Microeconomics

Chapter 14
Monopoly

Fall 2023

Monopoly

A monopolistic market has one main characteristic:
(1) a single firm that sells to the whole market

This ensures that a monopolist is a price maker. The demand curve of a monopolist $D(p)$ is simply the market demand curve $X(p)$ for that good. This demand curve is typically downwards sloping

There are at least three reasons for the existence of monopolists: patents, superior technology, and control over limited natural resources.

Typical demand curve

The typical demand curve for a monopolist is downwards sloping: if price goes up then demand goes down. Strictly speaking, the graph shows the inverse demand curve: price as a function of quantity. One can also graph the demand curve: quantity as a function of price.

Profit maximization

Profit maximization for a monopolist is more complicated than for a perfectly competitive firm: The monopolist chooses both the price p and output y to maximize profits $\pi(y)=p y-c(y)$,

$$
\max _{p, y} p y-c(y)
$$

Note that $c(y)$ is a cost function as discussed in Chapter 4
However, we can simplify this profit maximization problem. Recall that the monopolist has a demand curve:

$$
y=D(p) .
$$

We can take the inverse of this function to obtain inverse demand function: $p(y)$ gives for each quantity y the price p consumers would be willing to pay. We can substitute $p(y)$ for p in the profit function,

$$
\max _{y} p(y) y-c(y)
$$

Profit maximization

The firm can now solve the profit maximization problem by only choosing y, as we made explicit that choosing y also means choosing p,

$$
\max _{y} p(y) y-c(y)
$$

Recall that the FOC for profit maximization was to set the first derivative to zero:

$$
\frac{\partial \pi(y)}{\partial y}=p(y)+\frac{\partial p(y)}{\partial y} y-\frac{\partial c(y)}{\partial y}=0 .
$$

Which can be written as,

$$
\underbrace{p(y)+\frac{\partial p(y)}{\partial y} y}_{M R(y)}=\underbrace{\frac{\partial c(y)}{\partial y}}_{M C(y)}
$$

The monopolist produces y until MR equals MC. Intuitively, if $M R>M C$ than the firm should produce more, and if $M R<M C$ it should produce less.

Profit maximization in a graph

The figure visualizes the FOC: the monopolist will choose quantity y_{m} such that $M R=M C$. The price p_{m} is such that the whole quantity y_{m} can be sold.

Marginal revenue

Lets analyze MR in greater detail. Recall that for a perfectly competitive firm we had that $M R=p$. However, for a monopolist we have that:

$$
\begin{aligned}
M R(y) & =\underbrace{p(y)}_{\text {quantity effect }}+\underbrace{\frac{\partial p(y)}{\partial y} y}_{\text {price effect }} \\
& \neq p(y)
\end{aligned}
$$

The quantity effect reflects that selling one additional y gives the firm $p(y)$ additional revenue.

The price effect reflects that to sell one additional y the firm needs to change (typically lower) the price by $\frac{\partial \rho(y)}{\partial y}$, and this lower price applies to all units y it is selling.

Hence, a monopolist's MR is lower than the price if the demand function is downwards sloping, since then the price effect is negative. If $\frac{\partial p(y)}{\partial y}<0$, then

$$
M R(y)<p(y)
$$

The markup

The FOC showed that the monopolist produces y until MR equals MC. Note that this is simply the market equilibrium of a monopolist.
We can rewrite this FOC by swapping sides of $M C(y)=\frac{\partial c(y)}{\partial y}$ and $\frac{\partial p(y)}{\partial y} y$, and by dividing both sides by $p(y)$,

$$
\frac{p(y)-M C(y)}{p(y)}=-\frac{\partial p(y)}{\partial y} \frac{y}{p(y)} .
$$

Note that $\epsilon(y)=\frac{\partial y(p)}{\partial p} \frac{p}{y(p)}$ is the elasticity of demand, which is the percentage change in demand divided by the percentage change in the price:

$$
\left(\frac{\Delta y(p)}{y(p)}\right) /\left(\frac{\Delta p}{p}\right)=\frac{\Delta y(p)}{\Delta p} \frac{p}{y(p)} \approx \frac{\partial y(p)}{\partial p} \frac{p}{y(p)}=\epsilon(y)
$$

Substituting for $\epsilon(y)$ we can write the FOC as,

$$
\frac{p(y)-M C(y)}{p(y)}=-\frac{1}{\epsilon(y)} .
$$

The markup

We can write the FOC of the monopolist as:

$$
\frac{p(y)-M C(y)}{p(y)}=-\frac{1}{\epsilon(y)}
$$

Define $(p-M C) \geq 0$ as the markup. Note that $\epsilon<0$ as the demand curve is typically downwards sloping.

Whether the monopolist charges a markup depends upon the elasticity of demand. Consider three scenarios:
(1) Demand is completely elastic with $\epsilon \rightarrow-\infty$, then $p=M C$. If demand is completely elastic then its as if the "price is given". Hence, the monopolist behaves like a perfect competitor.
(2) Demand is elastic with $-\infty<\epsilon<-1$, then $p>M C$. The monopolist asks a markup, which decreases if demand becomes more elastic.
(3) Demand is inelastic with $-1<\epsilon \leq 0$ then $\frac{p-M C}{p}>1$. This cannot happen since $M C>0$. Hence, the monopolist will never choose to produce a quantity y at a point where demand is inelastic.

Exercise

A monopolist faces a demand curve of $D(p)=11-p$, has constant marginal costs that are equal to 1 , and has fixed costs that are equal to 0 .

1. What is the profit-maximizing level of output?
2. What is the accompanying profit?
3. This monopolist can charge a markup. Carefully explain whether a monopolist can always charge a markup.

Microeconomics

Chapter 16
 Oligopoly

Not part of the exam

Fall 2023

Syllabus

The syllabus on Fenix contains an up-to-date overview of the program. All chapters in that overview are part of the exam, except Chapter 16.

Homework exercises

Exercises: exercises on the slides and the practice exam

