

List 5 - Independence

- 1. Prove that:
 - (a) If A_1 and A_2 are independent, then A_1^c and A_2 are also independent.
 - (b) Any full probability event is independent of any other event. The same for any zero probability event.
 - (c) Two disjoint events are independent iff at least one of them has zero probability.
 - (d) Consider two events $A_1 \subset A_2$. They are independent iff A_1 has zero probability or A_2 has full probability.
- 2. Suppose that A and C are independent events as well as B and C with $A \cap B = \emptyset$. Show that $A \cup B$ and C are also independent.
- 3. Give examples of probability measures \mathbb{P}_1 and \mathbb{P}_2 , and of events A_1 and A_2 such that $\mathbb{P}_1(A_1 \cap A_2) = \mathbb{P}_1(A_1) \mathbb{P}_1(A_2)$ but $\mathbb{P}_2(A_1 \cap A_2) \neq \mathbb{P}_2(A_1) \mathbb{P}_2(A_2)$. Notice that the definition of independence depends on the probability measure.
- 4. Show that any random variable is independent of a constant random variable.
- 5. Let X and Y be independent random variables and f and g \mathcal{B} -measurable functions on \mathbb{R} . Prove that:
 - (a) f(X) and g(Y) are independent.
 - $(b) \ \mathbb{E}(f(X)g(Y)) = \mathbb{E}(f(X)) \ \mathbb{E}(g(Y)) \quad \text{if} \quad \mathbb{E}(|f(X)|), \mathbb{E}(|g(Y)|) < +\infty.$
- 6. Suppose that the random variables X and Y have only values in $\{0,1\}$. Show that if $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$, then X, Y are independent.
- 7. Construct an example of two uncorrelated random variables that are not independent.
- 8. Show that if $\operatorname{Var}(X) \neq \operatorname{Var}(Y)$, then X + Y and X Y are not independent.
- 9. Prove that:
 - (a) If $\mathcal{G} \subset \mathcal{F}_1$ and $\mathcal{F}_1, \mathcal{F}_2$ are independent σ -algebras, then \mathcal{G} and \mathcal{F}_2 are also independent.
 - (b) Two random variables X, Y are independent iff $\sigma(X)$ and $\sigma(Y)$ are independent.