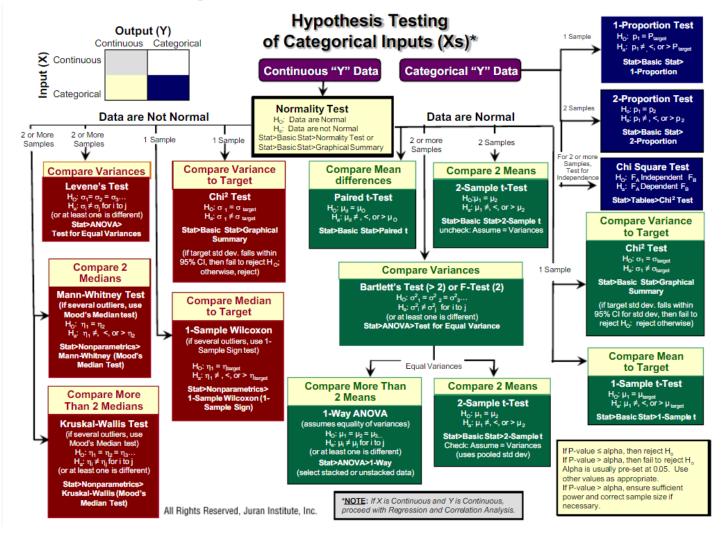
Aula 5:

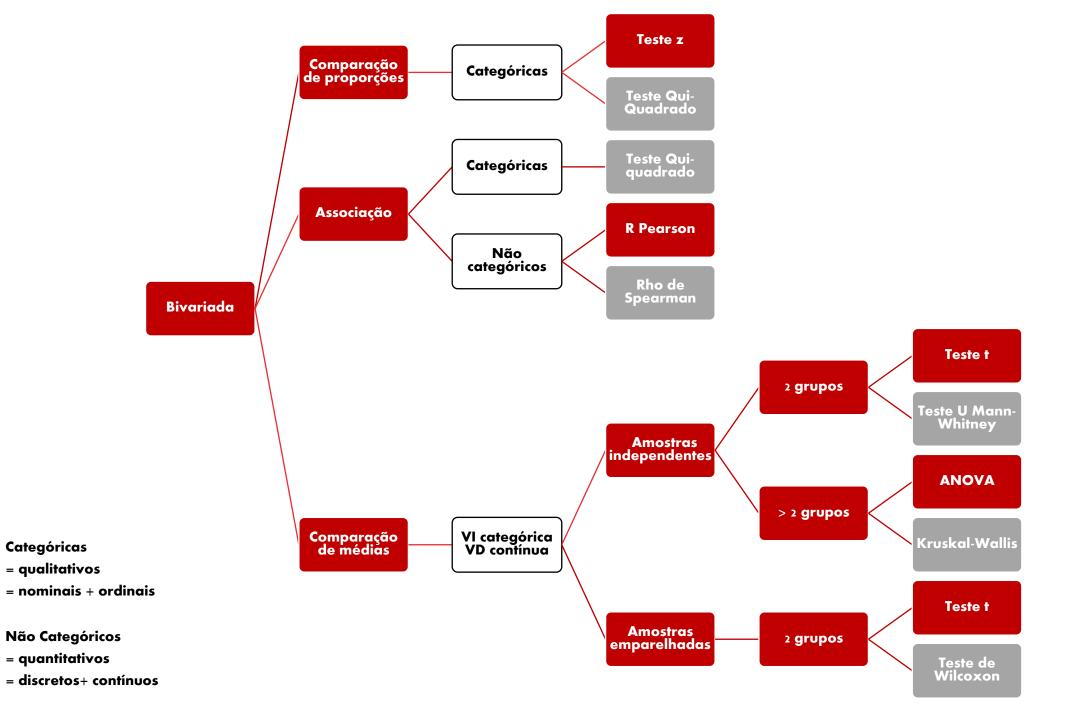
'As diferenças de produtividade entre departamentos são estatisticamente significativas?'

Formulação e Teste de Hipóteses

Docente: Daniela Craveiro

dcraveiro@iseg.ulisboa.pt


No final desta aula,


@s alun@s deverão:

- Saber Distinguir entre Hipótese Nula e Hipótese Alternativa;
- Saber identificar os critérios para a escolha do Teste de Hipótese adequado;
- Saber Distinguir entre Erros de Tipo I e Erros de Tipo II.
- Saber aplicar Testes de Hipóteses para os casos mais comuns

· Como escolher o teste de hipóteses mais adequado?

Categóricas

Testes Paramétricos

Teste não paramétrcos

Resultados possíveis de um teste de hipótese

	A HIPÓTESE NULA É VERDADEIRA	A HIPÓTESE NULA É FALSA
REJEITA-SE A HIPÓTESE NULA	Erro de Tipo I	Decisão Correta
NÃO SE REJEITA A HIPÓTESE NULA	Decisão Correta	Erro de Tipo II

A nossa decisão é tomada olhando para a significância do teste (p), que é no fundo a probabilidade de se observar os nossos dados quando se aceita a hipótese nula.

Assim, quando menor o p menos provável é a hipótese nula.

Toma-se como ponto de decisão o p≤ 0,05. Aceito 5% de cometer um erro do Tipo I, rejeitar incorretamente a hipótese nula quando ela é verdadeira, tomando um nível de confiança de 95%.

Testes de Hipóteses

- 1. A variável segue uma distribuição normal? Teste Shapiro-Wilk
- 2. As variáveis (categóricas) estão associadas? Teste Z proporções | Qui-Quadrado
- 3. As variáveis (quantitativas) estão associadas? R Pearson | Rho Spearman
- 4. A diferença entre médias (2 grupos) é significativa? Teste de T | Teste U
- 5. A diferença entre médias (+2 grupos) é significativa? ANOVA| Kruskal wallis

Testes de Hipóteses

temos de saber:

- o que assumem sobre as variáveis envolvidas (pressupostos)
- que hipóteses (nulas) testam

Teste de hipóteses

A variável segue uma distribuição normal?

Objetivo: Determinar se a distribuição dos salários na organização ('y_wage2') segue uma distribuição normal

Teste de Shapiro-Wilk

Hipótese Nula (H₀):

"Não há diferenças entre uma distribuição normal e a distribuição dos salários"

Hipótese Alternativa (H_1):

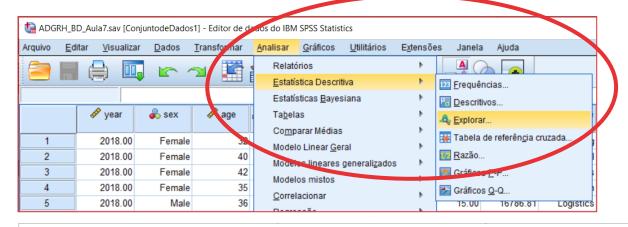
"Há diferenças entre uma distribuição normal e a distribuição dos salários"

Teste de Shapiro-Wilk

NOTA:

Testamos a normalidade para verificar se os **pressupostos dos testes paramétricos** são razoavelmente cumpridos, **especialmente quando a amostra é pequena**.

Se a amostra é pequena (n < 30), o TLC ainda não assegura que a média amostral tenha uma distribuição normal. Nesse caso, a normalidade da variável dependente (ou dos resíduos, no caso da regressão) é importante para garantir a validade do teste.

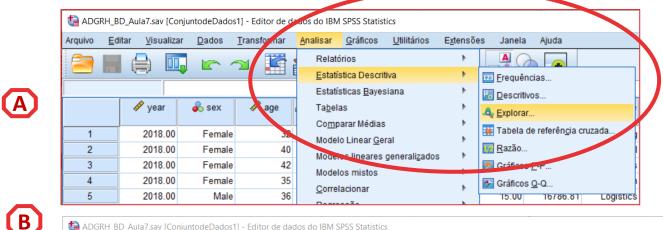

Quando o tamanho da amostra é grande, a distribuição amostral da média tende a ser aproximadamente normal, mesmo que os dados originais sejam assimétricos. Assim, os testes paramétricos tornam-se robustos à violação da normalidade.

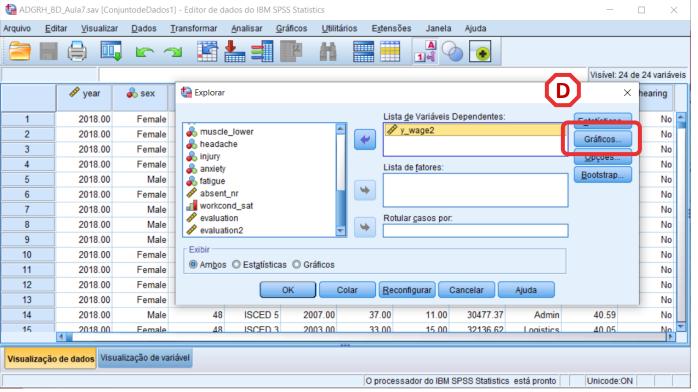
- Selecionar 'Analisar' /
 'Estatisticas Descritivas' /
 'Explorar'
- Selecionar a variável 'y_wage2'

(B)

(c)

 Colocar na caixa 'Lista de Variáveis Dependentes'




- Selecionar 'Analisar' /
 'Estatisticas Descritivas' /
 'Explorar'
- Selecionar a variável 'y_wage2'

(c)

(D)

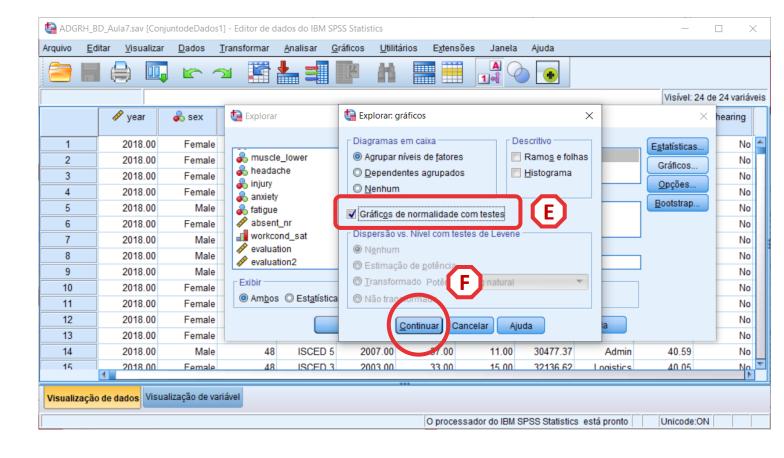
- Colocar na caixa 'Lista de Variáveis Dependentes'
- Selecionar 'Gráficos'

Selecionar 'Analisar' /
 'Estatisticas Descritivas' /
 'Explorar'

A

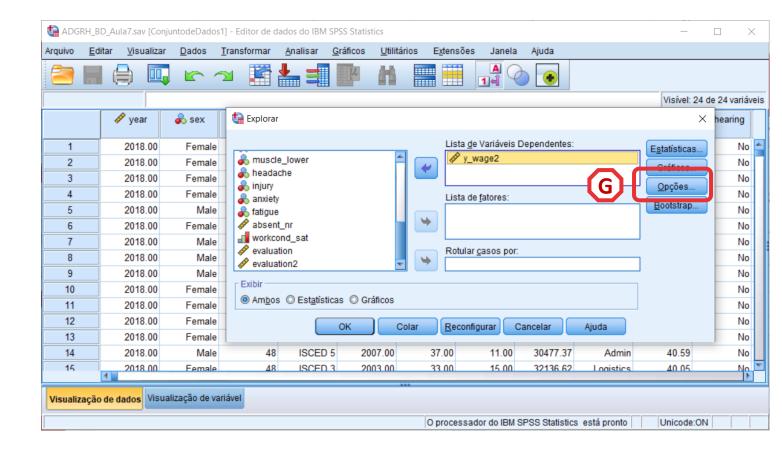
- Selecionar a variável 'y_wage2'
- B

 Colocar na caixa 'Lista de Variáveis Dependentes' **©**

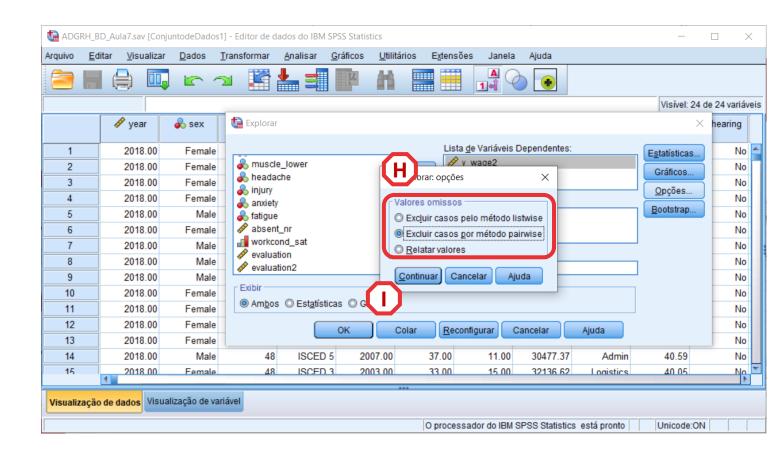

Selecionar 'Gráficos'

D

 Selecionar "Gráficos de normalidade com testes" **(E)**


Selecionar 'Continuar'

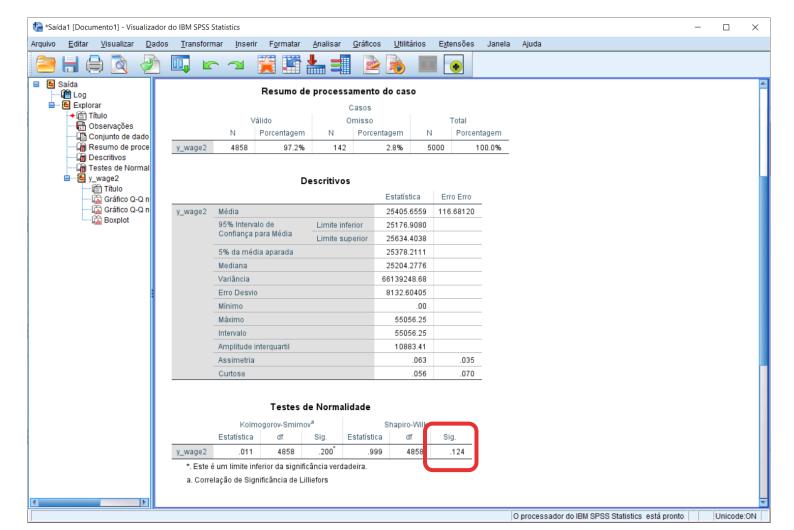
Selecionar 'Opções'



Selecionar 'Opções'

- G
- Selecionar 'Excluir Casos por método pairwise'
- H

Selecionar 'Continuar'/OK

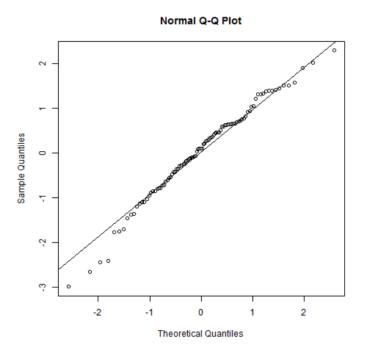


 O resultado é publicado no 'Visualizador de Resultados'

INTERPRETAÇÃO:

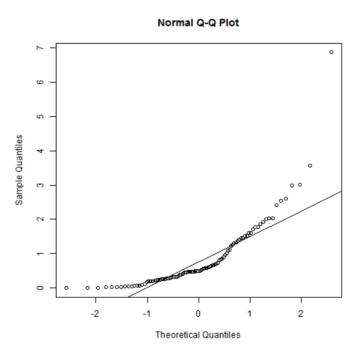
- 'Sig'. ≤ 0.05, rejeita-se a hipótese (H₀) de que a variável segue uma distribuição normal. Aceita-se hipótese H₁
- 'Sig'. > 0.05, não se rejeita a hipótese (H₀) de que a variável segue uma distribuição normal.

A VARIÁVEL SALÁRIOS SEGUE UMA DISTRIBUIÇÃO NORMAL.


Reportar os resultados do Shapiro-Wilk

Com base nos resultados do teste de Shapiro-Wilk ($W_{(4858)}$ = 0.999, p = 0.124), podemos concluir que não há evidências estatisticamente significativas para rejeitar a hipótese nula de que a distribuição da amostra segue uma distribuição normal.

 O SPSS também oferece uma forma de visualizar se a distribuição da variável 'Idade' segue uma distribuição normal:


O gráfico Q-Q

Se os pontos se distribuem mais ou menos ao longo da linha...

... Podemos assumir que a variável <u>segue</u> uma distribuição normal.

Se os pontos seguem uma forma distinta da linha...

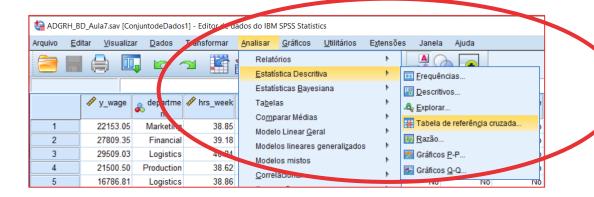
... Podemos assumir que a variável <u>não segue</u> uma distribuição normal.

Teste de hipóteses

As variáveis (categóricas) estão associadas?

Teste Z proporções | Qui-Quadrado

Objetivo: Determinar se as diferenças na proporção de pessoas com problemas de ansiedade entre os vários departamentos são estatisticamente significativas.

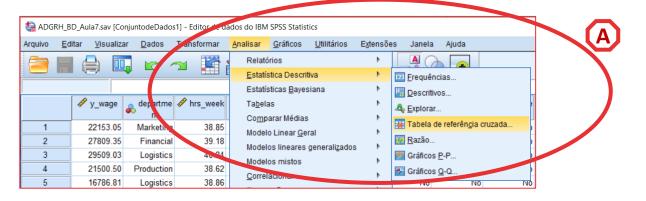

Teste Z

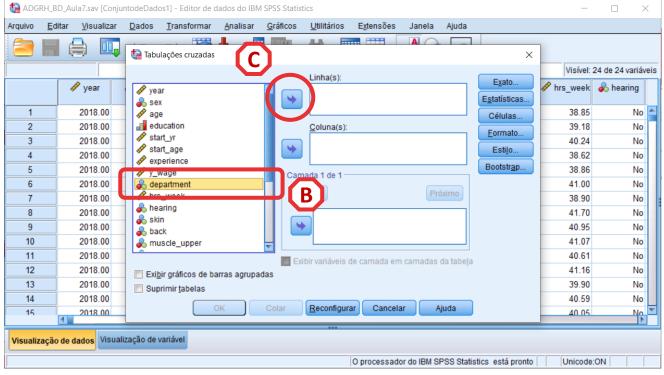
PRESSUPOSTOS

- Variáveis categóricas ou ordinais;
- As observações independentes entre si;
- Amostra grandes
- Distribuição Binomial Subjacente (categorias mutuamente exclusivas);

 Selecionar 'Analisar' / 'Estatística Descritiva' / 'Tabela de referência cruzada'

 Selecionar 'Analisar' / 'Estatística Descritiva' / 'Tabela de referência cruzada'


(A)


(B)

(c)

- Selecionar a variável 'department'
- Colocar na caixa 'Linha(s)'

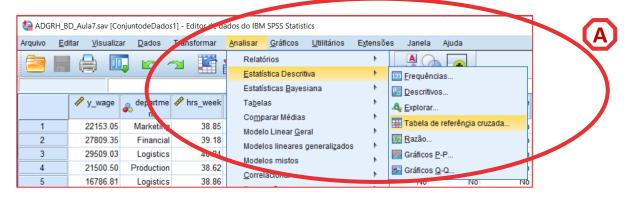
Exercício: Colocar a variável 'anxiety' na caixa 'Coluna(s)'

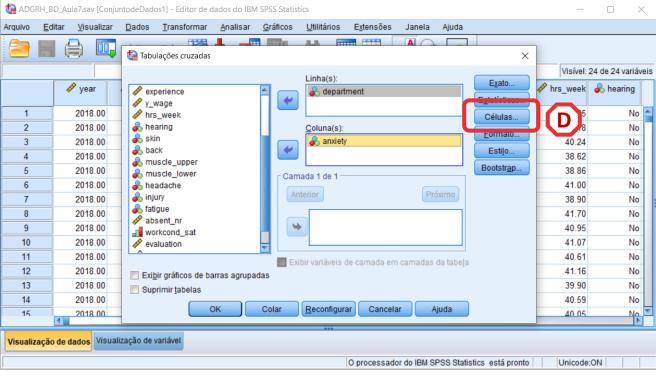
 Selecionar 'Analisar' / 'Estatística Descritiva' / 'Tabela de referência cruzada'

A

Selecionar a variável 'department'

B


Colocar na caixa 'Linha(s)'


(C)

Exercício: Colocar a variável 'anxiety' na caixa 'Coluna(s)'

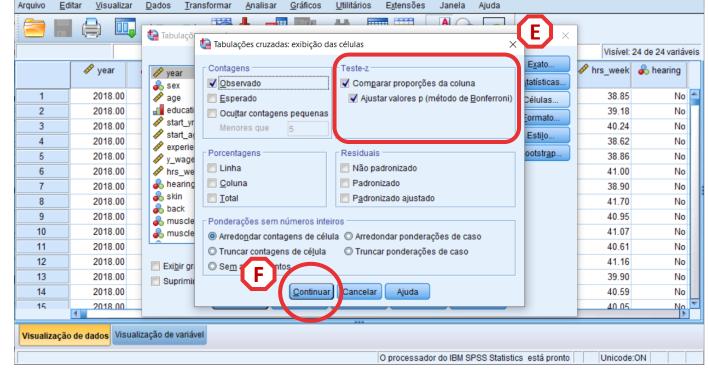
Selecionar 'Células'

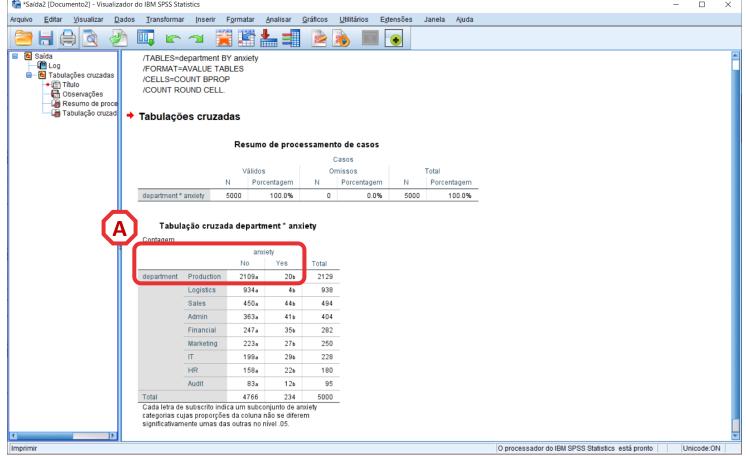
D

- Selecionar 'Analisar' / 'Estatística Descritiva' / 'Tabela de referência cruzada'
- Selecionar a variável 'department'
- Colocar na caixa 'Linha(s)'

Exercício: Colocar a variável 'anxiety' na caixa 'Coluna(s)'

- Selecionar 'Células'
- Selecionar 'Comparar proporções da coluna' (e 'Ajustar valores...')
- Selecionar 'Continuar' / 'OK'


ADGRH_BD_Aula7.sav [ConjuntodeDados1] - Editor de dados do IBM SPSS Statistics



- O resultado é publicado no 'Visualizador de Resultados'
- O teste atribui uma letra subscrita às categorias da variável da coluna.
- Por exemplo, para o departamento 'Production', o valor na célula 'No' tem o subscrito a e o valor na célula 'Yes' tem o subscrito b.
- Se as colunas tiverem subscritos diferentes, isso significa que as proporções nessas células são significativamente diferentes.

Reportar os resultados do Teste Z

Com base nos resultados do teste Z, a proporção de problemas de ansiedade nos diferentes não diferem significativamente.

Teste de Qui-Quadrado

PRESSUPOSTOS

- Variáveis categóricas ou ordinais;
- As observações independentes entre si:
- Todas as células da tabela de contigência devem ter uma frequência esperada de pelo menos 5
- As observações devem ser independentes (independência das observações);

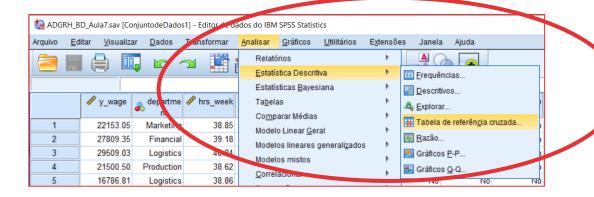
Teste de Independência Qui-Quadrado

Hipótese Nula (H₀):

"Não há diferenças na proporção de casos de ansiedade por tipo de departamento"

"Ter problemas de ansiedade <u>é independente</u> do tipo de departamento"

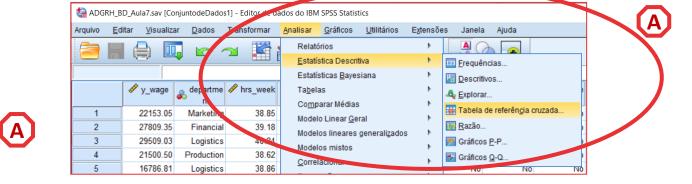
Hipótese Alternativa (H_1):

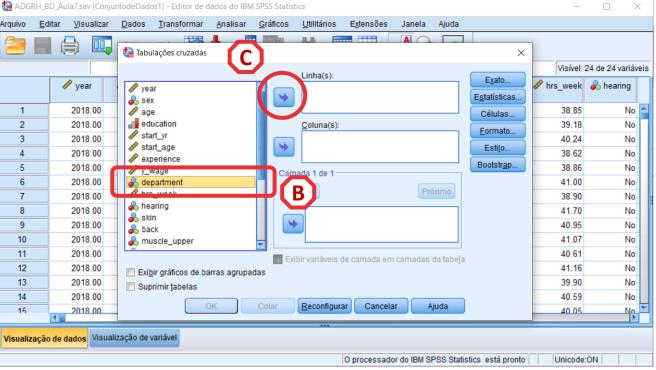

Em rigor: não há diferença entre a distribuição observada e a distribuição esperada assumindo H0

"Há diferenças na proporção de casos de ansiedade por tipo de departamento"

"Ter problemas de ansiedade não é independente do tipo de departamento"

 Selecionar 'Analisar' / 'Estatística Descritiva' / 'Tabela de referência cruzada'




- Selecionar 'Analisar' / 'Estatística Descritiva' / 'Tabela de referência cruzada'
- Selecionar a variável 'department'
- Colocar na caixa 'Linha(s)'

Exercício: Colocar a variável 'anxiety' na caixa 'Coluna(s)'

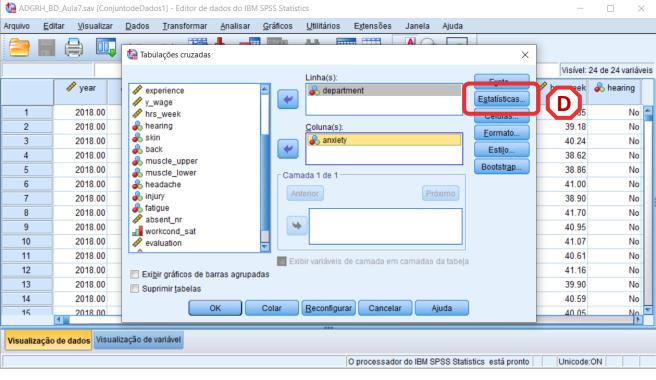
(B)

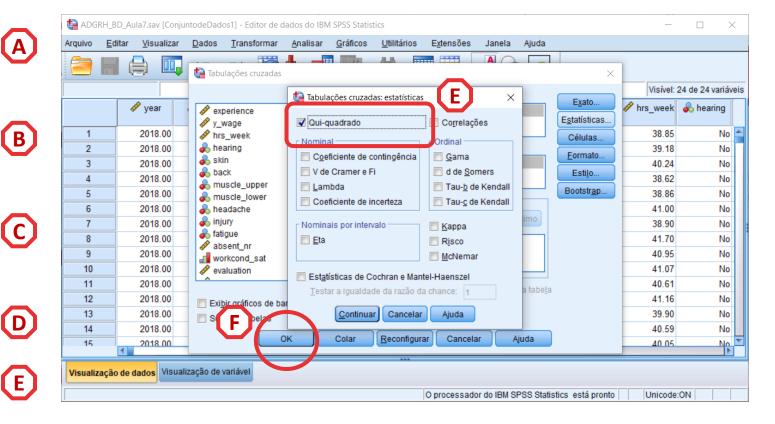
(c)

- Selecionar 'Analisar' / 'Estatística Descritiva' / 'Tabela de referência cruzada'
- Selecionar a variável 'department'
- Colocar na caixa 'Linha(s)'

Exercício: Colocar a variável 'anxiety' na caixa 'Coluna(s)'

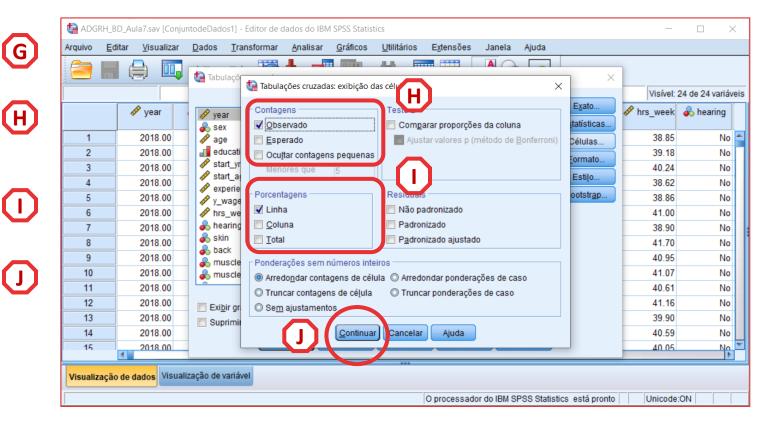
Selecionar 'Estatísticas'





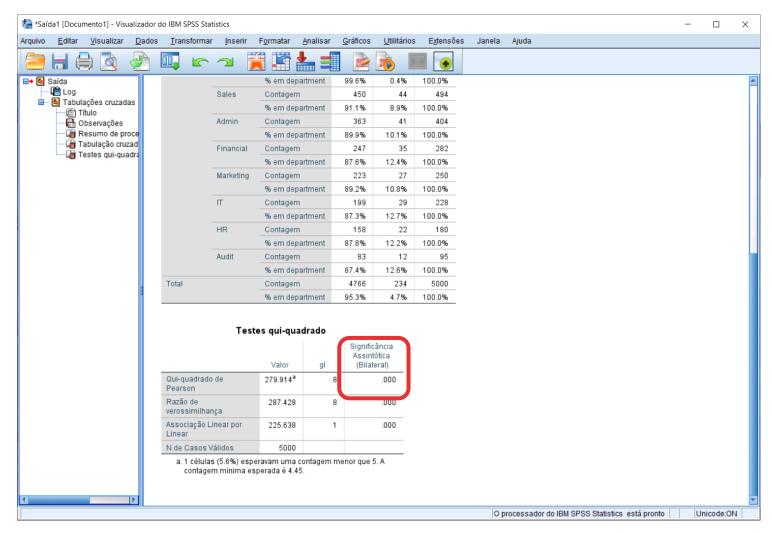
- Selecionar 'Analisar' / 'Estatística Descritiva' / 'Tabela de referência cruzada'
- Selecionar a variável 'department'
- Colocar na caixa 'Linha(s)'

Exercício: Colocar a variável 'anxiety' na caixa 'Coluna(s)'

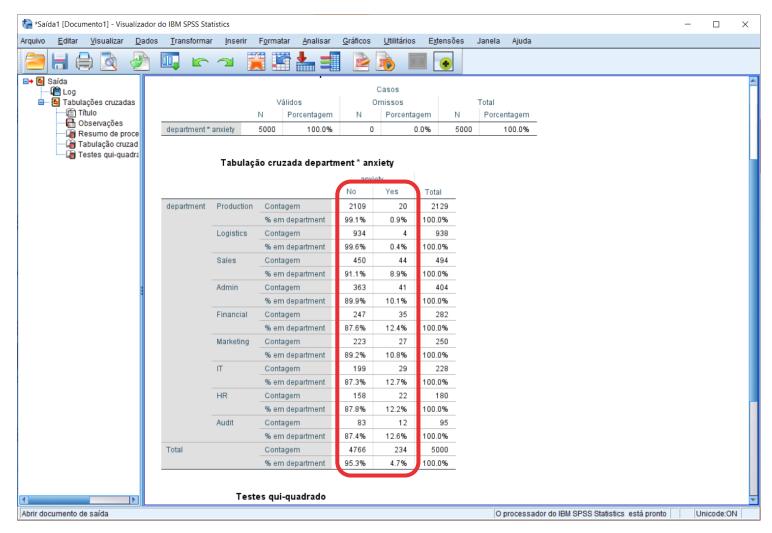

- Selecionar 'Estatísticas'
- Selecionar 'Qui-Quadrado'
- Selecionar 'Continuar'

• Selecionar 'Células'

- Selecionar 'Células'
- Selecionar 'Contagens' / 'Observado'
- Selecionar 'Porcentagens' / 'Linha'
- Algumas opções extra: contagens/observado; resíduos padronizados ajustados
- Selecionar 'Continuar'



 O resultado é publicado no 'Visualizador de Resultados'


INTERPRETAÇÃO:

- 'Sig'. ≤ 0.05, rejeita-se a hipótese (H₀) de que as variáveis são independentes. Aceita-se hipótese H₁
- 'Sig'. > 0.05, não se rejeita a hipótese (H_o) de que variáveis são independentes.

TER PROBLEMAS DE ANSIEDADE NÃO É INDEPENDENTE DO TIPO DE DEPARTAMENTO

- Podemos olhar para a Tabela de Frequências para melhor poder ilustrar o resultado do Teste de Independência Qui-Quadrado...
- Podemos identificar as categorias com resíduos > |2 |

Reportar os resultados do Teste Qui-quadrado

Com a aplicação do teste Qui-Quadrado, conclui-se que a percentagem de reporte de problemas de ansiedade depende do departamento ($\chi^2(8) = 279.9$, p < 0.05). Comparado a uma distribuição aleatória, observa-se uma sub-representação de problemas de ansiedade nos departamentos de Produção (0,9%) e Logística (0,4%) e uma sobre-representação de problemas de ansiedade nos restantes departamentos.

Teste de hipóteses

As variáveis (quantitativas) estão associadas?

R Pearson | Rho Spearman

Objetivo: Estudar a relação entre o nível educacional e a satisfação com as condições de trabalho; estudar a relação entre nível de rendimento com avaliação de desempenho

Correlação / Variáveis Ordinais

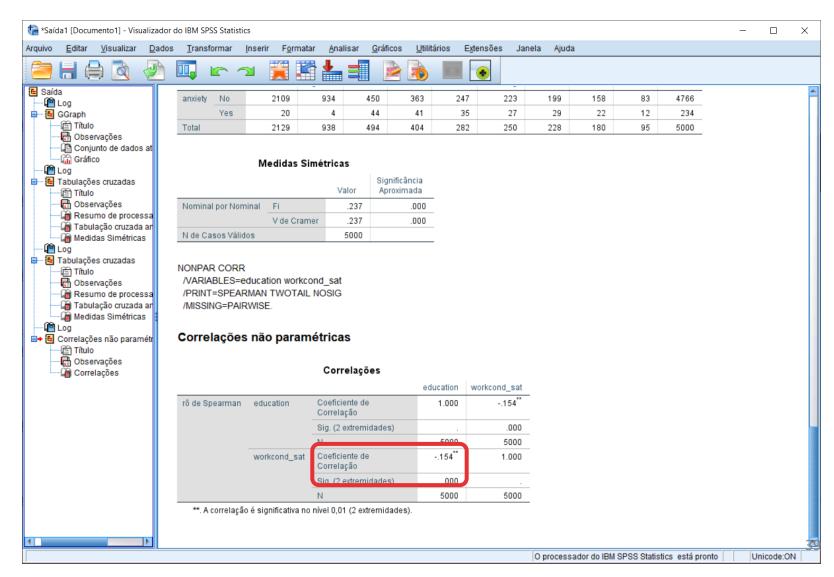
- O resultado é publicado no 'Visualizador de Resultados'
- Qual é o valor do teste?
- Como devo interpretar o resultado do teste?

Escala: -1 a 1

Interpretação

0 (Não existe correlação)

0 - 0.20 (Muito Fraca)


0.21 - 0.40 (Fraca)

0.41 - 0.70 (Moderada)

0.71 - 0.90 (Forte)

>0.90 (Muito Forte)

 Há uma correlação negativa, mas muito fraca, entre educação e satisfação no trabalho.

Correlação / Variáveis Contínuas

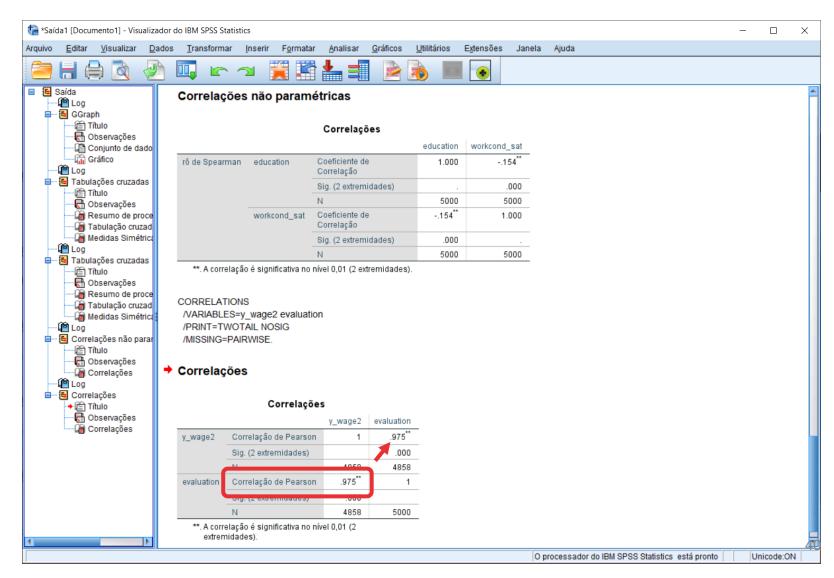
- O resultado é publicado no 'Visualizador de Resultados'
- Qual é o valor do teste?
- Como devo interpretar o resultado do teste?

Escala: -1 a 1

Interpretação

0 (Não existe correlação)

0 - 0.20 (Muito Fraca)


0.21 - 0.40 (Fraca)

0.41 - 0.70 (Moderada)

0.71 - 0.90 (Forte)

>0.90 (Muito Forte)

 Há uma correlação positiva, muito forte, entre a remuneração e avaliação dos supervisores.

Reportar os resultados dos testes de correlação

Estudando a relação entre o nível educacional e a satisfação com as condições de trabalho, com recurso ao Coeficiente de Sperman, é possível identificar uma associação negativa significativa, mas muito baixa (rho=-.154, p<0.05).

A avaliação de desempenho e o nível de rendimento são fortemente associadas, quanto maior o desempenho mais o rendimento (r = 0.975, p < 0.05).

Teste de hipóteses

A diferença entre médias (2 grupos) é significativa?

Teste de T | Teste U

Objetivo: Determinar se existem diferenças entre homens e mulheres na avaliação.

Teste de T

(2 amostras independentes)

PRESSUPOSTOS

- A variável dependente é contínua;
- A variável dependente segue uma distribuição aproximadamente normal;
- Ausência de outliers na variável dependente;
- A variável independente é nominal, e tem apenas 2 categorias;
- As observações devem ser independentes (independência das observações);
- Homogeneidade das variâncias (homocedasticidade)

Teste de T

(2 Amostras Independentes)

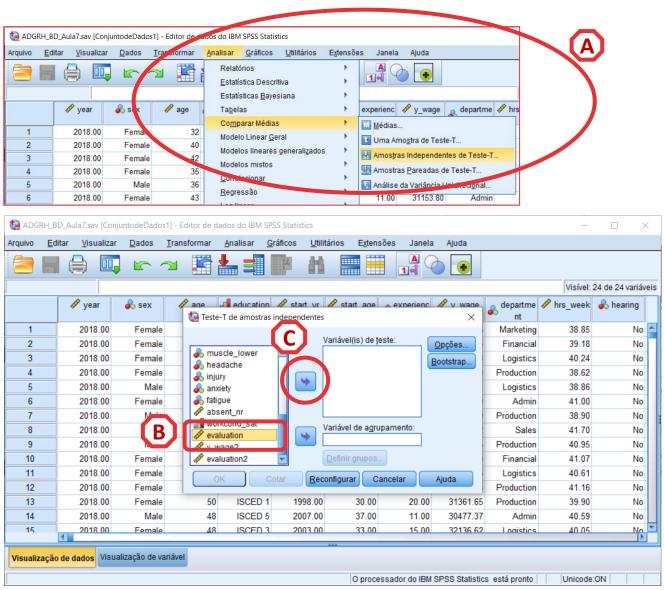
Hipótese Nula (
$$H_0$$
: $\bar{X}_m = \bar{X}_f$):

"A média da avaliação dos homens é igual à média da avaliação das mulheres"

Hipótese Alternativa (
$$H_1$$
: $\bar{X}_m \neq \bar{X}_f$):

"A média da avaliação dos homens <u>é diferente</u> à média da avaliação das mulheres"

(2 amostras independentes)


 Selecionar Selecionar 'Analisar / Comparar Médias' / 'Amostras independentes de Teste-T'

A

Selecionar a variável 'evaluation'

B

 Colocar na caixa 'Variável(is) de Teste' **C**

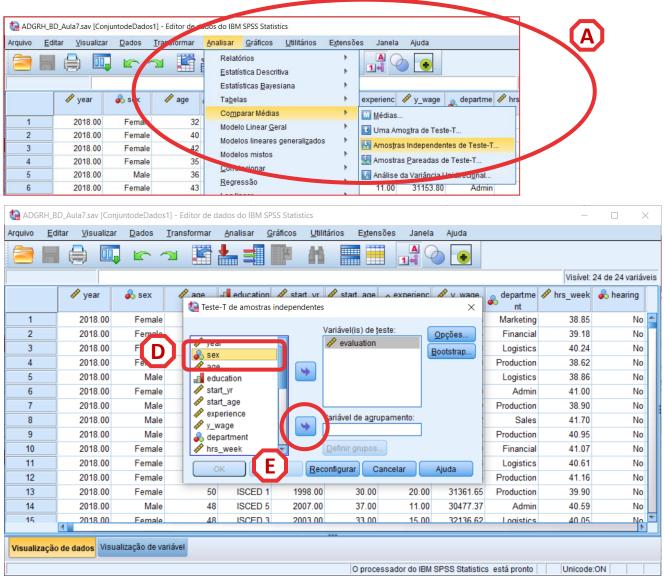
(2 amostras independentes)

 Selecionar Selecionar 'Analisar / Comparar Médias' / 'Amostras independentes de Teste-T'

A

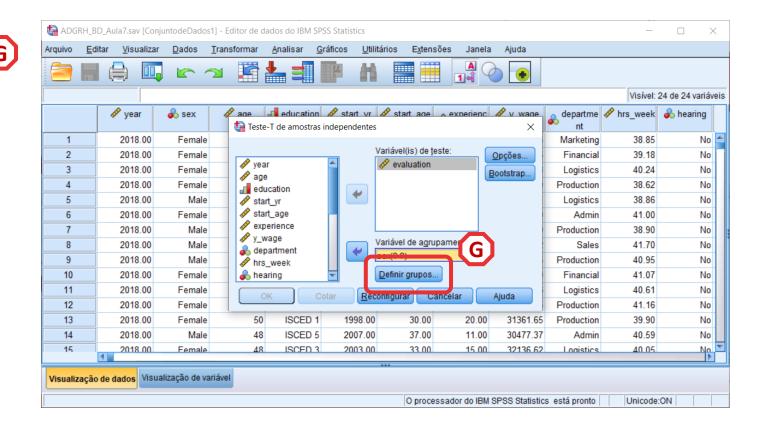
Selecionar a variável 'evaluation'

B


 Colocar na caixa 'Variável(is) de Teste' **(C)**

Selecionar a variável 'sex'

D

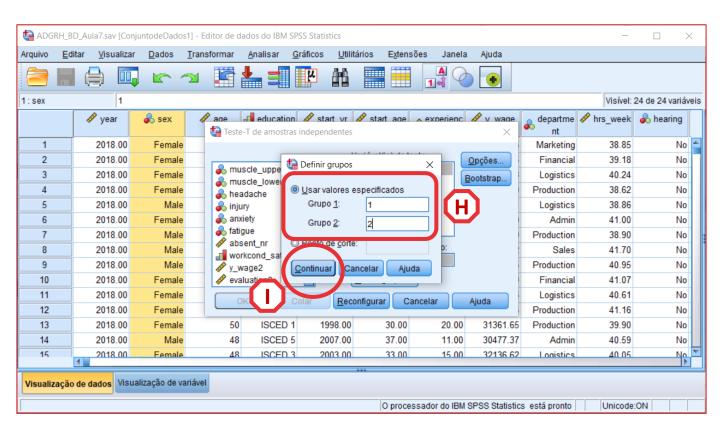

Colocar na caixa 'Variável de agrupamento'

(2 amostras independentes)

Selecionar 'Definir Grupos'

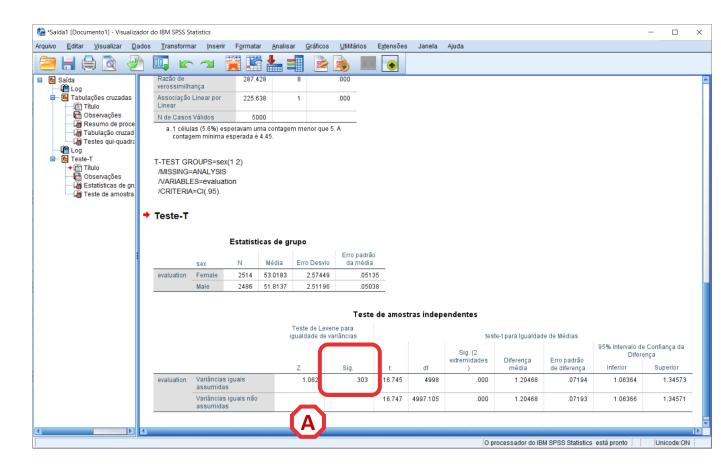
(2 amostras independentes)

• Selecionar 'Definir Grupos'

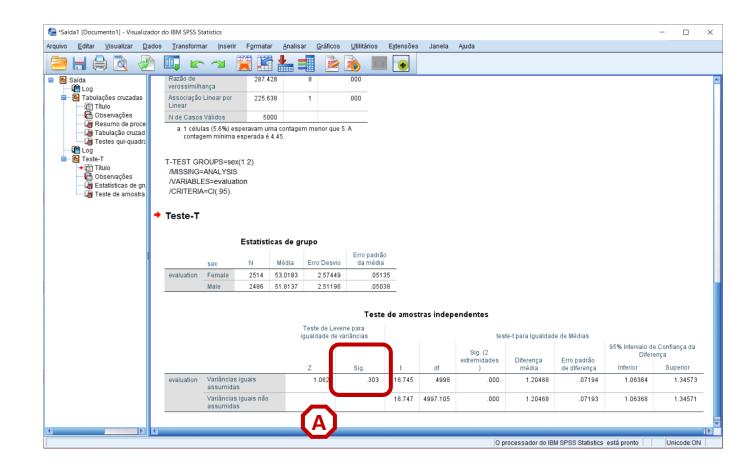

G

Por os valores da variável 'sex'

Seleccionar 'Continuar' / 'OK'


(2 amostras independentes)

- O resultado é publicado no 'Visualizador de Resultados'
- O primeiro passo é testar se o pressuposto da Homogeneidade das Variâncias se aplica.
- Para isso temos de olhar para o resultado do Teste de Levene

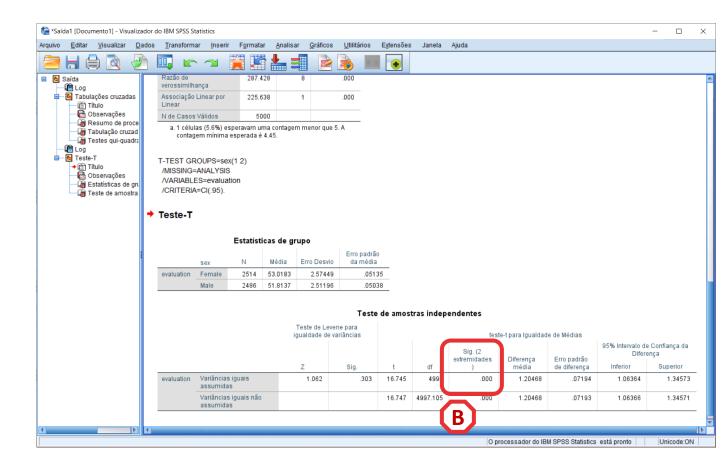

INTERPRETAÇÃO:

- 'Sig'. ≤ 0.05, rejeita-se a hipótese (H₀) de que variável dependente tem a mesma variância em ambos os grupos. Aceita-se hipótese H₁
- 'Sig'. > 0.05, não se rejeita a hipótese (H₀) de que variável dependente tem a mesma variância em ambos os grupos.

(2 amostras independentes)

 CONFIRMA-SE QUE PODEMOS ACEITAR O PRESUPOSTO DA HOMOGENEIDADE DE VARIÂNCIAS.

(2 amostras independentes)


 Vamos então ver o que diz o resultado do Teste de T. *

INTERPRETAÇÃO:

- 'Sig'. ≤ 0.05, rejeita-se a hipótese (H₀) de que a média da avaliação dos homens é igual à média da avaliação das mulheres. Aceita-se hipótese H₁
- 'Sig'. > 0.05, não se rejeita a hipótese (H_0) de que a média da avaliação dos homens é igual à média da avaliação das mulheres.

CONFIRMA-SE QUE A DIFERENÇA DAS MÉDIAS DAS AVALIAÇÕES DE HOMENS E MULHERES É ESTATÍSTICAMENTE SICGNIFICATIVA

Reportar os resultados do Teste t

Com base nos resultados do teste t de Student (t(4998) 16,745, p = 0.00), podemos concluir que a diferença entre funcionários mulheres (Média = 45.2, Desvio Padrão = 6.8) e funcionários homens (Média = 42.8, Desvio Padrão = 7.1) é estatisticamente significativa (p < 0.05).

Teste de U

(2 amostras independentes)

PRESSUPOSTOS

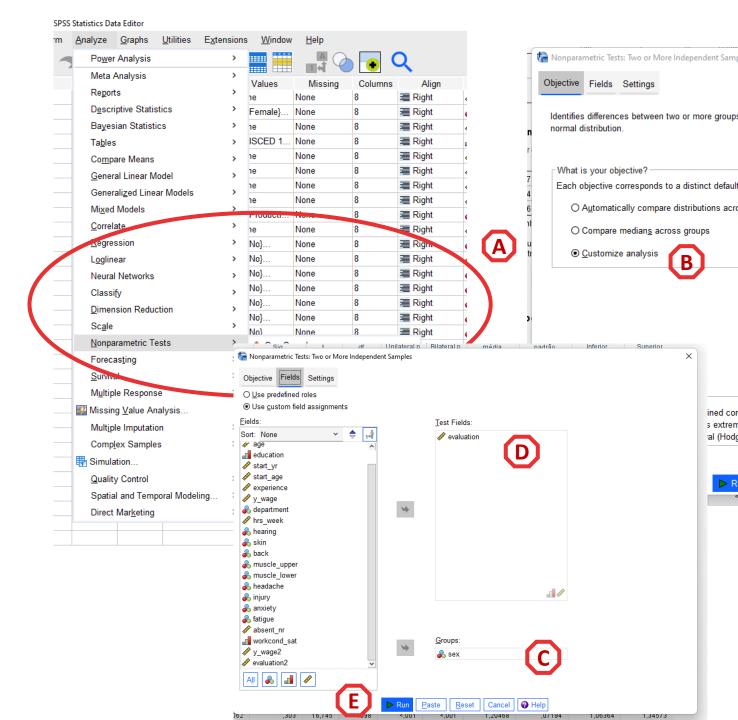
- A variável dependente é ordinal ou contínua;
- Ausência de outliers na variável dependente;
- A variável independente é nominal, e tem apenas 2 categorias;
- As observações devem ser independentes (independência das observações);

Teste de U

(2 amostras independentes)

 Selecionar Selecionar 'Analisar' / Testes Não paramétricos'

Objetivo/ Customizar análise

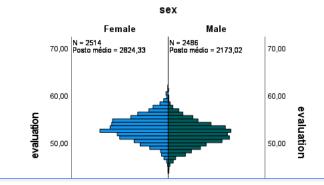

- Campos/
- Selecionar a variável 'sex' na caixa 'Variável de agrupamento'

(C)

- Selecionar a variável 'evaluation' na caixa 'Grupos'
- **(E)**

Executar

Teste de U (2 amostras independentes)


INTERPRETAÇÃO:

- 'Sig'. ≤ 0.05<mark>, rejeita-se a</mark> hipótese (H_0) . Aceita-se hipótese H₁
- 'Sig'. > 0.05, não se rejeita a hipótese (H_0)

Testes não paramétricos Sumarização de Teste de Hipótese Sig.a,b Hipótese nula Teste A distribuição de evaluation é Amostras Independentes de Rejeitar a hipótese nula. igual nas categorias de sex. Teste U de Mann-Whitney a. O nível de significância é ,050. b. A significância assintótica é exibida. Amostras Independentes de Teste U de Mann-Whitney evaluation entre sex Amostras Independentes de Resumo de Teste U de Mann-Whitney N total 5000 U de Mann-Whitney 2310794,000 Wilcoxon W 5402135,000 Estatística de teste 2310794.000 Erro padrão 51035,339 Estatística de Teste -15,952Padronizado Sinal assintótico (teste ,000 de dois lados)

Decisão

Amostras Independentes de Teste U de Mann-Whitney

Reportar os resultados do Teste U

Para comparar os resultados entre funcionários homens e mulheres, optou-se por usar o Teste U de Mann-

Whitney. Com base nos resultados, podemos concluir que os grupos diferem significativamente.

Teste de hipóteses

A diferença entre médias (+2 grupos) é significativa?

ANOVA | Kruskal wallis

Objetivo: Determinar se a diferença do número de dias de baixa por faixa etária é estatisticamente significativa

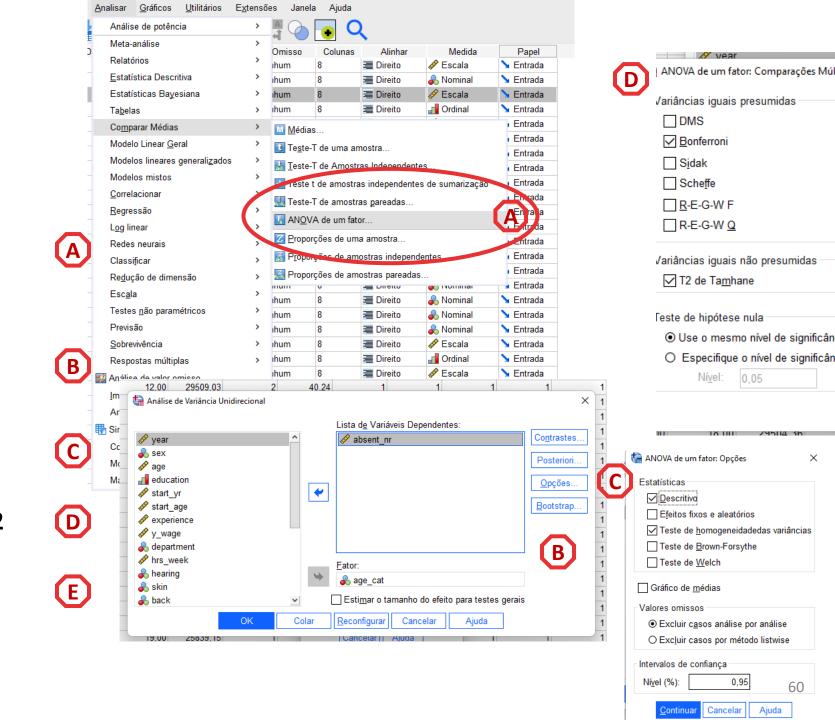
ANOVA Análise de Variância

PRESSUPOSTOS

- A variável dependente é contínua;
- A variável dependente segue uma distribuição aproximadamente normal;
- Ausência de outliers na variável dependente;
- A variável independente é nominal, tem 2+ grupos
- As observações devem ser independentes (independência das observações);
- Homogeneidade das variâncias (homocedasticidade)

ANOVA

Hipótese Nula (H_0 : $\bar{X}_{c1} = \bar{X}_{c2} = \bar{X}_{c3}$):


"A média do número de dias de baixa <u>é igual</u> nos 3 grupos"

Hipótese Alternativa:

"A média do número de dias de baixa é diferente nos 3 grupos"

ANOVA

- Selecionar Selecionar 'Comparar médias' / Anova de um fator'
- Lista de Variáveis Dependentes: absent_nr; Fator: age_cat
- Opções: Descritivo + Teste de homogeneidade das variâncias + Continuar
- Posteori: Selecionar Bonferroni e T2
 + Continuar
- OK

O primeiro passo é testar se o pressuposto da Homogeneidade das Variâncias se aplica. Para isso temos de olhar para o resultado do Teste de Levene

 'Sig'. > 0.05, não se rejeita a hipótese (H₀) de que variável dependente tem a mesma variância em ambos os grupos.

Depois olhamos para a significância do teste da ANOVA

 'Sig'. ≤ 0.05, rejeita-se a hipótese (H₀) de que variável dependente tem a mesma variância em ambos os grupos.
 Aceita-se hipótese H₁

Onde estão as diferenças? Olhamos então para os testes poshoc que comparam grupos 2 a 2:

 'Sig'. ≤ 0.05, rejeita-se a hipótese (H₀) A diferença entre todos os grupos é estatisticamente significativa

absent_nr

	N	Média	Desvio padrão
1,00 jovens	1864	10,44	3,47
2,00 adultos	1773	10,98	3,44
3,00 adultos sénior	1363	11,58	3,33
Total	5000	10,94	3,45

Um fator

Testes de homogeneidade de variâncias

		Estatística de Levene	df1	df2	Sig.
absent_nr	Com base em média	1,330	2	4997	,264
	Com base em mediana	1,493	2	4997	,225
	Com base em mediana e com gl ajustado	1,493	2	4993,776	,225
	Com base em média aparada	1,325	2	4997	,266

ANOVA						
	absent_nr					
→		Soma dos Quadrados	df	Quadrado Médio	Z	Sig.
	Entre Grupos	1024,338	2	512,169	43,711	<,001
	Nos grupos	58550,870	4997	11,717		
	Total	59575,208	4999			

Testes Posteriori

Comparações múltiplas

Variável dependente: absent_nr

						Intervalo de C	onfiança 95%
	(I) age_cat	(J) age_cat	Diferença média (I-J)	Erro Padrão	Sig.	Limite inferior	Limite superior
Bonferroni	1,00	2,00	-,537*	,114	<,001	-,81	-,26
		3,00	-1,139*	,122	<,001	-1,43	-,85
	2,00	1,00	,537*	,114	<,001	,26	,81
		3,00	-,602*	,123	<,001	-,90	-,31
	3,00	1,00	1,139*	,122	<,001	,85	1,43
		2,00	,602*	,123	<,001	,31	,90
Tamhane	1,00	2,00	-,537*	,115	<,001	-,81	-,26
		3,00	-1,139*	,121	,000	-1,43	-,85
	2,00	1,00	,537*	,115	<,001	,26	,81
		3,00	-,602*	,122	<,001	-,89	-,31
	3,00	1,00	1,139	,121	,000	,85	1,43

Reportar os resultados da ANOVA [template: customizar!]

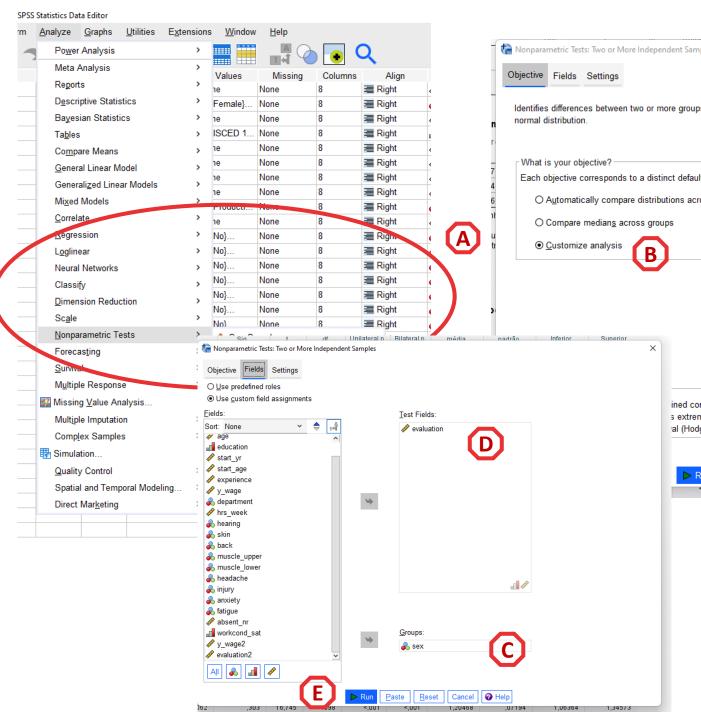
A análise de variância (ANOVA) revelou uma diferença globalmente significativa entre os três grupos nos resultados da escala Felicidade no trabalho (F(2, 57) = 4.12, p = 0.02). Posteriormente, foram realizados testes de Bonferroni para comparar as médias dos grupos a um nível de confiança de 95%. Os testes de Bonferroni identificaram diferenças significativas apenas entre os grupos A (Média = 45.2, Desvio Padrão = 6.8) e B (Média = 42.8, Desvio Padrão = 7.1), demonstrando que os funcionários do Departamento A apresentam uma média estatisticamente superior aos dos Departamento B.

Kruskal-Wallis

PRESSUPOSTOS

- A variável dependente é contínua ou ordinal;
- Os grupos definidos pela variável independente têm tamanhos aproximadamente iguais;
- As observações devem ser independentes (independência das observações);

Kruskal-Wallis


- Selecionar Selecionar 'Analisar' / Testes Não paramétricos'
- **Objetivo/ Customizar análise**
- Campos/
- Selecionar a variável 'age_cat' na caixa 'Campos de teste'
- Selecionar a variável 'absent_nr' na caixa 'Grupos'
- **Executar**

Para a interpretação do teste, procuramos o valor do p, aqui "Sinal assintótico (teste de dois lados)"

'Sig'. ≤ 0.05, rejeita-se a hipótese (H₀) de que variável dependente Existem diferenças significativas entre os grupos

Onde estão as diferenças? Olhamos então para os testes poshoc que comparam grupos 2 a 2:

 'Sig'. ≤ 0.05, rejeita-se a hipótese (H₀) A diferença entre todos os grupos é estatisticamente significativa

Comparações por Método Pairwise de age_cat

Sample 1-Sample 2	Estatística de teste	Erro Padrão	Estatística de Teste Padrão	Sig.	Adj. Sig. ^a
1,00 jovens-2,00 adultos	-215,611	47,706	-4,520	<,001	,000
1,00 jovens-3,00 adultos sénior	-462,829	51,252	-9,031	,000	,000
2,00 adultos-3,00 adultos sénior	-247,218	51,804	-4,772	<,001	,000

Cada linha testa a hipótese nula em que as distribuições Amostra 1 e Amostra 2 são iguais. As significâncias assintóticas (teste de dois lados) são exibidas. O nível de significância é ,050.

a. Os valores de significância foram ajustados pela correção Bonferroni para vários testes.

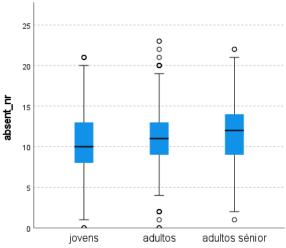
Sumarização de Teste de Hipótese

	Hipótese nula	Teste	Sig. ^{a,b}	Decisão
1	A distribuição de absent_nr é igual nas categorias de age_cat.	Amostras Independentes de Teste de Kruskal-Wallis	,000	Rejeitar a hipótese nula.

a. O nível de significância é ,050.

b. A significância assintótica é exibida.

Amostras Independentes de Teste de Kruskal-Wallis


absent_nr entre age_cat

Amostras Independentes de Resumo de Teste Kruskal-Wallis

N total	5000
Estatística de teste	81,774 ^a
Grau de Liberdade	2
Sinal assintótico (teste de dois lados)	,000

 a. A estatística do teste está ajustada para empates.

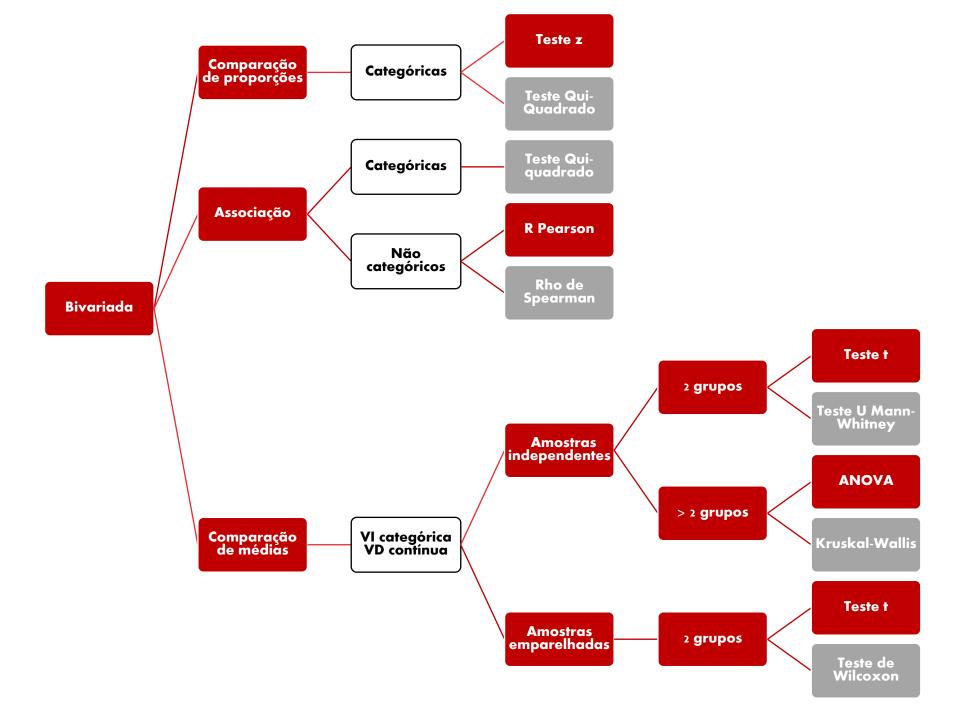
Amostras Independentes de Teste de Kruskal-Wallis

65

Reportar os resultados da Kruskal Wallis [template: customizar!]

A análise de Kruskal-Wallis revelou uma diferença globalmente significativa entre os três grupos nos resultados da escala de Felicidade no Trabalho (H(2) = 7.42, p = 0.02). Posteriormente, foram conduzidos testes de Dunn-Bonferroni para identificar quais grupos diferem estatisticamente entre si. Os testes de Dunn-Bonferroni identificaram diferenças significativas apenas entre os grupos A e B, indicando que os funcionários do Departamento A têm um desempenho estatisticamente diferente em relação à Felicidade no Trabalho em comparação com os do Departamento B.

Testes de Hipóteses


A variável segue uma distribuição normal?

A diferença entre médias (2 grupos) é significativa?

Há uma relação sistemática entre as variáveis?

A diferença entre proporções é significativa?

A diferença entre médias (+2 grupos) é significativa?

Testes Paramétricos

Teste não paramétrcos

Materiais suplementares

O que temos de ter em atenção na escolha do Teste de Hipóteses?

Qual é o objetivo?

A estatística amostral (ex: média) é representativa da população?

As diferenças entre grupos na amostra são representativas da população?

2 Grupos >2

>2 Grupos

1 Amostra

2 Amostras

+2 Amostras

Qual é a escala da variável?

Nominal (Proporções)

Ordinal*

Contínua (Médias)

• O que temos de ter em atenção na escolha do Teste de Significância?

Qual é o tipo de amostra?

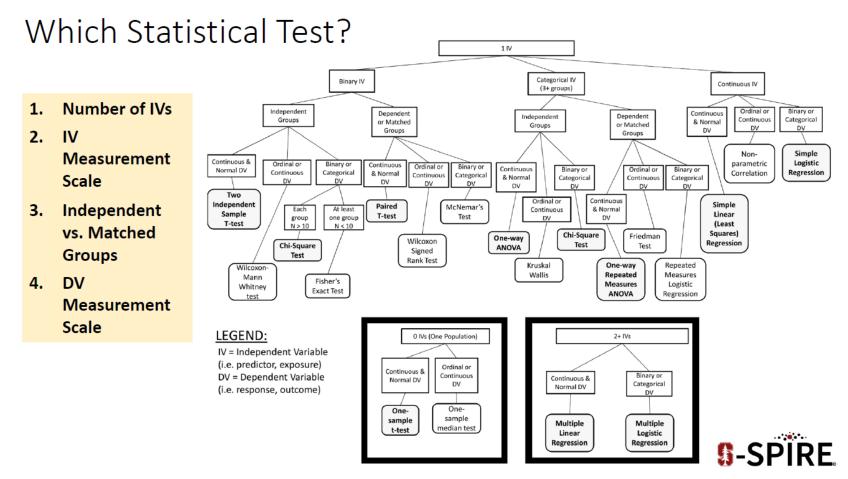
Independente

Emparelhada

A amostra segue uma distribuição normal?

Sim (Teste Paramétrico)

Não (Teste Não-Paramétrico)


O que diz a Hipótese Alternativa?

 $H_1 > H_0$

à Dtª

Como escolher o teste de hipóteses mais adequado?

