

Quality Management Exercises Solutions

QM_1:

Sample	1	2	3	4	5	6	7	8	9	10	11	12	13
Average Weight	301	307	308	302	311	310	301	310	305	305	310	303	310
Range	10	15	8	7	21	9	12	6	17	11	18	9	15
Sample	14	15	16	17	18	19	20	21	22	23	24	25	26
Average Weight	310	305	312	304	310	306	312	302	307	310	303	311	308
Range	14	18	10	12	15	8	16	15	19	10	15	13	18

a)

Production and Operations Management (POM) Second Semester 2023/2024

c)

Assuming that the weight follows a Normal distribution, and the process is in statistical control. The mean and standard deviation of the process estimated from the control chart are (n = 5; $d_2 = 2.326$):

$$\hat{\mu} = \bar{X} = 307.04 \text{ and } \hat{\sigma} = \frac{\bar{R}}{d_2} = \frac{13,12}{2,326} = 5.64 \text{ grams}$$

USL = 315 grams and LSL = 285 grams

To assess the Process Capability, we need to calculate the Cpk:

$$C_{pk} = \min(C_{pki}; C_{pks}) = (1.3; 0.47) = 0.47,$$
$$C_{pki} = \frac{\hat{\mu} - LSL}{3\hat{\sigma}} = \frac{307.04 - 285}{3 \times 5.64} = 1.3$$
$$C_{pks} = \frac{USL - \hat{\mu}}{3\hat{\sigma}} = \frac{315 - 307.04}{3 \times 5.64} = 0.47$$

As C_{pk} is less than 1, the process is not capable of producing according to specifications. Moreover, we can see that the process is not centered ($Cp_{ki} \neq Cp_{ks}$).

$$C_p = \frac{USL - LSL}{6 \times \sigma} = \frac{315 - 285}{6 \times 5.64} = 0.89$$

