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Topics

 
Two period Stochastic General Equilibrium pricing of
intertemporal contracts:
to set up a model we need assumptions regarding:  
▶ The economic environment: information tree, real part of the

economy
▶ The market environment: available contracts
▶ The variables defining the general equilibrium depend on those

two categories.
We will study two models:
▶ Arrow-Debreu economies (the simple case in this lecture, and

some extensions later on)
▶ Finance (or Radner) economies (in next lectures)

2 / 64



Environments and general equilibrium

Common assumptions: regarding the economic environment
1. the time-information structure;
2. the real part of the economy: intertemporal preferences and

availability of resources
Different assumptions regarding the market environment

1. simultaneous markets (Arrow-Debreu economy);
2. sequential markets (Finance economy);

Lead to different definitions of GE (general equilibrium)
(that may be equivalent or not)
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  The time-information tree 
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The time-information tree

This refers
▶ to the moments in which markets open
▶ to the timing of the decisions
▶ the information households have

In discrete time we have to distinguish between
▶ dates: the timing for stocks  and prices of stocks
▶ periods: the timing for flows  and prices of flows

date t

period t

date t + 1
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Two period: The timing for flow and stock variables

   

period 0 period 1

date 0 date 1 date 2

stock variable S0 S1 S2

flow variable F0 F1

Flow and stock variables: refer to prices and/or quantities
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For flow variables
We assume:
▶ t ∈ T = {0, 1} where T refer to periods
▶ information changes over time, from the perspective of period

t = 0.
Most variables are 2-period random sequences

X = {X0,X1}

  are determined on the basis of the information known at period
t = 0:
▶ at period t = 0, they are observed

X0 = x0

 
▶ for period t = 1, they are contingent on the information available

at period t = 0
X1(ω), ω ∈ (Ω,F ,P)

  X1 is a random variable
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Information for a flow variable
The information at period t = 0 is:
▶ If Ω is discrete and there are N elementary events, the

information regarding period t = 1 we have

X1 = (x1,1, . . . , x1,s, . . . , x1,N)
⊤

P1 = (π1, . . . , πs, . . . , πN)
⊤

  where x1,s is the outcome if event s realizes and πs its
probability

▶ and the sequences of possible outcomes and related probabilities
are

0

x0, 1

1


x1,1
. . .
x1,s
. . .

x1,N

,


π1
. . .
πs
. . .
πN


periods

information
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The time-information tree

x0

t = 0

x1,n πn

. . .

x1,s πs

. . .

x1,1 π1

t = 1
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Timing of contracts: for stocks
We distinguish:
▶ spot  contracts: contract, delivery and payment done in the

same period

t

contract, payment and delivery

▶ intertemporal or forward  contracts: contract and payment in
one period, delivery in a future period

t

contract and payment

t + 1

delivery

They differ along two dimensions:
▶ the timing (which may be relevant if there is , v.g., impatience,

depreciation)
▶ the information  set associated to the several actions (and

prices) involved

t

observed

t + 1

stochastic
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Timing of contracts: for flows

▶ spot contracts 

t
contract, payment and delivery

t + 1

▶ forward contracts 

t
contract and payment

t + 1
delivery

▶ information 

t
observed

t + 1
stochastic
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  The real part of the economy 
 

12 / 64



The real part of the economy

Refers to:
▶ technology: the type of availability of resources

▶ exchange economies: the availability of the resources is
independent of decisions over time,

▶ production economies: availability of resources is dependent on
decisions in previous periods

▶ preferences: choice among random sequences of consumption
▶ distribution of households: they can be homogenous or

heterogenous regarding
▶ endowments or technology
▶ preferences
▶ information
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Technology
If we consider a flow of resources for household i:
▶ The resource for household i is a process {Yi} = {yi

0,Yi
1}  where

yi
t,s is the endowment of household i at time t for the state of

nature s, with possible realizations and probabilities

0 1 2

yi
0, 1


yi

1,1
. . .
yi

1,s
. . .

yi
1,N

,


πi

1
. . .
πi

s
. . .
πi

N



▶ in an exchange economy 

Yi
1 independent of yi

0

 
▶ in a production economy

Yi
1 = Fi

1(yi
0) dependent on yi

0
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Preferences
household i chooses  among:
▶ Sequences of consumption {Ci} = {ci

0,Ci
1} is the consumption

flow for household i

0 1 2

ci
0, 1


ci

1,1
. . .
ci

1,s
. . .

ci
1,N

,


πi

1
. . .
πi

s
. . .
πi

N



where the probabilities can be objective or subjective, exogenous
or endogenous, homogeneous or heterogeneous

▶ Evaluated by an intertemporal utility functional 

Ui({Ci}) = Ui(ci
0,Ci

1
)
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Preferences

The two cases have already been considered (see last slide)
▶ discounted time-additive von-Neumann Morgenstern functional

U({C}) = u(c0) + βE[u(C1)]

▶ Epstein-Zin utility (see last slide)

U({C}) = u−1
[
(1 − β) u(c0) + β u

(
v−1E[v(C1)]

))
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  Distribution of households
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Distribution

▶ The idiosyncratic components defining a household are:
▶ endowments (Yi)
▶ preferences (βi, ui) (impatience, risk aversion)
▶ information Pi (only makes sense with subjective probabilities)

▶ households can be homogeneous  or heterogeneous regarding one
or all of the previous variables and parameters
in a homogeneous, or representative household  economy:
endowments, preferences and information are equal
in a heterogeneous economy: households differ  in at least one
of the three dimensions: endowments (Yi ̸= Yj), preferences
(βi ̸= βj or ui(.) ̸= uj(.)), or information (Pi ̸= Pj)
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  The market structure
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Autarky versus trade economies

The economies are distinguished by the exchanges that households
can make.
▶ In autarky  all households are hand-in-mouth households

ci
t,s = yi

t,s, t = 0, 1, s = 1, . . . ,N

0 1 2

ci
0 = yi

0


ci

1,1
. . .
ci

1,s
. . .

ci
1,N

 =


yi

1,1
. . .
yi

1,s
. . .

yi
1,N


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Autarky versus trade economies

▶ If there are markets for intertemporal transfers of contingent
goods, households can trade and be able to make

ci
t,s ̸= yi

t,s, t = 0, 1, s = 1, . . . ,N

by shifting resources across time (savings) and states of nature
(self-insurance).

0 1 2

ci
0 ̸= yi

0


ci

1,1
. . .
ci

1,s
. . .

ci
1,N

 ̸=


yi

1,1
. . .
yi

1,s
. . .

yi
1,N


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Real versus financial markets

We distinguish further:
▶ real markets:

market for goods,
which can be spot or forward
prices and deliveries are referred to periods 

▶ financial markets:
market on financial instruments,
which are always forward (in an economic sense)
and prices and deliveries are referred to dates 
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Markets and general equilibrium models
Simultaneous versus sequential market economies

 
We consider next two economies which are distinguished by the
type of intertemporal contracts available:
▶ Arrow Debreu economies:

there are AD contingent goods traded in spot and forward real 
markets ⇒ there is simultaneous market equilibrium

▶ finance economies:
Radner economies in which financial  assets are traded ⇒ there
is sequential market equilibrium

They can be equivalent under some conditions, i.e., have the
same equilibrium allocations
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  Two-period DSGE for Arrow-Debreu economies
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Summary

    Two period Arrow-Debreu exchange economy
1. Contracts and markets
2. The household problem
3. The dynamic stochastic general equilibrium (DSGE) for a general

economy
4. The dynamic stochastic general equilibrium (DSGE) for a

representative household economy (RAE)
5. Characterizing the DSGE for the RAE
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  1. Contracts and markets
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AD exchange economy: markets

Existing markets:
▶ 1 spot market operating at period t = 0, where the price p0 is set
▶ N markets for AD contracts operating at period t = 0, where the

price vector Q̃ clears the market.
We can characterize AD markets  by the payoff sequence
{Q̃,X1} where
▶ prices are

Q̃ = (q̃1, . . . , q̃s, . . . , q̃N)

 
▶ and the deliveries are

X1 = (x1,s)
N
s=1 =


1 . . . 0 . . . 0
. . . . . . . . . . . . . . .
0 . . . 1 . . . 0
. . . . . . . . . . . . . . .
0 . . . 0 . . . 1


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AD exchange economy: Arrow-Debreu contracts
AD contract: is a real forward contract such that
▶ for a price associated to state s = i, q̃i paid in period t = 0
▶ there is delivery of a contingent good in period t = 1 at state s = i

x1,i =

{
1, if s = i
0, if s ̸= i

Every contract generates the payoff flow :{−q̃i,X1,i}: 

0 1 2

−q̃i



0
...
0
1
0
...
0



s = 1
...

s = i − 1
s = i

s = i + 1
...

s = N

This allows to extend the static GE theory to the present
intertemporal and stochastic economy context
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AD exchange economy: Arrow-Debreu contracts
Transactions in every AD market:
▶ The number of contracts is

Z1 = (z1,1, . . . , z1,s, . . . , z1,N)
⊤

  where
▶ if the household is a buyer of the k-contract, then z1,k > 0, and

▶ pays q̃kzk at t = 0
▶ receives zk units of the good at t = 1 if the state k occurs and 0

otherwise
▶ if the household is a seller of the l-contract, then z1,l < 0, and

▶ receives q̃lzl at t = 0 and
▶ delivers zl units of the good at t = 1 if the state l occurs and 0

otherwise
▶ Then total net expenditure in all AD markets is

Q̃.Z1 =

N∑
s=1

q̃sz1,s =

B∑
s=1

q̃sz1,s︸ ︷︷ ︸
+

+

N∑
s=B+1

q̃sz1,s︸ ︷︷ ︸
−

  If it buys the first B contracts and sels N − B contracts
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AD exchange economy: transactions

▶ Transactions in the spot market:
the net demand: z0.
then the total expenditure is p0z0

▶ Transactions in the AD market:
the net demand: Z1.
then the total expenditure is Q̃.Z1

▶ The total net expenditure in period t = 0 is

p0 z0 + Q̃.Z1 = 0
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  2. Household’s problem
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AD exchange economy: consumption financing
▶ Household i receives a sequence of endowments

{Yi} = {yi
0,Yi

1}

 
▶ Which finance the (random) sequence of consumption,

{Ci} = {ci
0,Ci

1}, out of his endowment, such that
▶ in the period t = 0

ci
0 = zi

0 + yi
0

 
▶ in period t = 1, contingent on the information available and

contracts done at time t = 0

Ci
1 = Zi

1 + Yi
1 ⇐⇒


ci

1,1
. . .
ci

1,s
. . .

ci
1,N

 =


zi

1
. . .
zi

s
. . .
zi

N

+


yi

1,1
. . .
yi

1,s
. . .

yi
1,N


 

32 / 64



AD exchange economy: household’s budget constraint

As {
ci

0 − yi
0 = zi

0, for t = 0
ci

1,s − yi
1,s = zi

1,s, for t = 1, for every s = 1, . . . ,N

i.e. in every period and for any state of nature total income is
equal to total expenditure
then the budget constraint  at time t = 0 (i.e., in the beginning
of period 0) is

p0 (ci
0 − yi

0) + Q̃.(Ci
1 − Yi

1) = p0 (ci
0 − yi

0) +

N∑
s=1

q̃s
(
ci

1,s − yi
1,s
)
= 0
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AD exchange economy: stochastic discount factor

We define:
▶ the relative price of AD contracts also called the price of the

state of nature
Q⊤ =

(
q1, . . . , qs, . . . , qN

)
  where

qs ≡
q̃s
p0

, s = 1, . . . ,N.

 
▶ the stochastic discount factor is

M⊤ =
(

m1, . . . ,ms, . . . ,mN

)
  where

ms ≡
qs
πs

, s = 1, . . . ,N.
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AD exchange economy: household’s problem
Choose a contingent plan {Ci} = {ci

0,Ci
1}:

▶ that maximizes the intertemporal utility functional

Ui({Ci}) = Ui
(

ci
0,Ci

1

)
= Ui

(
ci

0,
(
ci

1,1, . . . , ci
1,N
))

 
▶ subject to the intertemporal (instantaneous) budget

constraint

ci
0 +

N∑
s=1

qs ci
s = yi

0 +

N∑
s=1

qs yi
s

 
▶ given: the AD prices and endowments (Q, {Yi}),

We define the wealth of the household by the value of the
endowments at t = 0

hi
0 ≡ yi

0 +

N∑
s=1

qs yi
s
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AD exchange economy: household’s problem
▶ Formally the problem for household i is

max
ci

0,Ci
1

Ui
(

ci
0,Ci

1

)
subject to
ci

0 + Q · Ci
1 = hi

0

 
▶ Particular case: If the utility functional is vNM we have

max
ci

0,Ci
1

Ui
(

ci
0,Ci

1

)
= ui(ci

0) + β Ei[ui(Ci
1)]

subject to
ci

0 + Q · Ci
1 = hi

0
 

▶ The index i denotes potential idiosyncratic differences in wealth
(hi), information (Ei), in patience (βi) and in aversion to risk (ui)
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AD exchange economy: household’s problem
Solution for the benchmark case

▶ Consider the case for any household i (I economize in the
notation)

▶ The Lagrangian

L = u(c0) + β
N∑

s=1
πs u(c1,s) + λ

(
h0 − c0 −

N∑
s=1

qs c1,s

)
▶ The f.o.c are

∂L
∂c0

= 0 ⇐⇒ u′(c0) = λ

∂L
∂c1,s

= 0 ⇐⇒ β πs u′(c1,s) = λ qs for s = 1, . . . ,N

∂L
∂λ

= 0 ⇐⇒ h0 = c0 +

N∑
s=1

qs c1,s
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AD exchange economy: household’s problem
Solution for the benchmark case

▶ At the households’s optimum c∗0, C∗
1 we have

qs u′(c∗0) = β πs u′(c∗1,s) for s = 1, . . . ,N

c∗0 +
N∑

s=1
qs c∗1,s = h0 = y0 +

N∑
s=1

qs y1,s

▶ There are 1 + n equations and 1 + n variables: although only one
state of nature s will be realized, the household has to make sure
that it can consume in every possible state of nature (Intuition:
our wardrobe - although we have different cloths for different
situations we only wear one at a time, and we can only wear any
cloth that we bought previously)

▶ Observe that the intertemporal marginal rate of
substitution, for each state, is equal to the inverse
stochastic discount factor 

IMRS0,1,s =
u′(c∗0)

β u′(c∗1,s)
=

πs
qs

=
1

ms
for s = 1, . . . ,N
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  3. DSGE: general definition
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AD exchange economy: general equilibrium

Definition 1
The DSGE for an endowment AD economy is defined  by the
random sequence of distribution of consumption over time and across
households, (Ci,eq)I

i=1, where (Ci,eq)I
i=1 =

(
{ci,eq

0 ,Ci,eq
1 }

)I
i=1, and by

the AD prices, Qeq, given the random sequence of distribution of
endowments

(
{yi

0,Yi
1}
)I

i=1
, such that:

▶ every household i ∈ I determines the optimal sequence of
consumption, taking Yi and Q as given, by solving

{Ci∗} = arg max
{

Ui(ci
0,Ci

1) s.t. ci
0 + Q · Ci

1 ≤ hi
0
}

▶ and markets clear:
I∑

i=1
ci∗

0 =

I∑
i=1

yi
0,

I∑
i=1

ci∗
1,s =

I∑
i=1

yi
1,s, for each s = 1, . . . ,N
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AD general equilibria: intuition

▶ Allows for the determination:
▶ of the Arrow-Debreu price Q = (q1, . . . qN): market price for

transactions across time and the states of nature
▶ or the stochastic discount factor M = (m1, . . .mN): defined as

ms =
qs

πs
▶ In the types of economy

▶ Heterogeneous household economy: dependent upon the
preferences, information and the endowments of the economy and
their distribution among households (i.e, when there are
differences in information, attitudes towards risk and wealth)

▶ Homogeneous (representative) household economy: dependent
upon the preferences, information and the endowments of the
economy
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4. DSGE: representative household economy
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AD exchange and homogeneous economy: general
equilibrium

Assume households are homogeneous: same preferences, same
information, same endowments
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AD exchange and homogeneous economy: general
equilibrium

Definition 2
The DSGE for representative household exchange AD economy is
defined  by the sequence of consumption and prices ({ceq

0 ,Ceq
1 },Qeq)

such that:
▶ the representative household determines the optimal sequence

C∗ = arg max {U(c0,C1) s.t. c0 + Q · C1 = h0}

given Y = {Y0,Y1} and Q,
▶ markets clear

c∗0 = y0,

C∗
1 = Y1

  or, equivalently

c∗t,s = yt,s, for each t = 0, 1, for each s = 1, . . . ,N

 
44 / 64



AD exchange and homogeneous economy: general
equilibrium

Assume:
▶ households are homogeneous: same preferences, same

information, same endowments
▶ households are characterized by a von-Neumann Morgenstern

additive intertemporal utility functional
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  DSGE RAE with von-Neumann Morgenstern
preferences

46 / 64



AD exchange and homogeneous economy: general
equilibrium

Definition 3
The DSGE for representative household exchange AD economy is
defined  by the random sequence of consumption and AD-prices
({ceq

0 ,Ceq
1 },Qeq) such that:

▶ the representative household determines the optimal sequence

C∗ = arg max {u(c0) + β E0[u(C1)] s.t. c0 + E0 [MC1] ≤ h0}

given Y = {Y0,Y1} and Q,
▶ markets clear

c∗0 = y0, . . . ,C∗
1 = Y1

  or, equivalently

c∗t,s = yt,s, t = 0, 1, s = 1, . . . ,N
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AD exchange and homogeneous economy: general
equilibrium

Observation:
▶ Defining the stochastic discount factor

M = Q · P−1 =
( q1
π1

, · · · , qs
πs

, · · · , qN
πN

)
▶ we can write the budget constraint

c0 +

N∑
s=1

qs c1,s = y0 +

N∑
s=1

qs y1,s

as

c0 +

N∑
s=1

πs ms c1,s = y0 +

N∑
s=1

πs ms y1,s

 that is
c0 + E0[M C1] = y0 + E0[M Y1]

 
48 / 64



Determination of equilibrium prices
For the benchmark utility functional

The equilibrium is represented by the following equations:
1. first, the optimality conditions for the household, assuming there

is no satiation u′(c) > 0

u
′
(c∗0) qs = β πs u

′
(c∗1,s), s = 1, . . . ,N

c∗0 +
N∑

s=1
qs c∗1,s = y0 +

N∑
s=1

qs y1,s

 
2. second, the market equilibrium conditions

c∗0 = y0

c∗1,s = y1,s, for each s = 1, . . . ,N
 

3. Then, the budget constraint always holds and substituting in the
arbitrage conditions the market equilibrium conditions yields,

u
′
(y0) qs = β πs u

′
(y1,s), s = 1, . . . ,N

  that we can solve for qs
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Equilibrium AD prices and stochastic discount factor

▶ The equilibrium AD price  is

qeq
s = βπs

(
u′
(y1,s)

u′(y0)

)
, s = 1, . . . ,N

 
▶ or, alternatively, the equilibrium stochastic discount factor is

meq
s = β

(
u′
(y1,s)

u′(y0)

)
, s = 1, . . . ,N
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  5. DSGE for a representative agent economy
(RAE): characterization

51 / 64



AD exchange and homogeneous economy

Proposition 1
Assume an endowment homogenous Arrow-Debreu economy in which
the utility functional is a time additive von-Neumann Morgenstern
utility functional. Then the DGSE is the sequence of consumption
{ceq

0 , Ceq
1 } and the AD price Qeq such that  

ceq
0 = y0 in period t = 0

ceq
1,s = y1,s in period t = 1, and for each state s = 1, . . . ,N

qeq
s = β πs

(u′
(y1,s)

u′(y0)

)
, for s = 1, . . . ,N
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AD exchange and homogeneous economy
Equilibrium consumption

Then the general equilibrium when households are homogeneous and
there is no satiation :
▶ no saving and no trade consumption is equal the endowment

(as in the autarkic economy)

{Ceq
t }1

t=0 = {Yt}1
t=0

▶ there is aggregate uncertainty: because the endowment Y1 is
stochastic;

▶ there is no self insurance: because, in equilibrium, Ceq
1 = Y1

consumption is stochastic,   (same distribution of consumption
and of endowments)
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AD exchange and homogeneous economy
Equilibrium AD price

▶ The equilibrium relative price for AD contracts is also stochastic

Qeq =

(
βπ1

(
u′
(y1,1)

u′(y0)

)
, . . . , βπN

(
u′
(y1,N)

u′(y0)

))⊤

  is a function of the fundamentals (resources, preferences and
information)

▶ as qeq
s (y0,Y1) if the u(·) is concave

∂qeq
s

∂y0
> 0, ∂qeq

s
∂y1,s

< 0, ∂qeq
s

∂y1,s′
= 0

  increases with y0, decreases with y1,s and is neutral for y1,s′ (no
response to the whole distribution)

▶ and also
∂qeq

s
∂β

> 0, ∂qeq
s

∂πs
> 0, ∂qeq

s
∂πs′

= 0

  decreases with patience, increases with the probability of the
own state but is neutral to the probabilities of the other states
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AD exchange and homogeneous economy
Equilibrium AD price

▶ The equilibrium stochastic discount factor (SDF)

Meq =

(
β

(
u′
(y1,1)

u′(y0)

)
, . . . , β

(
u′
(y1,N)

u′(y0)

))⊤

which is again a function of the fundamentals (resources and
preferences)

▶ has the same characterization, but is independent from πs

meq
s = meq

s
( +

β,
+y0,

0y1,1 , . . . ,
−y1,s, . . . ,

0y1,N
)

▶ Interpretation: sign + increases in net demand for future
consumption; sign − increase in net future supply; 0 consequence
of the independence between states of nature assumption in the
vNM utility functional U(c0,C1)
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An example with log utility
SDF for state s

Assuming:
▶ logarithmic Bernoulli utility function

u(c) = ln (c)

▶ stochastic endowment’s growth factor

y1,s = (1 + γs)y0, s = 1, . . . ,N

 
▶ How does uncertainty affects the stochastic discount factor and

the utility of the household ?
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An example with log utility
Distribution of the SDF

▶ the stochastic discount factor is m∗
s = β

1+γs

2 4 6 8 10

0.5

1.0

1.5

0 2 4 6 8

1

2

3

4

Figure: Growth factor (1 + Γ) and stochastic the associated discount
factor M

▶ Conclusions:
1. there is aggregate uncertainty
2. stochastic discount factor is negatively correlated  with the

anticipated rate of growth
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An example with log utility
Sampling the SDF

▶ the stochastic discount factor is

meq
s =

β

1 + γs

 

0.9 1.0 1.1 1.2

0.8
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1.0

1.1

Figure: Sampling from γ ∼ N(0.05, 0.1) and the stochastic discount factor
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An example with log utility
Aggregate uncertainty and lack of insurance

▶ The utility for the household is (prove it)

U(C∗) = ln (c∗0) + βE0[ln (C∗
1)] =

= ln (y0) + βE0[ln (Y1)] =

= ln
(

y1+β
0 (GE0[1 + Γ])β

)
increases with y0 and with the geometric mean of the growth rate.

▶ Question: why this looks like the utility in a Robinson-Crusoe
economy ?

▶ Question: what are the consequences of more volatility, to the
stochastic discount factor and to household’s utility ?
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  DSGE RAE with EZ preferences

60 / 64



AD exchange and homogeneous economy
Epstein-Zin preferences

▶ DSGE representation

qs U0(c0,C1) = U1s(c0,C1), for s = 1, . . . ,N
c0 = y0

c1,s = y1,s, for s = 1, . . . ,N

▶ the equilibrium price is

qeq
s =

U1s(y0,Y1)

U0(y0,Y1)
, for s = 1, . . . ,N

▶ using our previous slide we have

meq
s = β E[Y1−ϱ

1 ]
ϱ−ζ
1−ϱ y−ϱ

1,s yζ0

▶ Setting y1,s = (1 + γs) y0

meq
s = β E[(1 + Γ)1−ϱ]

ϱ−ζ
1−ϱ (1 + γs)

−ϱ
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AD exchange and homogeneous economy
Epstein-Zin preferences

▶ differently from the vNM case, the stochastic discount factor

meq
s = meq

s
( +

β,
+y0,

?y1,1 , . . . ,
?y1,s, . . . ,

?y1,N
)
, for s = 1, . . . ,N

▶ depends on the information referring to all the states of
nature from Y1, but we expect that ∂ms

∂y1,s′
> 0 (if ϱ > ζ)

▶ depends on the information referring to all the states of
nature from P, but we expect that ∂ms

∂πs
> 0 (if ϱ > ζ) for any s

▶ the dependence on the own state is a function of ϱ and not ζ
(which determines the level in a negative way)

▶ the parameter ζ affects the level of the whole distribution of M
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Benchmark and EZ preferences
Sampling the SDF

▶ the stochastic discount factors for the benchmark and the EZ
preferences

ms = β (1 + γs)
−ζ , and ms = β E[(1 + Γ)1−ϱ]

ϱ−ζ
1−ϱ (1 + γs)

−ϱ
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Figure: Sampling from γ ∼ N(0.05, 0.1) and for ζ = 1.5 and ϱ = 1.9
and the stochastic discount factor (blue: EZ, brown: benchmark)
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