo ou formativo?

Modelos formativos:

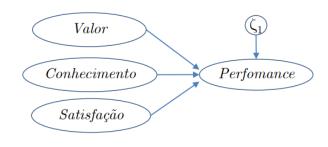
As 'v. latentes' são 'formadas' pelas manifestas; Os itens podem estar ou não correlacionados, positivamente ou negativamente

(Esta Aptidão de Acesso Univ. não é verdadeiramente latente, já que é uma combinação de v. manifestas (média ponderada). Não é estimável com AEE, mas sim com PLS)


2. ESPECIFICAÇÃO

- Uma das etapas mais complexas...
- Implica tomar decisões e assumir alguns pressupostos
- Depois identificar as ligações, erros e possíveis associações com base nas decisões (os softwares ajudam nesta definição de parâmetros)

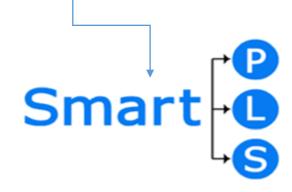
Algumas 'regras' de especificação:


Modelo de Medida (AFC)

- 1. Factores comuns latentes (ξ) causam as v. manifestas (x_1, \ldots, x_i). O comportamento das v. manifestas resulta da manifestação dos factores latentes;
- 2. A variância das v. manifestas (e.g. erros de medida) que não é explicada pelos factores comuns latentes é explicado por factores específicos latentes ($\varepsilon_1,...,\varepsilon_i$);
- Os erros de medida são geralmente independentes (mas podem estar correlacionados indicando uma fonte de variação comum dos itens não explicada pelos factores comuns presentes no modelo).

Modelo Estrutural (RL)

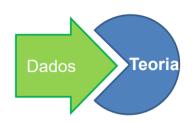
- As relações são 'desenhadas' de causapara-efeito
- A variância da v. exógenasnão explicada pela combinação das v. endógenas é explicada por 'erros' (Disturbances ou Perturbações)


3. ESTIMAÇÃO

- Contrariamente ao paradigma clássico, nesta abordagem modelamos as matrizes de variânciascovariâncias (ou de correlações) das variáveis manifestas (não os dados individuais!)
- O objectivo da AEE é então encontrar um vector de estimativas dos parâmetros do modelo (q) que reproduza o melhor possível a matriz S das v. manifestas na população
- Os softwares de AEE utilizam um algoritmo iterativo que minimiza uma função da diferença

Métodos de ajustamento mais usados:

- Máxima verosimilhança (ML)
- Mínimos quadrados não-ponderados (ULS)
- Mínimos quadrados generalizados (GLS)
- Mínimos quadrados ponderados generalizados (WLS)
- Mínimos Quadrados Parciais (PLS)



3. AVALIAÇÃO DA QUALIDADE

- (1) Teste do Qui-quadrado
- (2) Índices de qualidade de ajustamento
- (3) Análise de resíduos, estimativa de parâmetros e fiabilidade individual de indicadores

Estatística Clássica:

- 1. Qual o modelo que descreve os dados observados? Método Exploratório
- 2. Dados levam à dedução de Teorias
- 3. Novos dados, novas teorias

- 1. Poderá este modelo explicar/gerar os dados observados? Método Confirmatório
- 2. A teoria é o "motor" do processo
- 3. Teorias diferentes podem ser testadas por formalização e avaliação de modelos distintos

3. AVALIAÇÃO DA QUALIDADE

(1) Teste do Qui-quadrado

Hipótese nula: a matriz de covariância populacional é igual à matriz de covariância estimada pelo modelo

Queremos aceitar a hipótese nula, neste caso

Devemos reportar mas não é bom indicador :

Muito sensível à dimensão da amostra (amostras pequenas: raramente rejeita H0, Amostras grandes: Rejeita quase sempre H0) Muito sensível à violação da normalidade multivariada (com risco de rejeição de bons modelos e aceitação de modelos maus!)

3. AVALIAÇÃO DA QUALIDADE

(2) Índices de qualidade de ajustamento

Avaliam a distância relativa entre a matriz dos dados e a matriz da população.

Existem centenas! Tipos de indicadores

- A. Índices Absolutos: Avaliam a qualidade do modelo per se, sem comparação com outros modelos: RMR, GFI
- **B. Índices Relativo**s: Avaliam a qualidade do modelo sob teste relativamente ao modelo com pior ajustamento (mod independência) ou melhor possível (mod saturado): NFI, CFI C
- C. Índices de Parcimónia: Índices relativos que incluem uma penalização devida à complexidade do modelo: AGFI, PGFI, PCFI
- D. Índices baseados na teoria da informação:
 Apropriados para comparar vários modelos
 alternativos que ajustem aos dados (AIC, BIC, ECVI)

3. AVALIAÇÃO DA QUALIDADE (2)

(2) Índices de qualidade de ajustamento

Avaliam a distância relativa entre a matriz dos dados e a matriz da população.

Índices recomendados de acordo com Marôco, 2013

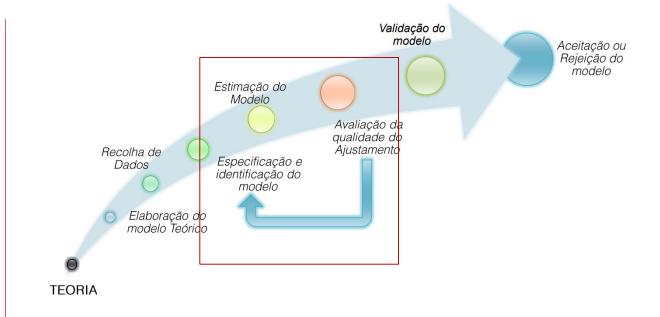
Estatística	Valores de Referência
X² e p-value (H₀: O Ajustamento é perfeito)	Quanto menor melhor
(Macro do AMOS: \cmin; \p)	p>0.05
X²/df (Macro do AMOS: \cmindf)	< 5 – ajustamento sofrível
	≤ 2 - ajustamento aceitável
	~ 1 – ajustamento bom
CFI (Macro do AMOS: \cfi)	<0.8 – ajustamento mau
GFI (Macro do AMOS: \gfi)	[0.8;0.9[- ajustamento sofrível
	≥ 0.9 – ajustamento muito bom
PGFI (Macro do AMOS: \pcfi)	< 0.6 – Ajustamento mau
PCFI (Macro do AMOS: \gfi)	[06; 0.8[- Ajustamento bom
	≥0.8 – Ajustamento muito bom
RMSEA (com I.C. 90%)	> 0.10 - Inaceitável
e]0.05;0.10] – ajustamento sofrível
p-value (H ₀ : rmsea≤0.05)	≤0.05 – ajustamento bom
(Macro do AMOS: \rmsea; \pclose)	p-value ≥0.05 (≥0.5 segundo Jöreskog)
AIC (Macro do AMOS: \aic)	Só para comparar modelos
ECVI (Macro do AMOS: \ecvi)	Quanto menor, melhor

3. AVALIAÇÃO DA QUALIDADE (3)

(2)) Análise de resíduos, estimativa de parâmetros e fiabilidade individual de indicadores

Ou seja: O modelo pode ter um bom ajustamento global, mas ainda assim apresentar um mau ajustamento local. Para fazer o diagnóstico de possíveis problemas locais:

- A. Avaliar os resíduos estandardizados (problemas: resíduos > 2, outliers)
- B. Avaliar os erros-padrão assimptóticos dos parâmetros do modelo e sua significância (problemas: erros-padrão superiores (2x) à estimativa do parâmetro; parâmetros não significativos)
- C. Fiabilidade individual dos indicadores/manifestas (problemas: Valores de R² <,025)



3. AVALIAÇÃO DA QUALIDADE (4)

(2) E se a qualidade não for boa??

É prática corrente, modificar o modelo eliminando vias não significativas, libertando parâmetros anteriormente fixos, fixando parâmetros anteriormente livres, correlacionar erros, ...

Os softwares também dão outras pistas: Índices de modificação!

- Marôco recomenda apenas alterar •
 o modelo se houver fundamentos
 teóricos para + MI > 11
- *A atualização do modelos deve ser feita sequencialmente, começando por libertar o parâmetro com maior MI

3. AVALIAÇÃO DA QUALIDADE (4)

(2) E se a qualidade não for boa??

É prática corrente, modificar o modelo eliminando vias não significativas, libertando parâmetros anteriormente fixos, fixando parâmetros anteriormente livres, correlacionar erros, ...

Os softwares também dão outras pistas: Índices de modificação!

Maroco recomenda apenas alterar o modelo se houver fundamentos teóricos para o fazer e/ou de MI > 11

A atualização do modelos deve ser feita sequencialmente, começando por libertar o parâmetro com maior MI até chegar ao parâmetro de menor MI.

5. VALIDAÇÃO

Pressupostos

- 1. Normalidade multivariada
- 2. Linearidade: aplicado à matriz de correlações (entre manifestas)
- 3. Covariâncias amostrais não-nulas
- 4. Múltiplos indicadores para cada latente
- 5. Ausência de Multicolinearidade
- 6. Amostras de "grande" dimensão
- 7. Modelos sobre-identificados
- 8. Medida "forte"
- 9. Sem outliers

Pode ser avaliada com:

- 1. Assimetria (skewness "sk") e Curtose (kurtosis "ku") | Kline (1998): Valores de |Sk| < 3 |Ku| < 8
- 2. Gráficos de dispersão
- 3. Matriz de correlações (p<0,05)
- 4. Múltiplos indicadores | Modelo
- 5. Ausência de Multicolinearidade | VIF
- 6. N>200 400 ; 15 sujeitos por variável manifesta; 5 sujeitos por parâmetro a estimar
- 7. Medidas de ajustamento local
- 8. Escala (ordinal) deve ter pelo menos 5 pontos
- 9. AMOS testa a distância de Mahnalobis *Convém que p1

seja pequeno (0.05-0.10), e p2 seja grande (>0.05-0.10), caso contrário a observação deve ser um outlier multivariad

20

4. REPORTE

Recomendações:

- Reporte baseado nas estimativas estandardizadas
- Inclui informação sobre a variância explicada pelo modelo de medida (em geral e para cada item);
- Inclui informação sobre a variância explicada pelo modelo estrutural (em geral e para cada VD);
- Inclui representação visual do modelo

©Maroco

Análise Estatística

O modelo de moderação do Conhecimento prévio a matemática sobre a Motivação matemática e a influência destas variáveis na performance a matemática foi avaliado por intermédio de um modelo de equações estruturais com efeito de moderação. O factor latente de moderação foi definido pelo produto, em pares, dos itens reflexos dos factores 'Conhecimento Prévio' e 'Motivação Matemática'. O ajustamento do modelo de moderação foi efectuado em duas etapas: a primeira de validação do modelo de medida, e a 2ª de ajustamento do modelo de moderação. O ajustamento do modelo foi feito por recurso ao software AMOS (v. 17, SPSS Inc, Chicago, IL). Na avaliação da qualidade do ajustamento utilizaram-se os índices *CFI*, *GFI* e *PCFI*, *PGFI* tendo-se considerado que estes indicavam um bom ajustamento para valores superiores a 0.9 e 0.6, respectivamente. Utilizou-se também o *RMSEA* com I.C. a 90% e a probabilidade do *rmsea*≤0.05. Considerou-se que um I.C. para o *RMSEA* a 90% com limite superior inferior a 0.10 é indicador de um ajustamento razoável, e que o ajustamento é muito bom quando o limite superior do I.C. é inferior a 0.05 (Maroco, 2008). A significância do efeito de moderação foi avaliada com um teste à significância do coeficiente de trajectória associada ao efeito de moderação.

Resultados

A figura 1 ilustra as estimativas dos parâmetros quer do modelo de medida (pesos factoriais) quer do modelo estrutural de moderação. Observou-se um efeito de moderação do Conhecimento prévio sobre a Motivação matemática na performance a matemática ($\beta_{PM.CM*MM}=0.220$; p<0.001). Sendo o efeito de moderação positivo podemos afirmar que quanto maior for o conhecimento prévio maior será o efeito da motivação matemática sobre a performance a matemática. Observaram-se ainda efeitos directos do Conhecimento ($\beta_{PM.CM}=0.429$; p<0.001) e Motivação ($\beta_{PM.MM}=0.409$; p<0.001) estatisticamente significativos.

©Maroco

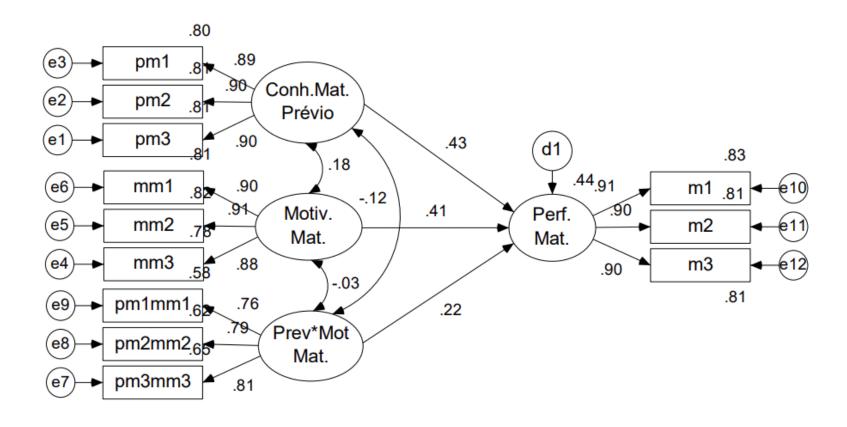
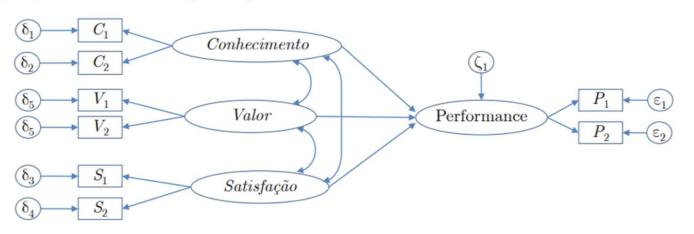


Figura 1. Modelo de moderação do conhecimento prévio sobre a motivação Matemática na performance a Matemática $(X^2/df=1.8;CFI=0.991;GFI=0.973;PCFI=0.721;PGFI=0.599$ e RMSEA=0.04; p=0.891;I.C. 90%]0.026; 0.053[)

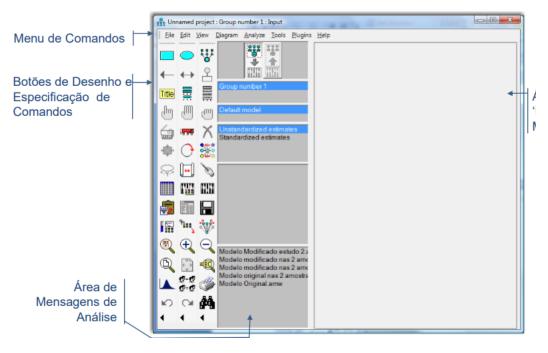


©Maroco

Objectivo:

Gerar um modelo com variáveis manifestas e latentes com o programa AMOS

Segundo Warren, White & Fuller, (1974) a performance de um conjunto de administradores de uma cooperativa agrícola é função de um conjunto de variáveis latentes que incluem o Conhecimento técnico, o Valor e a Satisfação dos gestores. Cada uma destas variáveis foi avaliada com um teste constituído por duas metades equivalentes. O modelo GEE proposto é ilustrado na figura seguinte:



Ajuste o sub-modelo de medida, e o modelo geral. Avalie a qualidade do ajustamento em cada uma das etapas.

1. Desenhar o modelo

©Maroco

Organização:

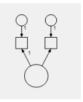
Botão	Função
	Desenhar variável manifesta
	Desenhar variável latente
332	Desenhar modelo de medida
←	Desenhar trajectória causal (Causa para efeito)
\leftrightarrow	Desenhar relação correlacional
2	Adicionar 'erros' às variáveis
9	Seleccionar um objecto
	Seleccionar todos os objectos
	De-seleccionar todos os objectos
	Copiar objecto
(3.5)	Mover objecto
X	Apagar objecto
1 SEC	Especificar propriedades dos objectos

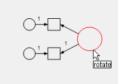
Desenhar o modelo

Botão	Função
(man)	Visualizar variáveis na base de dados
#	Visualizar variáveis no modelo
	Selecção do ficheiro de dados e grupos para análise multi-grupos
IIII	Especificação das propriedades da análise (método de estimação; outputs,)
	Calcular estimativas dos parâmetros e medidas de ajustamento do modelo
	Visualizar o Output com resultados da análise
900 100 100	Modo de 'Desenho' do modelo
900 1	Modo de 'Visualização' das estimativas dos Parâmetros e estatísticas de ajustamento
	Estimação Bayesiana
Ø=Ø	Análise Multi-grupos
đά	Pesquisa de Especificação (Specification search)

Estimar o modelo

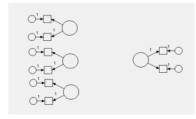
1. Desenhar o modelo

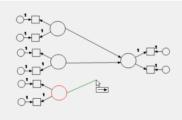

©Maroco

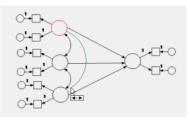

- ▶ Seleccione a ferramenta de desenho do modelo de medida 👑 . (O cursor, na área de desenho, passará de 🖟 para 👑)
- Clique, com o botão esquerdo na área de desenho, e arraste o cursor para desenhar um circulo com as dimensões apropriadas;
- Clique duas vezes com o botão esquerdo para adicionar 2 itens e respectivos erros

Nota: A ferramenta do modelo de medida, identifica por defeito uma trajectória da v. latente para o 1º item e as trajectórias dos erros para os itens, com o valor 1. Estes valores podem ser alterados posteriormente

▶ Rode os itens para o lado esquerdo usando o botão ○

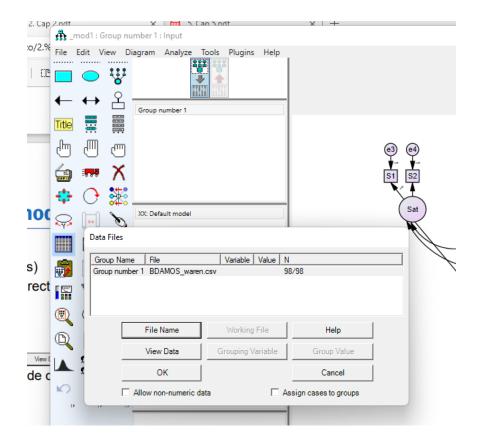


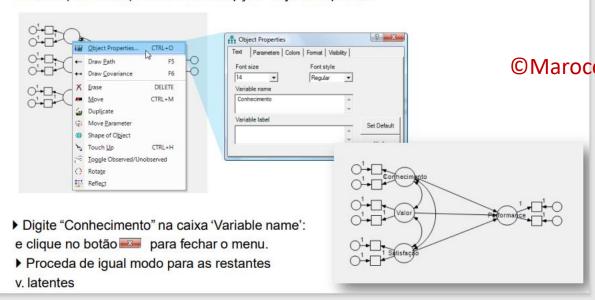




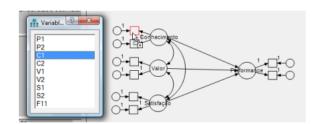
- Proceda de forma semelhante para os restantes factores:
- ▶ Desenhe as trajectórias causais entre os factores usando a ferramenta ←
- ▶ Desenhe as Correlações entre os factores usando a ferramenta

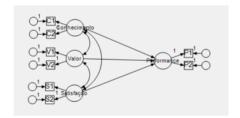
Nota: No AMOS text, as correlações entre factores latentes são assumidas por defeito, mas no AMOS graphics, WYSIWG e portanto estas têm de ser desenhadas!...





2. Identificar variáveis

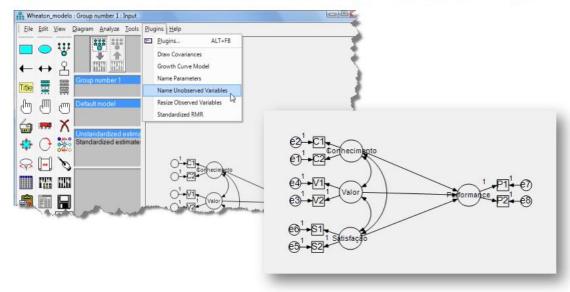

> Abrir o ficheiro de dados

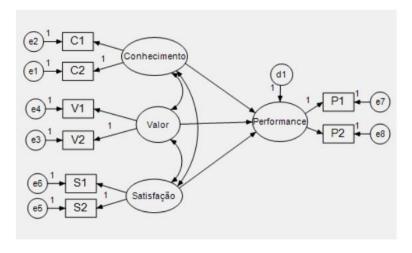


▶ Clique com o botão direito do rato em cada um dos círculos (v. latentes) e seleccione a opção 'Object Properties'

- ▶ Clique no botão 🚆 para listar as variáveis presentes na base de dados
- ▶ Clique em cada variável e, sem largar o botão esquerdo do rato, arraste-as até ao item correspondente:

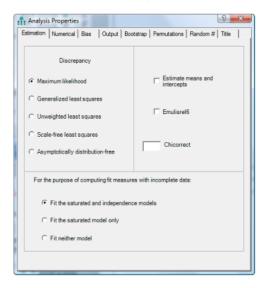
▶ Adicione o erro (Disturbance) da v.lantente 'Performance' (d1). Clique na ferramenta 🖺

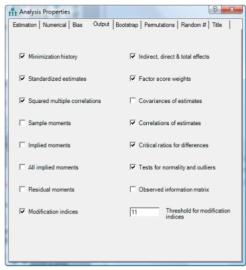

e clique em cima do 'circulo' da 'Performance':


3. Identificar variáveis

©Maroco

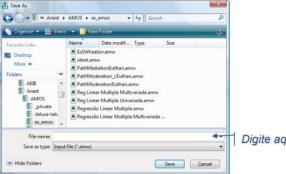
▶ Adicione os erros manualmente, ou recorra ao menu 'Plugins ▶ Name unobserved variables':


▶ Finalmente, recorra às ferramentas de retoque para melhorar o aspecto gráfico do modelo. Deverá obter algo do tipo:



4. Estimar o modelo

©Maroco

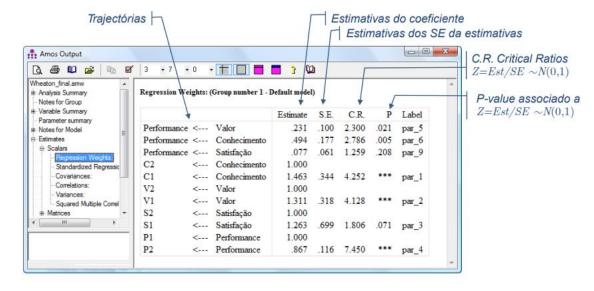

▶ Clique no botão e especifique o método de análise e as opções de output, clicando nas patilhas 'Estimation' e 'Output' (as outras são irrelevantes na maioria das aplicações de AMEE)

▶ Clique, finalmente, no botão IIII para ajustar o modelo

Nesta fase, e se ainda não o fez anteriormente, o AMOS pedir-lhe-á para gravar o seu modelo gráfico, dando um nome ao ficheiro do tipo *.amw:

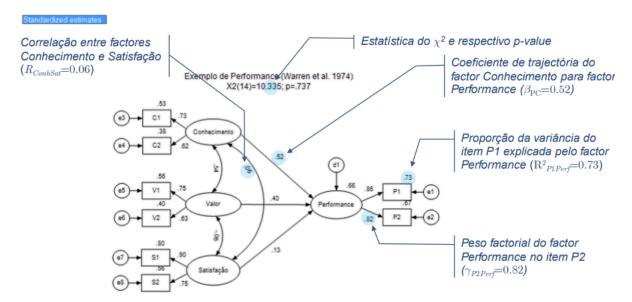
Digite aqui o nome do ficheiro

5. Analisar o output

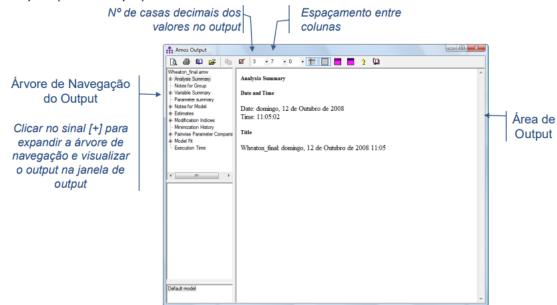

©Maroco

Para visualizar o ficheiro de output completo (Wheaton.AmosOutput)

Clique no botão ou no menu 'View ► Text Output' (F10), para abrir o visualizador de outputs (AMOS output)

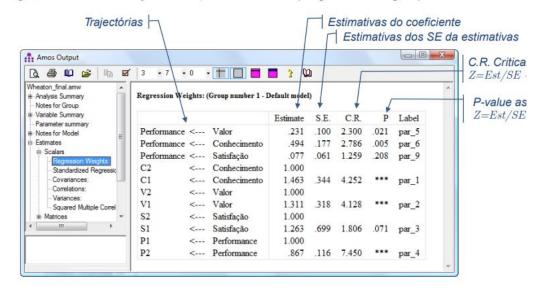

e.g. Coeficientes de trajectória e pesos factoriais (Regression weights):

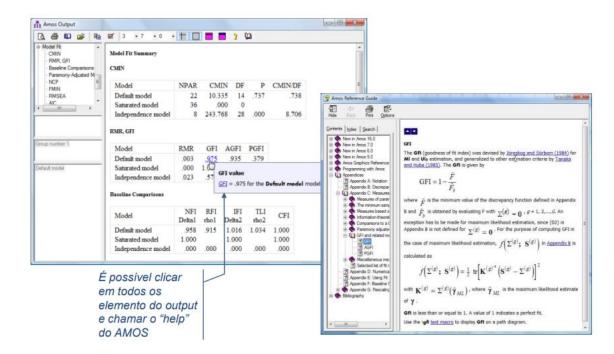
5. Analisar os outputs


©Maroco

Os resultados da análise podem visualizar-se rapidamente na área de desenho, ou extensivamente no ficheiro de output.

Para visualizar o ficheiro de output completo (Wheaton.AmosOutput)


Clique no botão ou no menu 'View ► Text Output' (F10), para abrir o visualizador de outputs (AMOS output)


5. Analisar os outputs

©Maroco

e.g. Índices da qualidade do ajustamento (Model Fit):

