

List 3 - Lebesgue integral

- 1. Prove property (2) of Proposition 4.3 of the lecture notes.
- 2. Consider a simple function $\varphi = \sum_{j=1}^{N} c_j \mathcal{X}_{A_j}$ (not necessarily non-negative). Show that:

(a)
$$\varphi . \mathcal{X}_A = \sum_{j=1}^N c_j \mathcal{X}_{A_j \cap A}.$$

(b) $\int_A \varphi \, d\mu = \sum_{j=1}^N c_j \mu (A_j \cap A).$

- 3. Let μ be the counting measure. Consider $A = \{a_1, a_2, a_3\} \in \mathcal{F}$ and a measurable function f.
 - (a) Is $\mathcal{X}_A f$ a simple function?
 - (b) Compute $\int_A f \, d\mu$.
- 4. Show that if F_1 and F_2 are anti-derivatives of f, then $F_1 F_2$ is a constant function.
- 5. Given measures μ_1, μ_2 and $c_1, c_2 \ge 0$, let $\mu = c_1\mu_1 + c_2\mu_2$. Take any function f which is simultaneously μ_1 -integrable and μ_2 -integrable. Show that f is also μ -integrable and that

$$\int f \, d\mu = c_1 \int f \, d\mu_1 + c_2 \int f \, d\mu_2.$$

Hint: First prove it for simple functions and then use the Monotone Convergence Theorem.

- 6. Let $\mathcal{A} \subset \mathcal{F}$ a σ -subalgebra, f, g are \mathcal{F} -measurable functions and h is \mathcal{A} -measurable. Are the following propositions true? If not, write examples that contradict the statements.
 - (a) If $\int_B f \, d\mu = \int_B g \, d\mu$ for every $B \in \mathcal{F}$, then f = g a.e.
 - (b) If $\int_A f \, d\mu = \int_A h \, d\mu$ for every $A \in \mathcal{A}$, then f = h a.e.
- 7. Use the Dominated Convergence Theorem to determine the limits:

(a)
$$\lim_{n \to +\infty} \int_{[0,\pi]} \frac{\sqrt[n]{x}}{1+x^2} d\delta_0(x)$$
(b)
$$\lim_{n \to +\infty} \int_{[0,\pi]} \frac{\sqrt[n]{x}}{1+x^2} d\delta_0(x)$$
(c)
$$\lim_{n \to +\infty} \int_{[0,\pi]} \frac{\sqrt[n]{x}}{1+x^2} dx$$
(d)
$$\lim_{n \to +\infty} \int_{\mathbb{R}} e^{-|x|} \cos^n(x) dx$$
(e)
$$\lim_{n \to +\infty} \int_{[0,+\infty[} \frac{r^n}{1+r^{n+2}} d\delta_1(r)$$
(f)
$$\lim_{n \to +\infty} \int_{[0,+\infty[} \frac{r^n}{1+r^{n+2}} dr$$

Page 1 of **??**