

Master in Mathematical Finance

Probability Theory and Stochastic Processes

First Semester - 2025/2026

List Extra 1 - Radom-Nikodym Theorem

1. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $f : \Omega \to \Omega$ an integrable map with respect to μ . Define the map ν as:

 $u(A) = \int_A f d\mu, \quad \forall A \in \mathcal{F}.$

- (a) Prove that ν is a finite signed measure.
- (b) Prove that $\nu \ll \mu$ and $\mu \ll \nu$. Are these two measures equivalent?
- 2. Show that if λ is a signed measure and there is $A \in \mathcal{F}$ such that $\lambda(A)$ is finite, then $\lambda(\emptyset) = 0$.
- 3. Consider the mensurable space $\Omega = [0, 1]$ endowed with the σ -algebra os borelians $\mathcal{B}([0, 1])$. Define the measure

 $\mu = \frac{1}{2}\delta_0 + \frac{1}{2}m,$

where δ_0 is the Dirac measure centered at 0 and m is the usual Lebesgue measure in [0, 1].

- (a) Show that $\delta_0 \ll \mu$ and $m \ll \mu$.
- (b) Show that if f is an integrable map with respect to μ then:

$$\int_A f d\mu = \frac{1}{2} \int_A f d\delta_0 + \frac{1}{2} \int_A f dm$$

(c) Use the Radon-Nikodym Theorem to show that if $A \in \mathcal{B}([0,1])$, then:

$$\delta_0(A) = \frac{1}{2} \int_A \frac{d\delta_0}{d\mu} d\delta_0 + \frac{1}{2} \int_A \frac{d\delta_0}{d\mu} dm$$

and

$$m(A) = \frac{1}{2} \int_{A} \frac{dm}{d\mu} d\delta_0 + \frac{1}{2} \int_{A} \frac{dm}{d\mu} dm$$

- (d) Using the set $A = \{0\}$, compute $\frac{d\delta_0}{d\mu}(0)$ and $\frac{dm}{d\mu}(0)$.
- (e) Let $A \in \mathcal{B}([0,1])$ for which $0 \notin A$. Show that

$$\int_A \frac{d\delta_0}{d\mu} dm = 0 \quad \text{and} \quad \int_A \frac{dm}{d\mu} dm = 2m(A) = \int_A 2dm.$$

- (f) Define the maps $\frac{d\delta_0}{d\mu}$ and $\frac{dm}{d\mu}$ in Ω .
- 4. Let ν , λ and μ be finite signed measures. Show that if $\mu \ll \lambda$ and $\lambda \ll \nu$, then $\mu \ll \nu$ and

$$\frac{d\nu}{d\mu} = \frac{d\nu}{d\lambda} \cdot \frac{d\lambda}{d\mu}.$$

5. Let $(\Omega_1, \mathcal{F}_1, \mu_1)$ a measure space, $(\Omega_2, \mathcal{F}_2)$ a mensurable space, $f: \Omega_1 \to \Omega_2$ a mensurable map and $\mu_2 = \mu \circ f^{-1}$. Show that for any integrable map g with respect to μ_2 , then:

$$\int_{\Omega_2} g d\mu_2 = \int_{\Omega_1} (g \circ f) d\mu_1.$$