STATISTICAL LABORATORY

Applied Mathematics for Economics and Management Ist Year/1st Semester 2025/2026

CONTACT

Professor: Elisabete Fernandes

E-mail: efernandes@iseg.ulisboa.pt

https://doity.com.br/estatistica-aplicada-a-nutricao

https://basiccode.com.br/produto/informatica-basica/

PROGRAM

I. Fundamental Concepts of Statistics

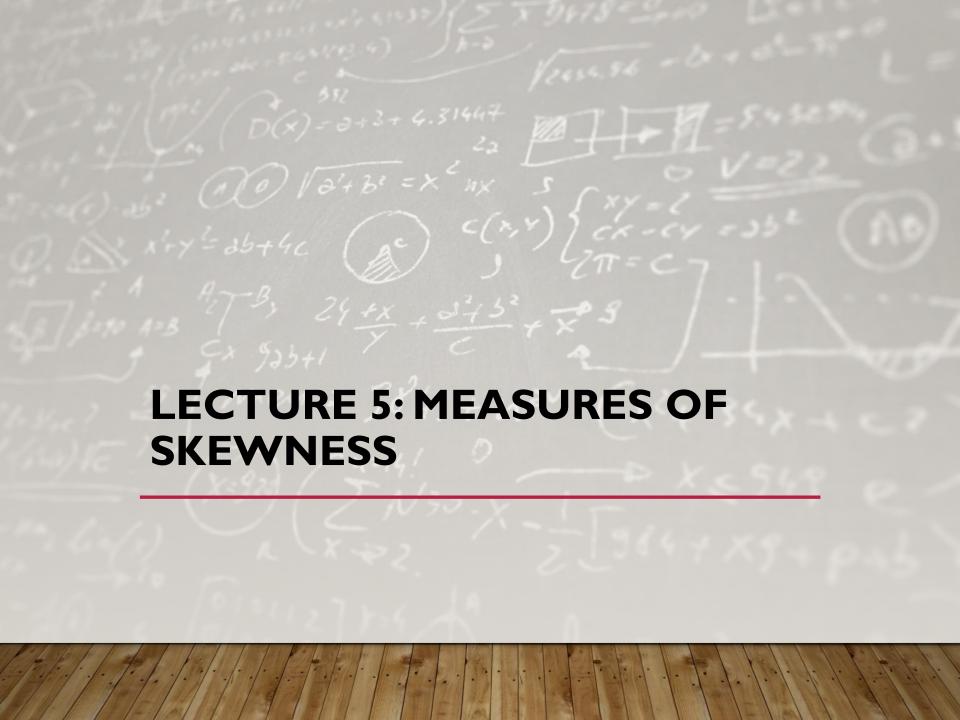
2. Exploratory Data Analysis

3. Organizing and Summarizing Data

4. Association and Relationships Between Variables

5. Index Numbers

6.Time Series Analysis



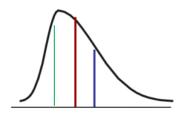
IDENTIFYING SKEWNESS USING MEAN, MEDIAN, AND MODE

- Skewness can be identified by the relationship between Mode, Median, and Mean.
- Mean > Median > Mode → positively skewed (right-skewed)
- Mean < Median < Mode → negatively skewed (left-skewed)
- Mean ≈ Median ≈ Mode → approximately symmetric

Left-Skewed

Symmetric

Right-Skewed



PEARSON'S COEFFICIENT OF SKEWNESS

According to Silvestre (2007), the coefficient of skewness is defined as:

$$g=rac{ar{x}-Mo}{s}$$

where:

- \bar{x} = sample mean
- Mo = mode
- s = standard deviation

Interpretation:

- ullet g=0: symmetric distribution
- g > 0: positively skewed (right tail)
- g < 0: negatively skewed (left tail)

BOWLEY'S COEFFICIENT OF SKEWNESS

According to Silvestre (2007), Bowley's coefficient of skewness is defined as:

$$g' = rac{(Q_3 - Q_2) - (Q_2 - Q_1)}{(Q_3 - Q_2) + (Q_2 - Q_1)}$$

where:

- Q_1 = first quartile
- Q_2 = median (second quartile)
- Q_3 = third quartile

Interpretation:

- g' = 0: symmetric distribution
- g' > 0: positively skewed (right tail)
- g' < 0: negatively skewed (left tail)

Note:

This measure is based on quartiles, and therefore less affected by extreme values compared to Pearson's coefficient.

MOMENT COEFFICIENT OF **SKEWNESS**

According to Silvestre (2007), the moment coefficient of skewness is defined as:

$$b_1 = \frac{m_3^2}{m_2^3}$$

or equivalently,

$$g_1=\sqrt{b_1}=rac{m_3}{m_2^{3/2}}$$

where:

- m_2 = second central moment about the mean (variance)
- m_3 = third central moment about the mean, given by:

$$m_3 = rac{1}{n} \sum_{i=1}^n (x_i - ar{x})^3 \quad ext{(for ungrouped data)}$$

$$m_3 = rac{1}{n} \sum_{j=1}^m n_j (x_j' - ar{x})^3$$
 (for grouped data)

where:

- m = number of classes
- x_j' = class midpoint
- n_j = class frequency
- \bar{x} = grouped mean

Interpretation:

- $g_1 = 0$: symmetric distribution
- $g_1 > 0$: positively skewed (right tail)
- $g_1 < 0$: negatively skewed (left tail)

COMPARISON OF SKEWNESS COEFFICIENTS

Coefficient	Formula	Based on	Advantages 🗸	Disadvantages X
Pearson's g	$g = \frac{\bar{x} - Mo}{s}$	Mean, mode, standard deviation	Easy to compute; intuitive	Sensitive to outliers; requires mode estimation
Bowley's g'	$g' = rac{(Q_3 - Q_2) - (Q_2 - Q_1)}{(Q_3 - Q_2) + (Q_2 - Q_1)}$	Quartiles (Q_1 , Q_2 , Q_3)	Robust to extreme values; useful for ordinal data	Less precise for small datasets; ignores all data outside quartiles
Moment g₁	$g_1 = rac{m_3}{m_2^{3/2}}$	Central moments about the mean	Theoretical; widely used in inferential statistics	Sensitive to outliers; requires all data points

Interpretation (for all):

- g=0: symmetric distribution
- g > 0: positively skewed (right tail)
- ullet g < 0: negatively skewed (left tail)

SUMMARY: IDENTIFYING SKEWNESS

Graphical Methods:

- Histogram → continuous variables
- Bar chart → discrete or ordinal variables (use ordinal only if 5 or more classes)
- Boxplot → observe the position of the median relative to Q1 and Q3

Relation of Measures:

- Another way to identify skewness is through the relationship between mean, median, and mode:
 - Symmetric: mean ≈ median ≈ mode
 - Positively skewed: mean > median > mode
 - Negatively skewed: mean < median < mode

Numerical Methods:

- Pearson's coefficient (g): mean and mode (requires numeric coding)
- Bowley's coefficient (g'): quartiles (robust, suitable for ordinal data)
- Moment coefficient (g₁): central moments (requires numeric coding)

Key Points:

- Graphs give a visual impression of skewness
- Measures and coefficients give a quantitative assessment
- For ordinal variables with 5+ classes, boxplots and Bowley's coefficient are particularly useful

EXAMPLE I: STUDY OF SKEWNESS FOR UNGROUPED DATA

Data (number of complaints in 10 firms):

$$X = [2, 3, 3, 4, 4, 5, 5, 6, 7, 9]$$

Step 1: Basic statistics

- Mean: $\bar{x}=4.8$
- Median: Me = 4.5
- Mode: Mo = 4

Step 2: Skewness by relation of measures

• Mean > Median > Mode → positively skewed

Step 3: Pearson's coefficient

• Standard deviation: $s \approx 1.87$

$$g = rac{ar{x} - Mo}{s} = rac{4.8 - 4}{1.87} pprox 0.43$$

EXAMPLE I: STUDY OF SKEWNESS FOR UNGROUPED DATA

Data (number of complaints in 10 firms):

$$X = [2, 3, 3, 4, 4, 5, 5, 6, 7, 9]$$

Step 4: Bowley's coefficient (quartiles)

• Q1 = 3.25, Q2 = 4.5, Q3 = 6

$$g' = \frac{(Q3 - Q2) - (Q2 - Q1)}{(Q3 - Q2) + (Q2 - Q1)} = \frac{(6 - 4.5) - (4.5 - 3.25)}{(6 - 4.5) + (4.5 - 3.25)} = \frac{1.5 - 1.25}{1.5 + 1.25} = \frac{0.25}{2.75} \approx 0.09$$

Step 5: Moment coefficient

- Second central moment: $m_2=s^2=3.5$
- Third central moment: $m_3 pprox 0.53$

$$g_1 = rac{m_3}{m_2^{3/2}} pprox rac{0.53}{3.5^{1.5}} pprox 0.09$$

Conclusion:

• All three methods indicate a **slight positive skewness**, consistent with **mean > median > mode**.

EXAMPLE 2: STUDY OF SKEWNESS FOR GROUPED DATA

Example: Skewness Analysis for Grouped Data (3 Classes)					
Data					
Class interval	$Midpoint\ x_j'$	Frequency n_j	Relative freq. f_j	Cumulative rel. freq. F_j^st	
[0–10]	5	6	0.200	0.200	
(10–20]	15	12	0.400	0.600	
(20–30]	25	12	0.400	1.000	
Total $n=30$, $h=10$.					

EXAMPLE 2: STUDY OF SKEWNESS FOR GROUPED DATA

1) Mean

$$ar{X} = \sum f_j x_j' = 0.2 \cdot 5 + 0.4 \cdot 15 + 0.4 \cdot 25 = 17.0$$

2) Median

Median class: first class where $F_j^* \geq 0.5$ ightarrow (10–20]

$$\mathrm{Med} = l + rac{0.5 - F^*(l)}{F^*(L) - F^*(l)} \ h = 10 + rac{0.5 - 0.2}{0.6 - 0.2} \cdot 10 = 10 + 7.5 = 17.5$$

3) Mode

Modal class: class with largest $f(L) \rightarrow$ (10–20]

$$f^* = f(L) - f(l) = 0.4 - 0.2 = 0.2, \quad f^{**} = f(L) - f(L+1) = 0.4 - 0.4 = 0$$

$$\text{Mo} = l + \frac{f^*}{f^* + f^{**}} \, h = 10 + \frac{0.2}{0.2 + 0} \cdot 10 = 20.0$$

EXAMPLE 2: STUDY OF SKEWNESS FOR GROUPED DATA

4) Skewness Coefficients

- Pearson: $g=rac{ar{X}-\mathrm{Mo}}{s}$
 - ullet Variance $m_2=\sum f_j(x_j'-ar{X})^2=44.0$
 - SD $s=\sqrt{m_2}pprox 6.633$
 - $ullet gpprox rac{17.0-20.0}{6.633}pprox -0.452$ (negative skewness)
- Bowley (quartile-based):
 - $Q_1 \approx 11.667, \ Q_2 = \mathrm{Med} = 17.5, \ Q_3 \approx 23.333$
 - $g'=rac{(Q_3-Q_2)-(Q_2-Q_1)}{(Q_3-Q_2)+(Q_2-Q_1)}=rac{(23.333-17.5)-(17.5-11.667)}{(23.333-17.5)+(17.5-11.667)}=0$ (symmetric by quartiles)
- Moment coefficient:

$$g_1 = rac{m_3}{m_2^{3/2}}, \quad m_3 = \sum f_j (x_j' - ar{X})^3 = 0$$

 $\Rightarrow g_1 = 0$ (moment indicates symmetry)

Conclusion:

- Mean < Median < Mode → suggests slight negative skew
- Bowley and moment coefficients = $0 \rightarrow$ quartiles and central moments indicate approximate symmetry
- Highlights how different skewness measures can give slightly different indications for small sample/grouped data.

EXERCISE I: UNGROUPED DATA

Exercise 1: Ungrouped Data

The number of complaints in 12 firms is recorded as:

$$X = [1, 2, 2, 3, 4, 4, 5, 5, 6, 7, 8, 9]$$

Tasks:

- 1. Compute the mean, median, and mode.
- 2. Determine the skewness direction using the relationship mean-median-mode.
- 3. Calculate the Pearson's coefficient of skewness.
- 4. Calculate the Bowley's coefficient (use quartiles).
- 5. Calculate the moment coefficient of skewness.
- **6.** Compare the results and interpret the overall skewness.

Answer:

Example 1 — Ungrouped data

Data: X = [1, 2, 2, 3, 4, 4, 5, 5, 6, 7, 8, 9] (n = 12)

Basic stats

- $\bar{x} = 4.667$
- Median =4.5
- Mode = 4 (tie: 2,4,5 we choose 4)
- ullet Second central moment (variance, population) $m_2=5.722$ o $s=\sqrt{m_2}=2.392$
- Third central moment $m_3=3.426$

Relation mean-median-mode

 $ar{x} > \mathrm{median} > \mathrm{mode} o \mathsf{positively}$ skewed (right skew)

Answer:

Pearson's coefficient

$$g = rac{ar{x} - Mo}{s} = rac{4.667 - 4}{2.392} pprox 0.28$$

Bowley's coefficient (quartile-based)

Quartiles (by standard method): $Q_1=2.5,\;Q_2=4.5,\;Q_3=6.5$

$$g' = rac{(Q_3 - Q_2) - (Q_2 - Q_1)}{(Q_3 - Q_2) + (Q_2 - Q_1)} = rac{(6.5 - 4.5) - (4.5 - 2.5)}{(6.5 - 4.5) + (4.5 - 2.5)} = 0$$

(Here Bowley = 0 — quartiles are symmetric even though mean/median/mode and moments show slight positive skew. Bowley can be zero for small samples / particular quartile positions.)

Moment coefficient

$$g_1 = rac{m_3}{m_2^{3/2}} pprox rac{3.426}{(5.722)^{1.5}} pprox 0.25$$

Conclusion (Example 1)

- Pearson pprox 0.28, Moment $g_1 pprox 0.25
 ightarrow$ slight positive skew.
- Bowley = 0 (quartile symmetry) not uncommon with small samples. Overall: slightly positively skewed (mean-median-mode and moment/Pearson support this).

EXERCISE 2: GROUPED DATA

Exercise 2: Grouped Data

The number of customer complaints in 40 companies is grouped as follows:

Class (xj')	Frequency (nj)
0–10	5
10–20	8
20–30	12
30–40	10
40–50	5

Tasks:

- 1. Calculate the grouped mean.
- 2. Estimate the median and mode.
- 3. Determine skewness direction using the mean-median-mode relationship.
- 4. Calculate the Pearson's coefficient, Bowley's coefficient, and moment coefficient.
- **5.** Compare the results and discuss whether the distribution is symmetric, positively skewed, or negatively skewed.

Answer:

Example 2: Grouped Data – Class Table (corrected)						
Class interval	x_j^\prime (Midpoint)	n_{j}	$f_j=n_j/n$	N_j (cum abs)	F_j^* (cum rel)	
[0-10]	5	5	0.125	5	0.125	
(10–20]	15	8	0.200	13	0.325	
(20–30]	25	12	0.300	25	0.625	
(30–40]	35	10	0.250	35	0.875	
(40–50]	45	5	0.125	40	1.000	

Answer:

Mean (grouped)

$$ar{X} = \sum f_j x_j' = 0.125(5) + 0.200(15) + 0.300(25) + 0.250(35) + 0.125(45) = 25.50$$

• Median (use median class interpolation with cumulative relative freqs) median class is the first with $F_j^* \geq 0.5 \to$ [20–30). Apply

$$\mathrm{Med} = L + rac{0.5 - F_{L-1}^*}{F_L^* - F_{L-1}^*} \, h$$

where $L=20,\ F_{L-1}^*=0.325,\ \overline{F_L^*=0.625},\ h=10.$ Thus

$$\mathrm{Med} = 20 + rac{0.5 - 0.325}{0.625 - 0.325} imes 10 = 20 + rac{0.175}{0.300} imes 10 = 20 + 5.8333 = 25.8333$$

• Mode (grouped, using relative frequencies) modal class = [20–30) (largest $f_L=0.30$). Use

$$f^*=f_L-f_{L-1}, \qquad f^{**}=f_L-f_{L+1}$$
 $\mathrm{Mo}=L+rac{f^*}{f^*+f^{**}}\,h$

Here $f_L=0.30,\; f_{L-1}=0.20,\; f_{L+1}=0.25$ so $f^*=0.10,\; f^{**}=0.05.$ Then

$$ext{Mo} = 20 + rac{0.10}{0.10 + 0.05} imes 10 = 20 + rac{0.10}{0.15} imes 10 = 20 + 6.6667 = 26.6667$$

Answer:

Relation mean — median — mode

$$ar{X}=25.50, \quad ext{Med}pprox 25.833, \quad ext{Mo}pprox 26.667$$

So $ar{X} < \mathrm{Med} < \mathrm{Mo} o$ this indicates a slight negative (left) skew.

Central moments (grouped, about grouped mean)

Using midpoints and f_j (population central moments):

•
$$m_2 = \sum f_j (x'_j - \bar{X})^2 = 144.75$$

 $\Rightarrow s = \sqrt{m_2} = 12.0312$

$$ullet m_3 = \sum f_j (x_j' - ar{X})^3 = -167.25$$

(rounded values shown above; calculations use midpoints and f_j .)

Answer:

Skewness coefficients

• Pearson (using mean & mode):

$$g = rac{ar{X} - ext{Mo}}{s} = rac{25.50 - 26.6667}{12.0312} pprox -0.097$$

- Bowley (quartile-based) compute quartiles by interpolation with \overline{F}^* :
 - $Q_1 \approx 17.5, \ Q_2 = \mathrm{Med} \approx 25.8333, \ Q_3 \approx 33.0$

$$g' = rac{(Q_3 - Q_2) - (Q_2 - Q_1)}{(Q_3 - Q_2) + (Q_2 - Q_1)} pprox rac{(33.0 - 25.8333) - (25.8333 - 17.5)}{(33.0 - 25.8333) + (25.8333 - 17.5)} pprox -0.022$$

Moment coefficient (Fisher / g₁):

$$g_1 = rac{m_3}{m_2^{3/2}} = rac{-167.25}{(144.75)^{1.5}} pprox -0.096$$

Answer:

Final interpretation (concise)

- All three numerical measures (Pearson ≈ -0.097 , Bowley ≈ -0.022 , Moment $g_1 \approx -0.096$) are small in magnitude and slightly negative, and the ordering mean < median < mode also indicates slight negative skewness.
- Conclusion: the grouped distribution is approximately symmetric but with a very small left skew.

EXERCISE 3: GRAPHICAL ANALYSIS

Exercise 3: Graphical Analysis

For both Exercise 1 and Exercise 2:

- 1. Draw a histogram (or bar chart for Exercise 2) and a boxplot.
- **2.** Use the graphs to **visualize skewness**.
- 3. Compare the graphical impression with the calculated coefficients.

THANKS!

Questions?