

List 2 - Measurable functions

- 1. Let $(\Omega_1, \mathcal{F}_1)$ and $(\Omega_2, \mathcal{F}_2)$ be measurable spaces and consider a function $f: \Omega_1 \to \Omega_2$. Show that:
 - (a) If f is $(\mathcal{F}_1, \mathcal{F}_2)$ -measurable, it is also $(\mathcal{F}, \mathcal{F}_2)$ -measurable for any σ -algebra $\mathcal{F} \supset \mathcal{F}_1$.
 - (b) If f is $(\mathcal{F}_1, \mathcal{F}_2)$ -measurable, it is also $(\mathcal{F}_1, \mathcal{F})$ -measurable for any σ -algebra $\mathcal{F} \subset \mathcal{F}_2$.
- 2. Show that:
 - (a) $\mathcal{X}_{f^{-1}(A)} = \mathcal{X}_A \circ f$ for any $A \subset \Omega_2$ and $f : \Omega_1 \to \Omega_2$.
 - (b) $\mathcal{X}_{A\cap B} = \mathcal{X}_A \mathcal{X}_B$ for $A, B \subset \Omega$.
 - (c) $\mathcal{X}_{A\cup B} = \mathcal{X}_A + \mathcal{X}_B \mathcal{X}_{A\cap B}$ for $A, B \subset \Omega$.
- 3. Let $f: \Omega_1 \to \Omega_2$ and $g: \Omega_2 \to \Omega_3$ be measurable functions. Prove that $g \circ f$ is also measurable.
- 4. Show that a function f is measurable iff f^+ and f^- are measurable. Hint: $f^+ = \mathcal{X}_A f$ where $A = \{x \in \Omega : f(x) > 0\}.$
- 5. Let $f: (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be a measurable function. Show that:
 - (a) |f| is also measurable.
 - (b) $f^{-1}(\{a\}) = \{x : f(x) = a\}$ is a measurable set.
- 6. Let $\mathcal{A} \subset \mathcal{F}$ be σ -algebras. Are the following propositions true? If not, write examples that contradict the statements.
 - (a) If a function is \mathcal{A} -measurable, then it is also \mathcal{F} -measurable.
 - (b) If a function is \mathcal{F} -measurable, then it is also \mathcal{A} -measurable.
- 7. Consider a simple function φ . Write $|\varphi|$ and determine if it is also simple.
- 8. Let $([0,1], \mathcal{B}([0,1]), m)$ be the Lebesgue measure space and $f_n(x) = x^n, x \in [0,1], n \in \mathbb{N}$. Determine the convergence of f_n .
- 9. Show that if the limit of a sequence of measurable functions exists, it is also measurable.

- 10. Let $(\Omega_1, \mathcal{F}_1, \mu)$ be a measure space, $(\Omega_2, \mathcal{F}_2)$ a measurable space, and $f: \Omega_1 \to \Omega_2$ a measurable function. Show that:
 - (a) The function $\mu \circ f^{-1}$ is a measure on \mathcal{F}_2 .
 - (b) If μ is a probability measure, then $\mu \circ f^{-1}$ is also a probability measure.
- 11. Let $(\Omega, \mathcal{P}, \delta_a)$ be a measure space where δ_a is the Dirac measure at $a \in \Omega$. If $f : \Omega \to \mathbb{R}$ is measurable, what is its induced measure (distribution)?
- 12. Compute $m \circ f^{-1}$ where $f(x) = 2x, x \in \mathbb{R}$, and m is the Lebesgue measure on \mathbb{R} .