

## List 8 - Martingales

- 1. Let  $X_1, X_2, \ldots$  be a martingale with respect to the filtration  $\mathcal{F}_1, \mathcal{F}_2, \ldots$  Show that:
  - (a) If  $X_0 = E(X_1)$  and  $\mathcal{F}_0 = \{\emptyset, \Omega\}$ , then  $X_0, X_1, X_2, \ldots$  is a martingale with respect to the filtration  $\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2, \ldots$
  - (b)  $X_n$  is a martingale with respect to  $\sigma(X_1, \ldots, X_n)$ .
- 2. Let  $Y_1, Y_2, \ldots$  be independent random variables such that

$$P(Y_n = a_n) = \frac{1}{2n^2}, \qquad P(Y_n = 0) = 1 - \frac{1}{n^2} \qquad \text{and} \qquad P(Y_n = -a_n) = \frac{1}{2n^2},$$

where  $a_1 = 2$ ,  $a_n = 4 \sum_{j=1}^{n-1} a_j$ . Decide if  $X_n$  and  $\sigma(Y_1, \ldots, Y_n)$  define a martingale when:

- (a)  $X_n = \sum_{j=1}^n Y_j.$ (b)  $X_n = \sum_{j=1}^n \frac{1}{2^j} Y_j.$ (c)  $X_n = \sum_{j=1}^n Y_j^2.$
- 3. Let  $Y_1, Y_2, \ldots$  be a sequence of iid random variables such that  $P(Y_n = 1) = p$  and  $P(Y_n = -1) = 1 p$ . Let  $S_n = \sum_{i=1}^n Y_i$ . Decide if  $X_n$  and  $\sigma(Y_1, \ldots, Y_n)$  define a martingale when
  - (a)  $X_n = S_n$ . (b)  $X_n = S_n^2 - n$ . (c)  $X_n = (-1)^n \cos(\pi S_n)$ . (d)  $X_n = \left(\frac{1-p}{p}\right)^{S_n}$ . (e)  $X_n = S_n - (2p-1)n$ .
- 4. Let  $Y_1, Y_2, \ldots$  be a sequence of iid random variables with Poisson distribution and mean value  $\lambda$ . Consider also the sequence

$$X_n = X_{n-1} + Y_n - 1, \quad n \in \mathbb{N},$$

and  $X_0 = 0$ . Find the values of  $\lambda$  for which  $X_n$  is a martingale, sub-martingale or super-martingale, with respect to the filtration  $\sigma(Y_1, \ldots, Y_n)$ .

5. Let  $X_n$  be a martingale with respect to a filtration  $\mathcal{F}_n$ . Prove that

$$E(X_{n+j}|\mathcal{F}_n) = X_n$$
, for all  $n, j \in \mathbb{N}$ .

## Page 1 of 2

- 6. Let  $X_n$  be a martingale with respect to the filtration  $\mathcal{F}_n$  and  $\tau$  is a stopping time. Determine  $E(X_{\tau \wedge n})$ .
- 7. Let  $Y_1, Y_2, \ldots$  be a sequence of iid random variables with distribution

$$P(Y_n = 1) = p$$
 and  $P(Y_n = -1) = 1 - p$ , where  $0 and  $X_n = \sum_{j=1}^n Y_j$ .$ 

Compute  $E(\tau)$  for the stopping time

$$\tau = \min\{n \ge 1 \colon X_n = 1\}$$

when:

(a)  $p \le 1/2$ .

*Hint*: Use Wald's equation (when p < 1/2 try also using the optional stopping theorem for  $Z_n = [(1-p)/p]^{X_n}$ ).

(b) \* p > 1/2.

*Hint*: Use the optional stopping theorem for  $Z_n = X_n - (2p-1)n$ . Look first at an application of the optional stopping theorem for  $Z_{\tau \wedge n}$  in order to show that  $E(\tau \wedge n)$  is bounded. Then take the same conclusion for  $E(\tau)$ .