

List 4 - Distributions

- 1. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a $\mathcal{B}(\mathbb{R})$ -measurable function and α is the distribution of a random variable X. Find the distribution of $f \circ X$.
- 2. Show that $\operatorname{Var}(X) = 0$ iff $\mathbb{P}(X = \mathbb{E}(X)) = 1$.
- 3. Consider X_1, \ldots, X_n integrable random variables. Show that if $Cov(X_i, X_j) = 0, i \neq j$, then

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}).$$

- 4. Let X be a random variable and $\lambda > 0$. Prove the Chebyshev's inequalities:
 - (a) For $k \in \mathbb{N}$,

$$\mathbb{P}(|X| \ge \lambda) \le \frac{1}{\lambda^k} \mathbb{E}(|X|^k).$$

When k = 1 this is also called *Markov inequality*.

(b) If $\mathbb{E}(X)$ is finite,

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge \lambda) \le \frac{\operatorname{Var}(X)}{\lambda^2}.$$

5. Find the distribution of a simple function in the form

$$X = \sum_{j=1}^{N} c_j \mathcal{X}_{A_j}$$

and compute its moments.

6. Determine the distribution functions of the following probability measures on \mathbb{R} (δ_a is the Dirac measure at a and m_A is the Lebesgue measure on A):

(a)
$$\mu = \frac{1}{3}\delta_2 + \frac{2}{3}\delta_3$$

(b) $\mu = \frac{1}{3}\delta_2 + \frac{1}{3}\delta_3 + \frac{1}{3}m_{[0,1]}$

- 7. Show that for $-\infty \leq a \leq b \leq +\infty$ we have
 - (a) $\alpha(\{a\}) = F(a) F(a^{-})$ (e) $\alpha(] \infty, b[) = F(b^{-})$
 - (b) $\alpha(]a, b[) = F(b^{-}) F(a)$ (c) $\alpha([a, b]) = F(b^{-}) - F(a^{-})$ (f) $\alpha([a, +\infty[) = 1 - F(a^{-}))$
 - (d) $\alpha([a,b]) = F(b) F(a^{-})$ (g) $\alpha([a,+\infty[) = 1 F(a))$

Page 1 of **??**

- 8. Compute the distribution function of the following distributions:
 - (a) The Dirac distribution δ_a at $a \in \mathbb{R}$.
 - (b) The Bernoulli distribution $p\delta_a + (1-p)\delta_b$ with $0 \le p \le 1$ and $a, b \in \mathbb{R}$.
 - (c) The uniform distribution on a bounded interval $I \subset \mathbb{R}$

$$m_I(A) = \frac{m(A \cap I)}{m(I)}, \qquad A \in \mathcal{B}(\mathbb{R}),$$

where m is the Lebesgue measure.

- (d) $\alpha = c_1 \delta_a + c_2 m_I$ on $\mathcal{B}(\mathbb{R})$ where $c_1, c_2 \ge 0$ and $c_1 + c_2 = 1$. (e) $\alpha = \sum_{n=1}^{+\infty} \frac{1}{2^n} \delta_{-1/n}$.
- 9. Find the distribution functions of the following discrete distributions $\alpha(A) = P(X \in A), A \in \mathcal{B}(\mathbb{R})$:

(a) Degenerate (or Dirac or atomic) distribution: $\alpha(A) = \begin{cases} 1, & a \in A \\ 0, & \text{o.c.} \end{cases}$, where $a \in \mathbb{R}$.

- (b) Binomial distribution with $n \in \mathbb{N}$: $\alpha(\{k\}) = C_k^n p^k (1-p)^{n-k}, \quad 0 \le k \le n.$
- (c) Poisson distribution with $\lambda > 0$: $\alpha(\{k\}) = \frac{\lambda^k}{k!e^{\lambda}}, \quad k \in \mathbb{N} \cup \{0\}.$ This describes the distribution of 'rare' events with rate λ .
- (d) Geometric distribution with $0 : <math>\alpha(\{k\}) = (1-p)^k p$, $k \in \mathbb{N} \cup \{0\}$. This describes the distribution of the number of unsuccessful attempts preceding a success with probability p.
- (e) Negative binomial distribution: $\alpha(\{k\}) = C_k^{n+k-1}(1-p)^k p^n, \quad k \in \mathbb{N} \cup \{0\}.$ This describes the distribution of the number of accumulated failures before *n* successes.
- 10. Find the distribution functions of the following absolutely continuous distributions $\alpha(A) = P(X \in A) = \int_A f(x) dx$, $A \in \mathcal{B}(\mathbb{R})$ where f is the density function:
 - (a) Uniform distribution on [a, b]: $f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a, b] \\ 0, & \text{o.c.} \end{cases}$
 - (b) Exponential distribution: $f(x) = e^{-x}, x \ge 0$
 - (c) The two-sided exponential distribution: $f(x) = \frac{1}{2}e^{-|x|}, x \in \mathbb{R}$
 - (d) The Cauchy distribution: $f(x) = \frac{1}{\pi} \frac{1}{1+x^2}, \quad x \in \mathbb{R}$
- 11. Let $X_n \sim U([0,1])$ and $Y_n = -\frac{1}{\lambda} \log(1-X_n)$, with $\lambda > 0$. Show that $Y_n \sim \operatorname{Exp}(\lambda)$.