

Estatística I

Licenciatura em Gestão 2.º Ano/1.º Semestre 2023/2024

Aulas Teóricas N.ºs 20 e 21 (Semana 11)

Docente: Elisabete Fernandes

E-mail: efernandes@iseg.ulisboa.pt

https://basiccode.com.br/produto/informatica-basica/

Conteúdos Programáticos

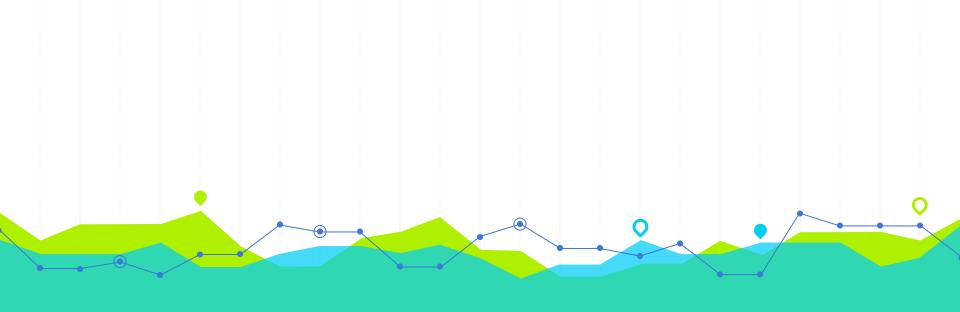
Aulas Teóricas (Semanas 1 a 3)

• Capítulo 2: Probabilidades Aulas Teóricas (Semanas 3 a 5)

 Capítulo 3: Variáveis Aleatórias Unidimensionais Aulas Teóricas (Semanas 5 a 7)

 Capítulo 4: Variáveis Aleatórias Multidimensionais Aulas Teóricas (Semanas 8 a 13)

Capítulo 5:
 Distribuições Teóricas


Capítulo 6:
 Amostragem.
 Distribuições por Amostragem.

Material didático: Exercícios do Livro Murteira et al (2015), Formulário e Tabelas Estatísticas

Bibliografia: B. Murteira, C. Silva Ribeiro, J. Andrade e Silva, C. Pimenta e F. Pimenta; *Introdução à Estatística*, 2ª ed., Escolar Editora, 2015.

https://cas.iseg.ulisboa.pt

Aula 18	Distribuição do tempo de espera até à primeira ocorrência de um processo de Poisson. Distribuição gama e distribuição do qui-quadrado. Teorema do limite central: enunciado e exemplo de aplicação.
Aula 19	Teorema de De Moivre Laplace. Aproximação de Poisson por normal.
Aula 20	Início do capítulo 5: probabilidade versus inferência estatística. Universo e amostra. Amostra aleatória. Estatísticas. Distribuição por amostragem.
Aula 21	Distribuição por amostragem do máximo e do mínimos amostrais. Momentos da média e da variância amostrais. Distribuição assintótica da média amostral. Uma população Bernoulli: distribuição do total da amostra e da média amostral.

Variáveis Aleatórias Contínuas

Distribuição do Qui-Quadrado: Função Densidade de Probabilidade

Definição: A v. a. contínua X segue uma distribuição Qui-Quadrado com n graus de liberdade, i. e.,

 $X \sim \chi_n^2$, se a sua função densidade de probabilidade é:

$$f(x) = \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}, \ x > 0, \ n > 0,$$

onde $\Gamma(\alpha)$ é a função Gama, definida por $\Gamma(\alpha) = \int_0^{+\infty} e^{-x} x^{\alpha-1} dx$.

Distribuição do Qui-Quadrado: Função Densidade de Probabilidade

O parâmetro caracterizador desta distribuição é n.

Principais características:

- A v. a. só toma valores positivos;
- É uma função não simétrica.

A forma da distribuição depende dos graus de liberdade (Figura 5.12), tornando-se menos assimétrica com o aumento do número de graus de liberdade. Esta distribuição está tabelada (Anexo B).

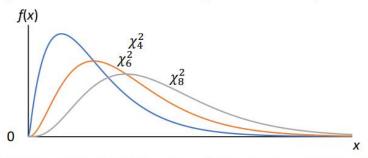


Figura 5.12: Função densidade de probabilidade distribuição Qui-Quadrado para diferentes graus de liberdade.

- A distribuição do qui-quadrado (χ²) é uma distribuição de probabilidade contínua.
- É uma das distribuições de probabilidade mais usadas em inferência estatística ex., testes de hipóteses, construção de intervalos de confiança.
- A distribuição do qui-quadrado com n graus de liberdade 'surge' quando tomamos o quadrado de uma distribuição normal padrão.

(*i.e.*, a distribuição de uma soma de quadrados de n variáveis aleatórias independentes normalmente distribuídas)

 Se X tem uma distribuição do qui-quadrado com n graus de liberdade, escrevese

$$X\sim\chi^{2}\left(n\right)$$

 A distribuição do qui-quadrado tem um parâmetro: n – nº de termos independentes num somatório de quadrados (i.e., o número de Xis)

Teorema da aditividade

Se
$$X_i$$
 ($i=1,2,3,...,n$) são variáveis aleatórias independentes e se $X_i \sim \chi^2 \left(n_i\right)$ então: $\Sigma X_i \sim \chi^2_{(m)}$

(i.e., ΣX_i é uma distribuição do qui-quadrado com m = Σn_i graus de liberdade)

Distribuição Qui-quadrado, Distribuição t-Student e Distribuição F-Snedecor - Distribuições - Studocu

Outros teoremas

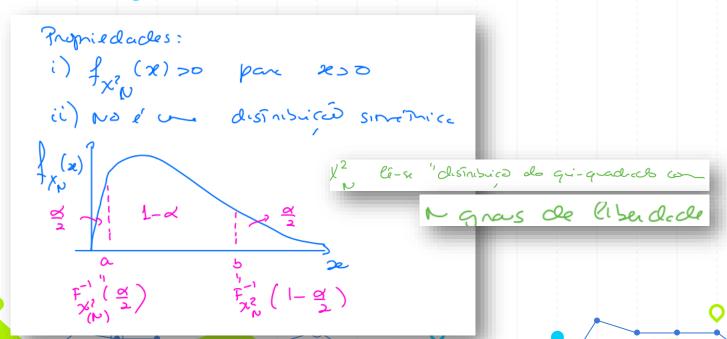
Se Z tem uma distribuição normal padrão, então Z tem distribuição do quiquadrado com 1 grau de liberdade.

$$Z^{2} = \left(\frac{X - \mu}{\sigma}\right)^{2} \cap \chi_{(1)}^{2}$$

• Se X_i ($i=1,\,2,\,3,\,...,\,n$) são variáveis aleatórias independentes e normalmente distribuídas com média μ_i e desvio-padrão σ_i , então:

$$\sum_{i=1}^{n} Z_{i}^{2} = \sum_{i=1}^{n} \left(\frac{x_{i} - \mu_{i}}{\sigma_{i}} \right)^{2} \cap \chi_{(n)}^{2}$$

- É uma distribuição positiva e não simétrica.
- E[X] = n
- Var[X] = 2n
- Está tabelada para algumas probabilidade e n ≤ 30.
- /Quando n > 30, pode usar-se a aproximação à distribuição normal:


$$\sqrt{2X} - \sqrt{2n} \stackrel{.}{\cap} N(0,1)$$

Distribuição Qui-quadrado, Distribuição t-Student e Distribuição F-Snedecor - Distribuições - Studocu

Se
$$X \sim \chi_n^2$$
, ențão $\mu_X = E(X) = n$ e $\sigma_X^2 = Var(X) = 2n$.

Usualmente utiliza-se a notação $\chi^2_{n;\alpha}$ para representar o quantil de probabilidade α de uma v. a. $X \sim \chi^2_n$. Portanto, $\chi^2_{n;\alpha}$ corresponde ao menor valor k tal que $P(X \le k) = \alpha$.

Distribuição do Qui-Quadrado: Resumo

Formulário

• QUI-QUADRADO $X \sim \chi^2(n)$, (n inteiro positivo).


$$X \sim \chi^2(n) \Leftrightarrow X \sim G(n/2;1/2)$$
; $E(X) = n$; $Var(X) = 2n$; $M_X(s) = (1-2s)^{-\frac{n}{2}}$, $s < \frac{1}{2}$; $\gamma_1 = \sqrt{\frac{8}{n}}$; $\gamma_2 = 3 + \frac{12}{n}$

Propriedades:

- $X_i \sim \chi^2_{(n_i)}$ (i = 1, 2, ..., k) independentes $\Rightarrow \sum_{i=1}^k X_i \sim \chi^2_{(n)}$ com $n = \sum_{i=1}^k n_i$
- $X \sim G(n; \lambda) \Leftrightarrow 2\lambda X \sim \chi^2(2n)$
- $X_i \sim N(0,1), (i = 1,2,...,n)$ independentes $\Rightarrow \sum_{i=1}^n X_i^2 \sim \chi^2(n)$
- $X \sim \chi^2(n) \Rightarrow \sqrt{2X} \sqrt{2n-1} \stackrel{a}{\sim} N(0,1)$

Distribuição Gama

(ver slides a seguir)

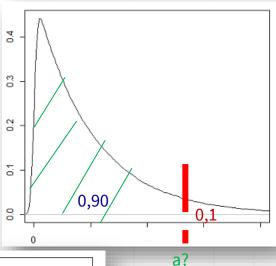
Distribuição do Qui-Quadrado: Exercícios

Variáveis Aleatórias Contínuas

- 1. Suponha que $X \sim \chi^2_{(10)}$. Qual o valor de \underline{a} que garante $P[X \leq a] = 0.9$.
- 2. Suponha que $X \sim \chi^2$ (10).
 - a) Quais os valores de <u>a</u> e <u>b</u> que garantem:

$$P[X \le a] = 0.95 \text{ e } P[X \ge b] = 0.975$$

- b) Calcule \underline{c} e \underline{d} tais que P[c < X < d] = 0,9.
- c) Calcule P[X > 30,6].
- 3. Suponha que Y ~ χ^2 (60). Calcule P[Y < 12].


- 1. Suponha que $X \sim \chi^2_{(10)}$. Qual o valor de \underline{a} que garante $P[X \le a] = 0.9$.
- 2. Suponha que $\chi \sim \chi^2$ (10).
 - a) Quais os valores de <u>a</u> e <u>b</u> que garantem:

$$P[X \le a] = 0.95 \text{ e } P[X \ge b] = 0.975$$

- b) Calcule \underline{c} e \underline{d} tais que P[c < X < d] = 0,9.
- c) Calcule P[X > 30,6].
- 3. Suponha que Y ~ χ^2 (60). Calcule P[Y < 12].

Exercício 1

Área total é igual a 1

P	(X≤a)	= 0,90	⇔ a	= F(0, 1)	$90)^{-1} =$	15,987

$$\chi_{n.\varepsilon}^2: P(X > \chi_{n.\varepsilon}^2) = \varepsilon$$

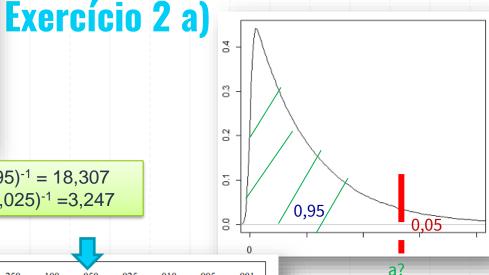
3	.995	.990	.975	.950	.900	.750	.500	.250	.100	.050	.025	.010	.005	.001
n														
1	.000	.000	.001	.004	.016	.102	.455	1.323	2.706	3.841	5.024	6.635	7.879	10.827
2	.010	.020	.051	.103	.211	.575	1.386	2.773	4.605	5.991	7.378	9.210	10.597	13.815
3	.072	.115	.216	.352	.584	1.213	2.366	4.108	6.251	7.815	9.348	11.345	12.838	16.266
4	.207	.297	.484	.711	1.064	1.923	3.357	5.385	7.779	9.488	11.143	13.277	14.860	18.466
5	.412	.554	.831	1.145	1.610	2.675	4.351	6.626	9.236	11.070	12.832	15.086	16.750	20.515
6	.676	.872	1.237	1.635	2.204	3.455	5.348	7.841	10.645	12.592	14.449	16.812	18.548	22.457
7	.989	1.239	1.690	2.167	2.833	4.255	6.346	9.037	12.017	14.067	16.013	18.475	20.278	24.321
8	1.344	1.647	2.180	2.733	3.490	5.071	7.344	10.219	13.362	15.507	17.535	20.090	21.955	26.124
9	1.735	2.088	2.700	3.325	4.168	5.899	8.343	11.389	14.084	16.919	19.023	21.666	23.589	27.877
10	2.156	2.558	3.247	3.940	4.865	6.737	9.342	12.549	15.987	18.307	20.483	23.209	25.188	29.588

- 1. Suponha que $X \sim \chi^2_{(10)}$. Qual o valor de \underline{a} que garante $P[X \leq a] = 0,9$.
- 2. Suponha que $X \sim \chi^2$ (10).
 - a) Quais os valores de <u>a</u> e <u>b</u> que garantem:

$$P[X \le a] = 0.95 \text{ e } P[X \ge b] = 0.975$$

- b) Calcule \underline{c} e \underline{d} tais que P[c < X < d] = 0,9.
- c) Calcule P[X > 30,6].

 $\chi^2_{n,\varepsilon}: P(X > \chi^2_{n,\varepsilon}) = \varepsilon$


3. Suponha que Y ~ χ^2 (60). Calcule P[Y < 12].

$$P(X < a) = 0.95 \Leftrightarrow a = F(0.95)^{-1} = 18.307$$

$P(X < a) = 0.95 \Leftrightarrow a = F(0.95)^{-1} = 18.307$ $P(X > b) = 0.975 \Leftrightarrow b = F(0.025)^{-1} = 3.247$

3	.995	.990	.975	.950	.900	.750	.500	.250	.100	.050	.025	.010	.005	.001	
n															
1	.000	.000	.001	.004	.016	.102	.455	1.323	2.706	3.841	5.024	6.635	7.879	10.827	
2	.010	.020	.051	.103	.211	.575	1.386	2.773	4.605	5.991	7.378	9.210	10.597	13.815	
3	.072	.115	.216	.352	.584	1.213	2.366	4.108	6.251	7.815	9.348	11.345	12.838	16.266	
4	.207	.297	.484	.711	1.064	1.923	3.357	5.385	7.779	9.488	11.143	13.277	14.860	18.466	
5	.412	.554	.831	1.145	1.610	2.675	4.351	6.626	9.236	11.070	12.832	15.086	16.750	20.515	
6	.676	.872	1.237	1.635	2.204	3.455	5.348	7.841	10.645	12.592	14.449	16.812	18.548	22.457	
7	.989	1.239	1.690	2.167	2.833	4.255	6.346	9.037	12.017	14.067	16.013	18.475	20.278	24.321	
8	1.344	1.647	2.180	2.733	3.490	5.071	7.344	10.219	13.362	15.507	17.535	20.090	21.955	26.124	
9	1.735	2.088	2.700	3.325	4.168	5.899	8.343	11.389	14.684	16.919	19.023	21.666	23.589	27.877	
10	2.156	2.558	3.247	3.940	4.865	6.737	9.342	12.549	15.987	18.307	20.483	23,209	25.188	29.588	

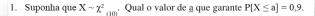
Área total é igual a 1

- 1. Suponha que $X \sim \chi^2_{(10)}$. Qual o valor de \underline{a} que garante $P[X \le a] = 0.9$.
- 2. Suponha que: $X \sim \chi^2$ (10).
 - a) Quais os valores de <u>a</u> e <u>b</u> que garantem:

$$P[X \le a] = 0.95 \text{ e } P[X \ge b] = 0.975$$

- b) Calcule \underline{c} e \underline{d} tais que P[c < X < d] = 0,9.
- c) Calcule P[X > 30,6].
- 3. Suponha que Y ~ χ^2 (60). Calcule P[Y < 12].

Exercício 2 b)

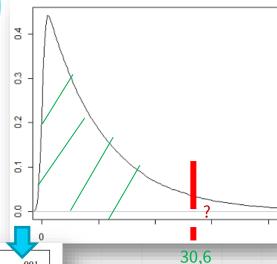

0,90

d?

Área total é igual a 1

 $P(c < X < d) = 0.90 \Leftrightarrow P(X < d) - P(X < c) = F(d) - F(c) = 0.90$ Logo, tem-se d = $F(0.95)^{-1} = 18.307$ e c = $F(0.05)^{-1} = 3.940$

$\chi^2_{n.\varepsilon}:P(Z)$	$X > \chi_{n.\epsilon}^2$	$_{\rm S}$ $) = \varepsilon$		1									0		
ε	.995	.990	.975	.950	.900	.750	.500	.250	.100	.050	.025	.010	.005	.001	
n															
1	.000	.000	.001	.004	.016	.102	.455	1.323	2.706	3.841	5.024	6.635	7.879	10.827	
2	.010	.020	.051	.103	.211	.575	1.386	2.773	4.605	5.991	7.378	9.210	10.597	13.815	
3	.072	.115	.216	.352	.584	1.213	2.366	4.108	6.251	7.815	9.348	11.345	12.838	16.266	
4	.207	.297	.484	.711	1.064	1.923	3.357	5.385	7.779	9.488	11.143	13.277	14.860	18.466	
5	.412	.554	.831	1.145	1.610	2.675	4.351	6.626	9.236	11.070	12.832	15.086	16.750	20.515	
6	.676	.872	1.237	1.635	2.204	3.455	5.348	7.841	10.645	12.592	14.449	16.812	18.548	22.457	
7	.989	1.239	1.690	2.167	2.833	4.255	6.346	9.037	12.017	14.067	16.013	18.475	20.278	24.321	
8	1.344	1.647	2.180	2.733	3.490	5.071	7.344	10.219	13.362	15.507	17.535	20.090	21.955	26.124	
9	1.735	2.088	2.700	3 325	4.168	5.899	8.343	11.389	14.684	16.919	19.023	21.666	23.589	27.877	
10	2 156	2 558	3 247	3 940	4 865	6.737	9 342	12 549	15 987	18 307	20 483	23 209	25 188	29 588	



- 2. Suponha que $X \sim \chi^2$
 - a) Quais os valores de <u>a</u> e <u>b</u> que garantem:

$$P[X \le a] = 0.95 \text{ e } P[X \ge b] = 0.975$$

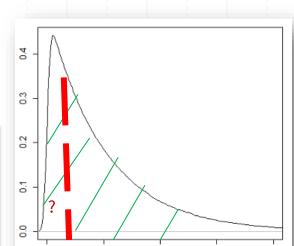
- b) Calcule \underline{c} e \underline{d} tais que P[c < X < d] = 0,9.
- c) Calcule P[X > 30,6].
- 3. Suponha que Y ~ χ^2 (60). Calcule P[Y < 12].

Exercício 2 c)

Área total é igual a 1

$P(X > 30,6) \sim P(X > 29,588) = 0,001$

2			2	
$\chi_{n,\varepsilon}^2$: P((X >	$\chi_{n,\varepsilon}^2$	$=\epsilon$

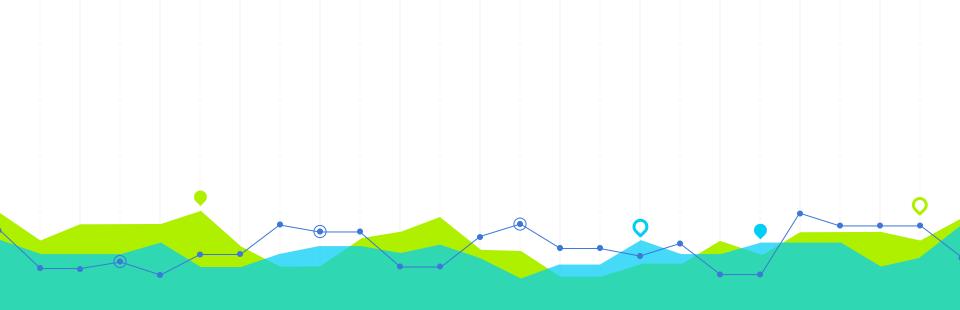

3	.995	.990	.975	.950	.900	.750	.500	.250	.100	.050	.025	.010	.005	.001
n														
1	.000	.000	.001	.004	.016	.102	.455	1.323	2.706	3.841	5.024	6.635	7.879	10.82
2	.010	.020	.051	.103	.211	.575	1.386	2.773	4.605	5.991	7.378	9.210	10.597	13.81
3	.072	.115	.216	.352	.584	1.213	2.366	4.108	6.251	7.815	9.348	11.345	12.838	16.26
4	.207	.297	.484	.711	1.064	1.923	3.357	5.385	7.779	9.488	11.143	13.277	14.860	18.46
5	.412	.554	.831	1.145	1.610	2.675	4.351	6.626	9.236	11.070	12.832	15.086	16.750	20.51
6	.676	.872	1.237	1.635	2.204	3.455	5.348	7.841	10.645	12.592	14.449	16.812	18.548	22.45
7	.989	1.239	1.690	2.167	2.833	4.255	6.346	9.037	12.017	14.067	16.013	18.475	20.278	24.32
8	1.344	1.647	2.180	2.733	3.490	5.071	7.344	10.219	13.362	15.507	17.535	20.090	21.955	26.12
9	1.735	2.088	2.700	3.325	4.168	5.899	8.343	11.389	14.684	16.919	19.023	21.666	23.589	27.87
10	2 156	2 558	3 247	3 940	4 865	6.737	9 342	12 549	15 987	18 307	20.483	23 209	25 188	29 58

- 1. Suponha que $X \sim \chi^2_{(10)}$. Qual o valor de \underline{a} que garante $P[X \leq a] = 0.9$.
- 2. Suponha que $X \sim \chi^2$ (10).
 - a) Quais os valores de \underline{a} e \underline{b} que garantem:

$$P[X \le a] = 0.95 \text{ e } P[X \ge b] = 0.975$$

- b) Calcule \underline{c} e \underline{d} tais que P[c < X < d] = 0,9.
- c) Calcule P[X > 30,6].
- 3. Suponha que Y ~ χ^2 (60). Calcule P[Y < 12].

Exercício 3



0

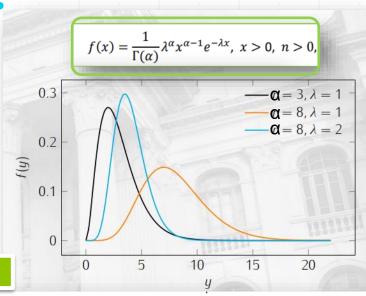
Área total é igual a 1

P(Y < 12) ~ 1-P(Y > 35,534) = 1-0,995 = 0,005
Alternativamente, pelo TLC (aproximação à distribuição Normal)
P(Y < 12) ~P([Y-n]/(2n)
$$^{-0,5}$$
 < (12 $-$ 60) / 10,95) = P(Z < -4,38)
= $\Phi(-4,38) = 1 - \Phi(4,48) \sim 1 - 0,999978 = 0,000022$ (ver mais à frente)
 $\chi^2_{n.\varepsilon} : P(X > \chi^2_{n.\varepsilon}) = \varepsilon$

	7													
3	.995	.990	.975	.950	.900	.750	.500	.250	.100	.050	.025	.010	.005	.001
 n														
1	.000	.000	.001	.004	.016	.102	.455	1.323	2.706	3.841	5.024	6.635	7.879	10.827
2	.010	.020	.051	.103	.211	.575	1.386	2.773	4.605	5.991	7.378	9.210	10.597	13.815
3	.072	.115	.216	.352	.584	1.213	2.366	4.108	6.251	7.815	9.348	11.345	12.838	16.266
4	.207	.297	.484	.711	1.064	1.923	3.357	5.385	7.779	9.488	11.143	13.277	14.860	18.466
5	.412	.554	.831	1.145	1.610	2.675	4.351	6.626	9.236	11.070	12.832	15.086	16.750	20.515
40	20.707	22.164	24.433	26.509	29.051	33.660	39.335	45.616	51.805	55.758	59.342	63.691	66.766	73.403
50	27.991	29.707	32.357	34.764	37.689	42.942	49.335	56.334	63.167	67.505	71.420	76.154	79.490	86.660
60	35.534	37.485	40.482	43.188	46.459	52.294	59.335	66.981	74.397	79.082	83.298	88.379	91.952	99.608
70	43.275	45.442	48.758	51.739	55.329	61.698	69.334	77.577	85.527	90.531	95.023	100.425	104.215	112.317
80	51.172	53.540	57.153	60.391	64.278	71.145	79.334	88.130	96.578	101.879	106.629	112.329	116.321	124.839

Distribuição Gama

Variáveis Aleatórias Contínuas



A distribuição exponencial prevê o tempo de espera até o **primeiro** evento. A distribuição gama, por outro lado, prevê o tempo de espera até que o evento k-ésimo evento ocorra.

Distribuição Gama

Distribuições contínuas: Lognormal, Gama, Weibull e Beta (ufpr.br)

- ► Seja $Y_{Ei} \sim \text{Exp}(\lambda)$ $(i \in \{1, ..., k\})$ uma variável com distribuição Exponencial. Então, $Y = Y_{F1} + Y_{F2} + \cdots + Y_{Fk}$ tem distribuição Gama.
- A Gama tem suporte no conjunto dos reais positivos, assumindo formas assimétricas.
- Ela tem aplicações na área de confiabilidade e análise de sobrevivência, assim como a Lognormal.

Formulário

• **GAMA** $X \sim G(\alpha, \lambda)$, $(\lambda > 0, \alpha > 0)$

$$f(x \mid \alpha, \lambda) = \frac{\lambda^{\alpha} e^{-\lambda x} x^{\alpha - 1}}{\Gamma(\alpha)}, \quad x > 0$$
; $E(x \mid \alpha, \lambda) = \frac{\lambda^{\alpha} e^{-\lambda x} x^{\alpha - 1}}{\Gamma(\alpha)}$

$$f(x \mid \alpha, \lambda) = \frac{\lambda^{\alpha} e^{-\lambda x} x^{\alpha - 1}}{\Gamma(\alpha)}, \quad x > 0 \; ; \; E(X) = \frac{\alpha}{\lambda} \; ; \; Var(X) = \frac{\alpha}{\lambda^2} \; ; \; M_X(s) = \left(\frac{\lambda}{\lambda - s}\right)^{\alpha}, s < \lambda \; ; \; \gamma_1 = \frac{2}{\sqrt{\alpha}} \; ; \; \gamma_2 = 3 + \frac{6}{\alpha}$$

Propriedades:

- $X_i \sim G(\alpha_i; \lambda), (i = 1, 2, ..., k)$ independentes $\Rightarrow \sum_{i=1}^k X_i \sim G(\sum_{i=1}^k \alpha_i; \lambda)$
- $X \sim G(\alpha, \lambda)$ então $Y = cX \sim G(\alpha, \frac{\lambda}{\alpha})$ onde c constante positiva

Distribuição Gama: Exemplos

- Soma de v.a. com distribuição Exponencial.
- 2. Tempo de carregamento de um navio.
- 3. Volume de chuva em dias com precipitação.
- 4. Tempo de permanência de um usuário em um site.
- 5. Distribuição de idade de animais em ambiente natural.
- 6. Tempo de vida de um paciente após transplante.
- 7. Distância dos passes de bola em um jogo de futebol.

Distribuição Gama: Função Densidade de Probabilidade

As **distribuições Exponencial** e **Qui-quadrado** são casos particulares de uma distribuição mais geral, a **distribuição Gama**.

Definição: A v. a. contínua X segue uma distribuição Gama com parâmetros α e λ , i. e., $X \sim G(\alpha; \lambda)$, se a sua função densidade de probabilidade é:

$$f(x) = \frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x}, \ x > 0, \ n > 0,$$

onde $\Gamma(\alpha)$ é a função Gama, definida por $\Gamma(\alpha) = \int_0^{+\infty} e^{-x} x^{\alpha-1} dx$.

O parâmetros caracterizadores desta distribuição são α e λ .

ProbabilidadesEstatistica 2019 (uevora.pt)

Distribuição Gama: Função Gama

Para cada número positivo α , seja $\Gamma(\alpha)$ definido como:

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} \, \mathrm{d}x$$

- $\Gamma(1) = \int_0^\infty e^{-x} \, \mathrm{d}x = 1$
- ▶ Se $\alpha > 1$, então $\Gamma(\alpha) = (\alpha 1)\Gamma(\alpha 1)$
- $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$
- ▶ $\Gamma(n) = (n-1)!$, n interiro positivo.

Distribuição Gama: Relação com outras Distribuições

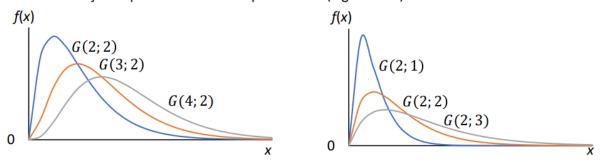
- ► A distribuição Gama tem como **caso particular** a distribuição exponencial (λ) ao fixarmos $\alpha = 1$.
- ▶ Dessa relação, a Gama pode ser obtida como o **tempo acumulado** para k eventos de Poisson, uma vez que o intervalo entre eventos é Exponencial.
- ► A Gama tem mais variedades de formas por ter 2 parâmetros, permitindo modelar adequadamente um maior número de variáveis aleatórias que a Exponencial.
- ▶ A **soma** de v.a. Gama é Gama, ou seja, se Y_1, Y_2, \dots, Y_k são variáveis aleatórias independentes, com distribuição Gama de parâmetros α e λ , então

$$Y_{\text{soma}} = Y_1 + Y_2 + \cdots + Y_k \sim \text{Gama}(k\alpha, \lambda).$$

A distribuição Erlang é um **caso particular** da Gama quando r é um número natural, $r \in \{1, 2, ...\}$.

Distribuição Gama: Relação com outras Distribuições

Casos particulares:


- $X \sim \chi_n^2 \iff X \sim G\left(\alpha = \frac{n}{2}; \lambda = \frac{1}{2}\right);$
- $X \sim Exp(\lambda) \iff X \sim G(\alpha = 1; \lambda).$

ProbabilidadesEstatistica 2019 (uevora.pt)

Distribuição Gama

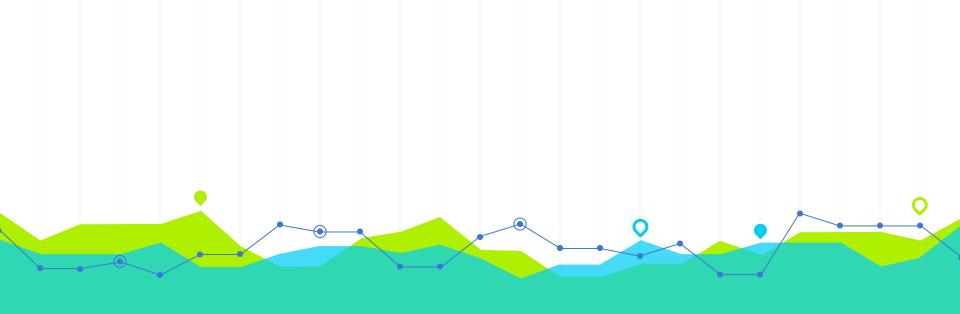
α Parâmetro de forma λ Parâmetro de taxa

O aspeto da distribuição depende do valor dos parâmetros (Figura 5.13).

Figura 5.13: Função densidade de probabilidade da distribuição Gama para diferentes valores de α e λ .

Se
$$X \sim G(\alpha; \lambda)$$
, então $\mu_X = E(X) = \frac{\alpha}{\lambda}$ e $\sigma_X^2 = Var(X) = \frac{\alpha}{\lambda^2}$.

Teorema da aditividade: Se X_i , i=1,2,...,K, são v. a. independentes e $X_i \sim G(\alpha_i; \lambda)$, então


$$\sum_{i=1}^{K} X_i \sim G(\alpha; \lambda), \operatorname{com} \alpha = \sum_{i=1}^{K} \alpha_i.$$

Distribuição Gama

A distribuição Gama pode ser como uma generalização da distribuição Exponencial para descrever a v.a. X que representa o tempo de espera até à ocorrência do n-ésimo sucesso. A variável X resulta da soma dos

tempos de espera entre as várias ocorrências sucessivas (X_i) até à ocorrência pretendida. Deste modo, pelo teorema da aditividade como X_i , i=1,...,n, são v. a. independentes e $X_i \sim Exp(\lambda) \iff X_i \sim G(1;\lambda)$, então

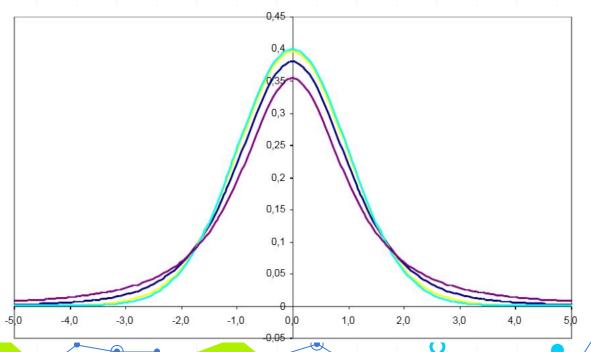
$$X = \sum_{i=1}^{n} X_i \sim G(n; \lambda).$$

Variáveis Aleatórias Contínuas

- A distribuição t-Student é uma distribuição de probabilidade contínua.
- A distribuição t-Student geralmente surge quando temos uma população com variância desconhecida (e tem de ser estimada a partir dos dados recolhidos) e uma amostra de dimensão pequena (n < 30).
- A distribuição t-Student é dada pelo quociente entre uma normal reduzida e a raiz quadrada de uma qui-quadrado dividida pelo respectivo número de graus de liberdade.

I.e., se $Z \sim N(0; 1)$ e $Y \sim \chi^2_{(n)}$, duas variáveis aleatórias independentes, então:

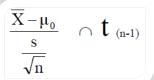
$$T = \frac{Z}{\sqrt{\frac{Y}{n}}} \cap t_{(n)}$$


• Se X tem distribuição t-Student com n graus de liberdade, escreve-se:

$$X \sim t_{(n)}$$

- A distribuição t-Student tem um parâmetro: n − o nº de graus de liberdade.
- É uma distribuição simétrica.

- E[X] = 0
- Var[X] = n/(n-2), se n > 2

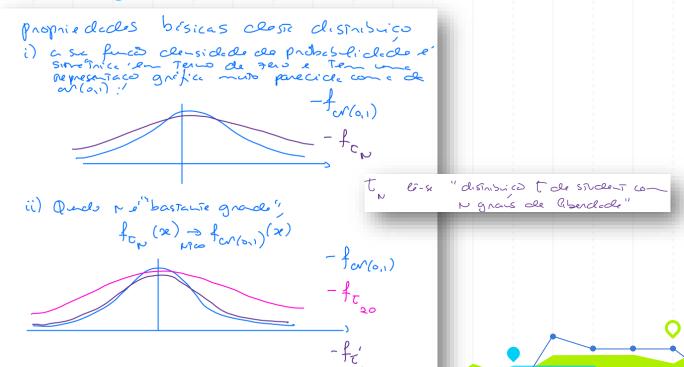

<u>Distribuição Qui-quadrado, Distribuição t-Student e Distribuição F-Snedecor - Distribuições - Studocu</u>



Distribuição Qui-quadrado, Distribuição t-Student e Distribuição F-Snedecor - Distribuições - Studocu

T-Student

- Se a variável tem distribuição Normal na população, ou a amostra é suficientemente grande, mas não conhecemos o desvio da população, só da amostra, então ...
- ... A média amostral se distribui conforme uma t-Student
- ... A distribuição t-Student depende dos graus de liberdade (n-1), que denotamos por v



- A distribuição t-Student varia de acordo com os graus de liberdade.
 Isto significa que a sua curva depende da dimensão da amostra, n.
- Está tabelada para algumas probabilidade e $n \le 30$, n = 40, n = 60, n = 120 e $n = \infty$.
- Quando n > 30, pode usar-se a aproximação à distribuição normal. Em tais casos, μ = 0 e Var = n/(n-2).
- À medida que n aumenta, a distribuição tende para a distribuição normal. Para n grande, a distribuição t-Student tende a ser muito semelhante à distribuição normal.

<u>Distribuição Qui-quadrado, Distribuição t-Student e Distribuição F-Snedecor - Distribuições - Studocu</u>

Distribuição t-Student: Resumo...

Distribuição t-Student

Formulário

• t-"STUDENT"

$$T = \frac{U}{\sqrt{V/n}} \sim t(n) \text{ com } U \sim N(0,1) \text{ e } V \sim \chi^2(n) \text{ independentes}$$

$$E(T) = 0$$
; $Var(T) = \frac{n}{n-2} (n > 2)$; $\gamma_1 = 0$; $\gamma_2 = \frac{3(n-2)}{n-4} (n > 4)$

Propriedade:

• Sendo $T \sim t(n) \Rightarrow \lim_{n \to \infty} F_T(t \mid n) = \Phi(t)$

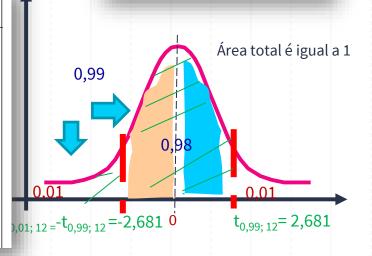
Distribuição do t-Student: Exercícios

Variáveis Aleatórias Contínuas

5

Suponha que $X \sim t_{(12)}$.

- a) Calcule $P[X \le 2,7]$;
- b) Qual o valor de <u>a</u> tal que $P[X \ge a] = 0.95$;
- c) Qual o valor de \underline{b} tal que P[X > b] = 0.05;
- d) Qual o valor de \underline{c} tal que P[-c \leq X \leq c] = 0,9.


Exercício a)

$$t_{n,\varepsilon}: P(X > t_{n,\varepsilon}) = \varepsilon$$

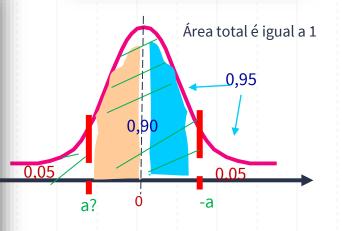
ε	.400	.250	.100	.050	.025	.010	.005	.001	
n									
1	.325	1,000	3.078	6.314	12.706	31.821	63.656	318.289	
2	.289	.816	1.886	2.920	4.303	6.965	9.925	22.328	
3	.277	.765	1.638	2.353	3.182	4.541	5.841	10.214	
4	.271	.741	1.533	2.132	2.776	3.747	4.604	7.173	
5	.267	.727	1.476	2.015	2.571	3.365	4.032	5.894	
6	.265	.718	1.440	1.943	2.447	3.143	3.707	5.208	
7	.263	.711	1.415	1.895	2.365	2.998	3.499	4.785	
8	.262	.706	1.397	1.860	2.306	2.896	3.355	4.501	
9	.261	.703	1.383	1.833	2.262	2.821	3.250	4.297	
10	.260	.700	1.372	1.812	2.228	2.764	3.169	4.144	
11	.260	.697	1.363	1.796	2.201	2.718	3.106	4.025	
12	.259	.695	1.356	1.782	2.179	2.681	3.055	3.930	
13	.259	.694	1.350	1.771	2.160	2.650	3.012	3.852	
14	.258	.692	1.345	1.761	2.145	2.624	2.977	3.787	
15	.258	.691	1.341	1.753	2.131	2.602	2.947	3.733	

Suponha que $X \sim t_{(12)}$.

- a) Calcule $P[X \le 2,7]$;
- b) Qual o valor de <u>a</u> tal que $P[X \ge a] = 0.95$;
- c) Qual o valor de \underline{b} tal que P[X > b] = 0.05;
- d) Qual o valor de \underline{c} tal que P[-c < X < c] = 0,9.

$$P(X \le 2.7) \sim P(X \le 2.681) = 1 - P(X > 2.681) = 1 - 0.01 = 0.99$$

Exercício b)


$$t_{n,\varepsilon}: P(X > t_{n,\varepsilon}) = \varepsilon$$

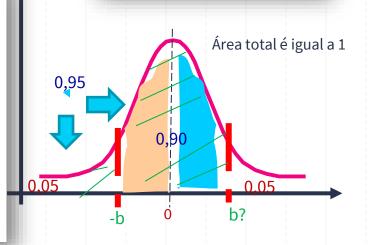
8	.400	.250	.100	.050	.025	.010	.005	.001
n								
1	.325	1,000	3.078	6.314	12.706	31.821	63.656	318.289
2	.289	.816	1.886	2.920	4.303	6.965	9.925	22.328
3	.277	.765	1.638	2.353	3.182	4.541	5.841	10.214
4	.271	.741	1.533	2.132	2.776	3.747	4.604	7.173
5	.267	.727	1.476	2.015	2.571	3.365	4.032	5.894
6	.265	.718	1.440	1.943	2.447	3.143	3.707	5.208
7	.263	.711	1.415	1.895	2.365	2.998	3.499	4.785
8	.262	.706	1.397	1.860	2.306	2.896	3.355	4.501
9	.261	.703	1.383	1.833	2.262	2.821	3.250	4.297
10	.260	.700	1.372	1.812	2.228	2.764	3.169	4.144
1 1	.260	.697	1.363	1.796	2.201	2.718	3.106	4.025
12	.259	.695	1.356	1.782	2.179	2.681	3.055	3.930
13	.259	.694	1.350	1.771	2.160	2.650	3.012	3.852
14	.258	.692	1.345	1.761	2.145	2.624	2.977	3.787
15	.258	.691	1.341	1.753	2.131	2.602	2.947	3.733

Suponha que $X \sim t_{(12)}$.

- a) Calcule $P[X \le 2,7]$;
- b) Qual o valor de <u>a</u> tal que $P[X \ge a] = 0.95$;
- c) Qual o valor de \underline{b} tal que P[X > b] = 0.05;
- d) Qual o valor de \underline{c} tal que P[-c $\leq X \leq c$] = 0,9.

 $P(X \ge a) = 0.95 \Leftrightarrow P(X > -a) = 0.05 \Leftrightarrow -a = 1.782 \Leftrightarrow a = -1.782$

Exercício c)


$$t_{n,\varepsilon}: P(X > t_{n,\varepsilon}) = \varepsilon$$

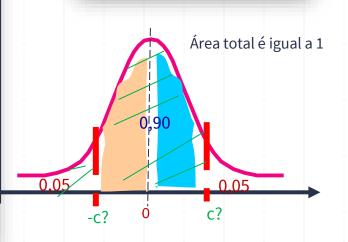
8	.400	.250	.100	.050	.025	.010	.005	.001
n								
1	.325	1,000	3.078	6.314	12.706	31.821	63.656	318.289
2	.289	.816	1.886	2.920	4.303	6.965	9.925	22.328
3	.277	.765	1.638	2.353	3.182	4.541	5.841	10.214
4	.271		1.533	2.132	2.776	3.747	4.604	7.173
5	.267	.727	1.476	2.015	2.571	3.365	4.032	5.894
6	.265	.718	1.440	1.943	2.447	3.143	3.707	5.208
7	.263	.711	1.415	1.895	2.365	2.998	3.499	4.785
8	.262	.706	1.397	1.860	2.306	2.896	3.355	4.501
9	.261	.703	1.383	1.833	2.262	2.821	3.250	4.297
10	.260	.700	1.372	1.812	2.228	2.764	3.169	4.144
11	.260	.697	1.363	1.796	2.201	2.718	3.106	4.025
12	.259	.695	1.356	1.782	2.179	2.681	3.055	3.930
13	.259	.694	1.350	1.771	2.160	2.650	3.012	3.852
14	.258	.692	1.345	1.761	2.145	2.624	2.977	3.787
15	.258	.691	1.341	1.753	2.131	2.602	2.947	3.733

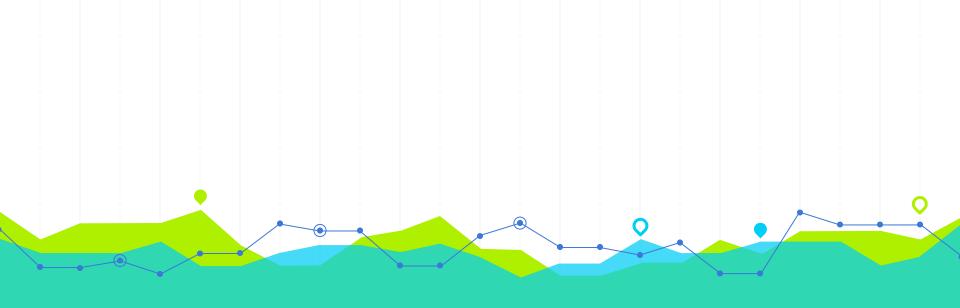
Suponha que
$$X \sim t_{(12)}$$
.


- a) Calcule $P[X \le 2,7]$;
- b) Qual o valor de <u>a</u> tal que $P[X \ge a] = 0.95$;
- c) Qual o valor de \underline{b} tal que P[X > b] = 0.05;
- d) Qual o valor de \underline{c} tal que P[-c \leq X \leq c] = 0,9.

$$P(X > b) = 0.05 \Leftrightarrow b = 1.782$$

Exercício d)


$$t_{n,\varepsilon}: P(X > t_{n,\varepsilon}) = \varepsilon$$


8	.400	.250	.100	.050	.025	.010	.005	.001
n								
1	.325	1,000	3.078	6.314	12.706	31.821	63.656	318.289
2	.289	.816	1.886	2.920	4.303	6.965	9.925	22.328
3	.277	.765	1.638	2.353	3.182	4.541	5.841	10.214
4	.271	.741	1.533	2.132	2.776	3.747	4.604	7.173
5	.267	.727	1.476	2.015	2.571	3.365	4.032	5.894
6	.265	.718	1.440	1.943	2.447	3.143	3.707	5.208
7	.263	.711	1.415	1.895	2.365	2.998	3.499	4.785
8	.262	.706	1.397	1.860	2.306	2.896	3.355	4.501
9	.261	.703	1.383	1.833	2.262	2.821	3.250	4.297
10	.260	.700	1.372	1.812	2.228	2.764	3.169	4.144
11	.260	.697	1.363	1.796	2.201	2.718	3.106	4.025
12	.259	.695	1.356	1.782	2.179	2.681	3.055	3.930
13	.259	.694	1.350	1.771	2.160	2.650	3.012	3.852
14	.258	.692	1.345	1.761	2.145	2.624	2.977	3.787
15	.258	.691	1.341	1.753	2.131	2.602	2.947	3.733

- a) Calcule $P[X \le 2,7]$;
- b) Qual o valor de a tal que $P[X \ge a] = 0.95$;
- c) Qual o valor de \underline{b} tal que P[X > b] = 0.05;
- d) Qual o valor de c tal que P[-c $\leq X \leq c$] = 0,9.

$$P(-c < X < c) = 0.90 \Leftrightarrow P(X < c) - P(X < c) = F(c) - F(-c) = F(c) - (1-F(c))$$

= $2 \times F(c) - 1 = 0.90 \Leftrightarrow F(c) = 0.95 \Leftrightarrow c = F(0.95)^{-1} = 1.782$

Variáveis Aleatórias Contínuas

5

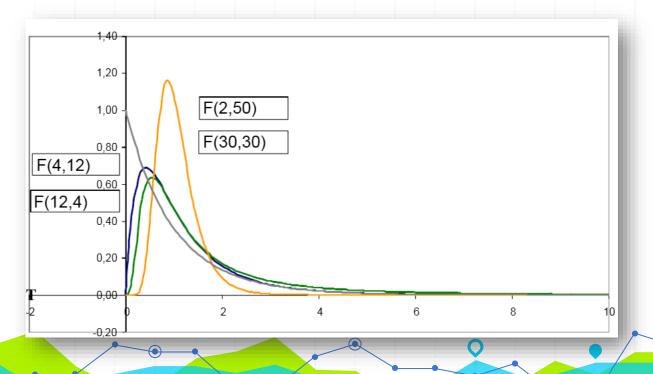
- A distribuição F-Snedecor é uma distribuição de probabilidade contínua.
- A distribuição F-Snedecor é dada pelo quociente entre duas variáveis aleatórias com distribuição do qui-quadrado, cada uma dividida pelos respectivos graus de liberdade.

I.e., se $X \sim \chi^2_{(m)}$ e $Y \sim \chi^2_{(n)}$, duas variáveis aleatórias independentes, então:

$$F \equiv \frac{X/m}{Y/n} \cap F_{(m,n)}$$

- Se X tem uma distribuição F-Snedecor com m e n graus de liberdade, escreve-se: $X \sim F_{(m,\,n)}$
- A distribuição F-Snedecor tem dois parâmetros: m e n i.e., o nº de graus de liberdade do numerador e do denominador (m, $n \in N$).

- É uma distribuição positiva e não simétrica.
- E[X] = n/(n-2), quando n > 2


$$VAR[X] = \frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}$$
, quando n > 4

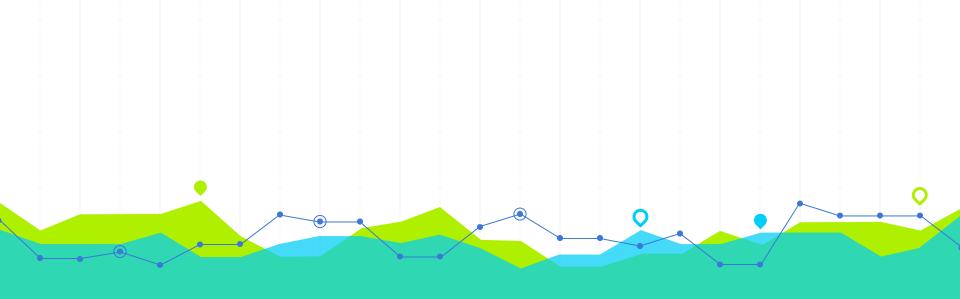
• Se X ~ $F_{(m, n)}$, então:

$$\frac{1}{X} \cap F_{(n,m)}$$

- Se $X \sim t_{(n)}$, então $X^2 \sim F_{(1, n)}$
- A distribuição F-Snedecor está tabelada para algumas probabilidade e alguns m e n

 $(m, n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 30, 60, 120, \infty)$

Formulário


• F-SNEDCOR

$$F = \frac{U/m}{V/n} \sim F(m,n) \text{ com } U \sim \chi^2(m), \ V \sim \chi^2(n) \text{ (independentes)}$$

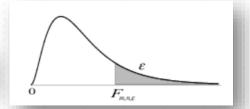
$$E(X) = \frac{n}{n-2} \quad (n > 2); \ \operatorname{Var}(X) = \frac{2n^2(m+n-2)}{m(n-2)^2(n-4)} \quad (n > 4)$$

Propriedades:
$$V \sim F(m,n) \Rightarrow \frac{1}{V} \sim F(n,m)$$
 $T \sim t_{(n)} \Rightarrow T^2 \sim F(1,n)$

•
$$T \sim t_{(n)} \Rightarrow T^2 \sim F(1, n)$$

Distribuição do F-Snedcor: Exercícios

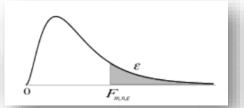
Variáveis Aleatórias Contínuas


6

Suponha que X ~ F $_{(10; 5)}$.

- a) Calcule o valor de <u>a</u> tal que P[X > a] = 0.025;
- b) Calcule o valor de \underline{b} tal que $P[X \le b] = 0.05$;
- c) Calcule os valores de \underline{c} e \underline{d} tal que P[c < X < d] = 0,9.

Exercício a)


 $F_{m,n,\varepsilon}: P(X > F_{m,n,\varepsilon}) = \varepsilon$

Suponha que X ~ F $_{(10; 5)}$.

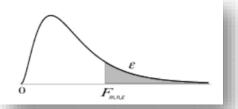
- a) Calcule o valor de \underline{a} tal que P[X > a] = 0,025;
- b) Calcule o valor de \underline{b} tal que $P[X \le b] = 0.05$;
- c) Calcule os valores de \underline{c} e \underline{d} tal que P[c < X < d] = 0,9.

												_									
										m	- graus de	libe	lo numerad	or							
_		8	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	00
	1	.100	39.86	49.50	53.59	55.83	57.24	58.20	58.91	59.44	59.86	60.19	60.71	61.22	61.74	62.00	62.26	62.53	62.79	63.06	63.33
		.050	161.45 647.79	199.50 799.48	215.71 864.15	224.58 899.60	230.16 921.83	233.99 937.11	236.77 948.20	238.88	240.54 963.28	241.88	243.90 976.72	245.95 984.87	248.02 993.08	249.05 997.27	250.10	251.14	252.20 1009.79	253.25 1014.04	254.32 1018.26
		.025 .010	4052.18	4999.34	5403.53	5624.26	921.83 5763 96	5858.95	5928.33	956.64 5980.95	6022.40	968.63 6055.93	6106.68	6156.97	6208.66	6234.27	1001.40 6260.35	1005.60 6286.43	6312.97	6339.51	6365.59
	2	.100	8.53	9.00	9.16	9.24	9.29	9.33	9.35	9.37	9.38	9.39	9.41	9.42	9.44	9.45	9.46	9.47	9.47	9.48	9.49
	_	.050	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.50
		.025	38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.39	39.40	39.41	39.43	39.45	39.46	39.46	39.47	39.48	39.49	39.50
		.010	98.50	99.00	99.16	99.25	99.30	99.33	99.36	99.38	99.39	99.40	99.42	99.43	99.45	99.46	99.47	99.48	99.48	99.49	99.50
	3	.100	5.54	5.46	5.39	5.34	5.31	5.28	5.27	5.25	5.24	5.23	5.22	5.20	5.18	5.18	5.17	5.16	5.15	5.14	5.13
		.050 .025	10.13 17.44	9.55 16.04	9.28 15.44	9.12 15.10	9.01 14.88	8.94 14.73	8.89 14.62	8.85 14.54	8.81 14.47	8.79 14.42	8.74 14.34	8.70 14.25	8.66 14.17	8.64 14.12	8.62 14.08	8.59 14.04	8.57 13.99	8.55 13.95	8.53 13.90
١.		.010	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.34	27.23	27.05	26.87	26.69	26.60	26.50	26.41	26.32	26.22	26.13
denominador	4	.100	4.54	4.32	4.19	4.11	4.05	4.01	3.98	3.95	3.94	3.92	3.90	3.87							б
nin		.050	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	P(X	> a)	-00)25 =	· > a -	- 6 6	2
nor		.025 .010	12.22 21.20	10.65 18.00	9.98 16.69	9.60 15.98	9.36 15.52	9.20 15.21	9.07 14.98	8.98 14.80	8.90 14.66	8.84 14.55	8.75 14.37	8.66 14.20	•						c
			!												14.02	13.93	13.04	13./3	15.05	15.50	13.40
le do	5	.100 .050	4.06 6.61	3.78 5.79	3.62 5.41	3.52 5.19	3.45 5.05	3.40 4.95	3.37 4.88	3.34 4.82	3.32 4.77	3.30	3.27 4.68	3.24 4.62	3.21 4.56	3.19 4.53	3.17 4.50	3.16 4.46	3.14 4.43	3.12 4.40	3.11 4.37
1-1		.025	10.01	8.43	7.76	7.39	7.15	6.98	6.85	6.76	6.68	6.62	6.52	6.43	6.33	6.28	6.23	6.18	6.12	6.07	6.02
libe		.010	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16	10.05	9.89	9.72	9.55	9.47	9.38	9.29	9.20	9.11	9.02
1-																					

Exercício b)

 $F_{m,n,\varepsilon}: P(X > F_{m,n,\varepsilon}) = \varepsilon$

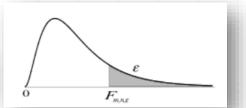
Suponha que X ~ F $_{(10;5)}$.


- a) Calcule o valor de a tal que P[X > a] = 0.025;
- b) Calcule o valor de \underline{b} tal que $P[X \le b] = 0.05$;
- c) Calcule os valores de \underline{c} e \underline{d} tal que P[c < X < d] = 0,9.

							_													
									m –	graus de li	berdade do	numerado	r							
	8	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
	.100	3.29	2.92	2.73	2.61	2.52	2.46	2.41	2.38	2.35	2.32	2.28	2.24	2.20	2.18	2.16	2.13	2.11	2.08	2.06
	.050	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
	.025 .010	6.94 10.04	5.46 7.56	4.83 6.55	4.47 5.99	4.24 5.64	4.07 5.39	3.95 5.20	3.85 5.06	3.78 4.94	3.72 4.85	3.62 4.71	3.52 4.56	3.42 4.41	3.37 4.33	3.31 4.25	3.26 4.17	3.20 4.08	3.14 4.00	3.08 3.91
-	.010	2.22	7.50	0.55	2.54	2.45	2.39	2.34	2.30	2.27	2.25	2.21	2.17	2.12	2.10	2.08	2.05	2.03	2.00	1.97
Quantil da	dietribi	uicão F.	Spade	cor de		3	2.39	2.34	2.30	2.27	2.23	2.21	2.17	2.12	2.10	2.57	2.53	2.49	2.45	2.40
		•			4.28	4 Q	uantil	da disti	ribuição	o F-Sn	edeco	r de pr	obabili	dade	3.17	3.12	3.06	3.00	2.94	2.88
probabilid		o com i	ues	graus	5.67			n 5 e 1							4.02	3.94	3.86	3.78	3.69	3.60
de liberda	de				2.48 3.26			o valo						~	2.04	2.01 2.47	1.99 2.43	1.96 2.38	1.93 2.34	1.90 2.30
	.025	6.55	5.10	4.47	4.12	3 10	ibeia e	U Valu	i u tai t	que F(I	- > u)	= 0,03			3.02	2.47	2.43	2.85	2.79	2.72
	.010	9.33	6.93	5.95	5.41	5.06	4 <mark>.82</mark>	4.64	4.50	4.39	4.30	4.16	4.01	3.86	3.78	3.70	3.62	3.54	3.45	3.36
	D/V	- h) -	- 0 0	5 /\ 1	D/\	/	\ <u>_</u> c	05 /	D/	V . k	s) _ (05	-				1			
	$\Gamma(\Lambda$	< b) =	= 0,0	3 🕂 I	-F()	\ > L	$y_{j} = 0$,05 \	ار کر (^ > r	D = C),95	F_{n}	$-1.n_{2}-1$	$\frac{\alpha}{1} = \frac{\alpha}{1}$	E				
	=> h	= F0	05.	10.5	= 1/	F0.9	25. 2	10 =	1/3	33 =	0.30		"1	-,2	'2	$n_{2}^{-1,r}$	1-1;1-	$\frac{\alpha}{2}$		
	=> b	$P(X < b) = 0.05 \Leftrightarrow 1-P(X > b) = 0.05 \Leftrightarrow P(X > b) = 0.95$ => b = F0.05; 10.5 = 1/F0.95; 5.10 = 1/3.33 = 0.30												1,102	'2	n_2-1,r	1-1;1-	$\frac{\alpha}{2}$		

Exercício c)

Suponha que X ~ F $_{(10; 5)}$.


- a) Calcule o valor de <u>a</u> tal que P[X > a] = 0.025;
- b) Calcule o valor de \underline{b} tal que P[X < b] = 0,05;
- c) Calcule os valores de \underline{c} e \underline{d} tal que P[c < X < d] = 0,9.

 $F_{m,n,\varepsilon}: P(X > F_{m,n,\varepsilon}) = \varepsilon$

										***	- graus de	1615	lo numerad	lor							
									-	- 111	- graus de	100									
1	_	8	20.06	40.50		4	5	6	/	- 8		10	12	15	Quantil	da dis	stribuiçã	ão F-Sr	nedeco	or de	00
	1	.100 .050	39.86 161.45	49.50 199.50	53.59 215.71	55.83 224.58	57.24 230.16	58.20 233.99	58.91 236.77	59.44 238.88	59.86 240.54	60.19 241.88	60.71 243.90	61.2 245.9	probab	ilidade	0.05 c	om 10	e 5 gra	aus	63.33 254.32
		.025	647.79	799.30	864 15	899 60	921.83	937.11	948.20	956.64	963.28	968.63	976.72	984.8	de liber		, 0,000		0 0 g		1018.26
		.010	4052.18	4999.34	5403.53	5624.26	5763.96	5858.95	5928.33	5980.95	6022.40	6055.93	6106.68	6156.9	de libei	uaue					6365.59
-	2	.100	8.53	9.00	9.16	9.24	9.29	9.33	9.35	9.37	9.38	9.39	9.41	9.42	9.44	9.45	9.46	9.47	9.47	9.48	9.49
	_	.050	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.41	19.43		19.45	19.4			,,,,	
l		.025	38.51	39.00	39.17	39.25	39.30	20 22	30 36	30 37	20 20	30.40	30.41	20.42	30/5	30.46	30.4 E		-	_	1
L		.010	98.50	99.00	99.16	99.25	99.30	Dic	· - Y	- d)	= 0.9	2					Γ_{η}	$n_1 - 1.n_2$	$-1:\frac{\alpha}{2}$	_ <u></u>	
	3	.100	5.54	5.46	5.39	5.34	5.31	F (C	, < ^	< u)	=0,3	9						-,2	′2	n_2 -	-1,n ₁ -1;
Ì		.050	10.13	9.55	9.28	9.12	9.01	P()	(~ d	-0	,05 =	- h ~	- 47	1							
		.025	17.44	16.04	15.44	15.10	14.88	,		,	•				×						
إ.		.010	34.12	30.82	29.46	28.71	28.24	P()	(>0	0 - 0	95 -	> C =	- F0 (05.	10,5 =	1/F	0 95.	5 10	-1/	13 33	S = 0.1
	4	.100	4.54	4.32	4.19	4.11	4.05	,					- 1 0,	00,	10,0 –	1/ 1	0,00,	0,10	_ 1/	0,00	, – 0,
		.050	7.71	6.94	6.59	6.39	6.26	(ve	r slic	e a s	segui	r)									
		.025	12.22 21.20	10.65 18.00	9.98 16.69	9.60 15.98	9.36	(***	. 0110	o a c	ogu.	'/									
-							15.52	13.41	17.70	17.00	17.00	17.55	17,37	17,20	17.02	13,73	13.07	13.73	15.05	13.50	13.70
	-5	.100	4.06	3.78	3.62	3.52	3.45	3.40	3.37	3.34	3.32	3.30	3.27	3.24		3.19	3.17	3.16	3.14	3.12	3.11
		050	6.61	5.79 8.43	5.41	5.19	5.05	4.95	4.88	4.82 6.76	4.77	4.74	4.68 6.52	4.62		4.53	4.50	4.46	4.43	4.40	4.37
		.025	10.01 16.26	13.27	7.76 12.06	7.39 11.39	7.15 10.97	6.98 10.67	6.85 10.46	10.29	6.68 10.16	10.05	9.89	6.43 9.72		6.28 9.47	6.23 9.38	6.18 9.29	6.12 9.20	6.07 9.11	6.02 9.02
L		.010	10.20	13.27	12.00	11.39	10.97	10.07	10.40	10.29	10.10	10.05	7.09	7.12	7.33	7.4/	7.30	7.47	7.20	7.11	7.02

Exercício c)

 $F_{m,n,\varepsilon}: P(X > F_{m,n,\varepsilon}) = \varepsilon$

Suponha que X ~ F $_{(10; 5)}$.

- a) Calcule o valor de \underline{a} tal que P[X > a] = 0,025;
- b) Calcule o valor de \underline{b} tal que P[X < b] = 0,05;
- c) Calcule os valores de \underline{c} e \underline{d} tal que P[c < X < d] = 0,9.

									m –	graus de li	berdade do	numerado	г							
	ε	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	œ
10	.100	3.29	2.92	2.73	2.61	2.52	2.46	2.41	2.38	2.35	2.32	2.28	2.24	2.20	2.18	2.16	2.13	2.11	2.08	2.06
	.050	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
	.025	6.94	5.46	4.83	4.47	4.24	4.07	3.95	3.85	3.78	3.72	3.62	3.52	3.42	3.37	3.31	3.26	3.20	3.14	3.08
	.010	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85	4.71	4.56	4.41	4.33	4.25	4.17	4.08	4.00	3.91
11	.100	3.23	2.86	2.66	2.54	2.45	2.39	2.34	2.30	2.27	2.25	2.21	2.17	2.12	2.10	2.08	2.05	2.03	2.00	1.97
	.050	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40
	.025	6.72	5.26	4.63	4.28	4.04	3.88	3.76	3.66	3.59	3.53	3.43	3.33	3.23	3.17	3.12	3.06	3.00	2.94	2.88
	.010	9.65	7.21	6.22	5.67	5 22	5.07	1.00	171	1.62	151	1.10	1 75	1.10	1.02	2.04	2 06	2 70	2.60	3.60
12	.100	3.18	2.81	2.61	P(c <	- X -	d) –	n a												1.90
	.050	4.75	3.89	3.49	1 (0)	- // -	u) –	0,3												2.30
	.025	6.55	5.10	4.47	P(X:	- C) -	- n a	5	C -	FO O	5.10	5 -	1/FC	05.	5 10	_ 1/	2 22	-0'	30	2.72
I	.010	9.33	6.93	5.95	$\Gamma(X)$	<i>-</i> () -	- 0,9	J ->	<u> </u>	0,0	J, 10	,5 –	1/10	,50,	5,10	- 1/	5,55	- 0,	50	3.36

$$F_{n_1-1,n_2-1;\frac{\alpha}{2}} = \frac{1}{F_{n_2-1,n_1-1;1-\frac{\alpha}{2}}}$$

Obrigadal

Questões?

Distribuições por Amostragem.pdf