STATISTICAL LABORATORY

Applied Mathematics for Economics and Management Ist Year/1st Semester 2025/2026

CONTACT

Professor: Elisabete Fernandes

E-mail: efernandes@iseg.ulisboa.pt

https://doity.com.br/estatistica-aplicada-a-nutricao

https://basiccode.com.br/produto/informatica-basica/

PROGRAM

I. Fundamental Concepts of Statistics

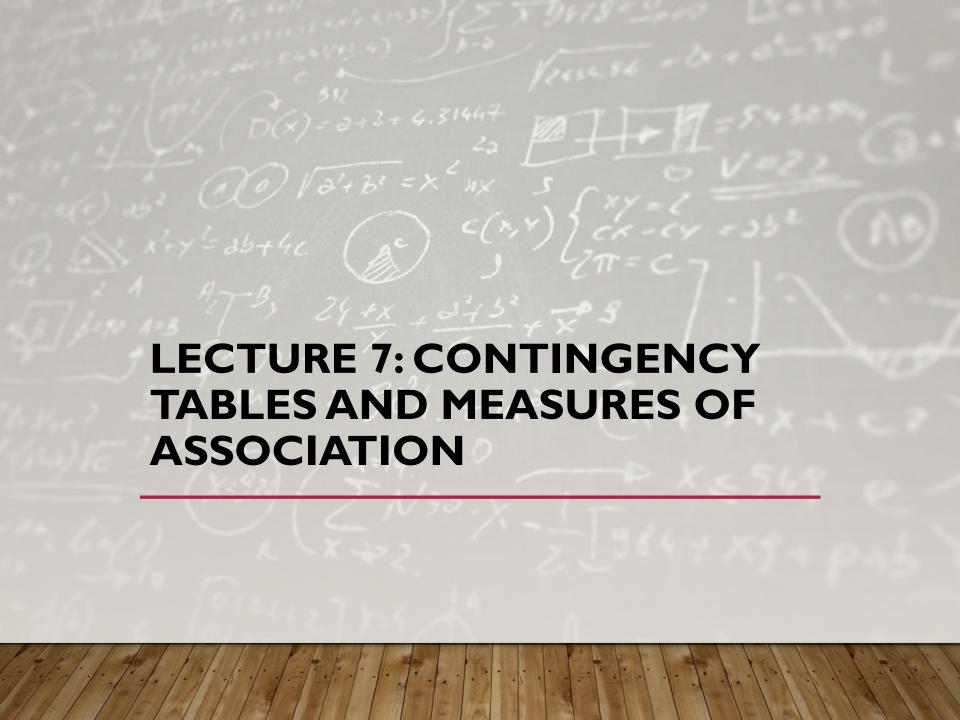
2. Exploratory Data Analysis

3. Organizing and Summarizing Data

4. Association and Relationships Between Variables

5. Index Numbers

6.Time Series Analysis



CONTINGENCY TABLES: DEFINITION AND EXAMPLE

Definition

- A contingency table summarizes the frequency distribution of two categorical variables.
- It helps analyze the **association** between variables.

General Example of a Contingency Table

• Let variable **A** have categories **A**₁, **A**₂, ..., **A**₁ and variable **B** have categories **B**₁, **B**₂, ..., **B**_c.

	Bı	$\mathbf{B_2}$		$\mathbf{B}_{\mathbf{c}}$	Totals
Aı	n _{II}	n ₁₂	•••	n _{Ic}	n _{I.}
\mathbf{A}_2	n ₂₁	n ₂₂	•••	n _{2c}	n _{2.}
•••		•••	•••	•••	
Aı	n _{II}	n _{l2}	•••	n _{lc}	n _{l.}
Totals	n _{.1}	n _{.2}	•••	n _{c.}	n

Where

n = total number of observations I = total number of rows c = total number of columns n_{jk} = number of observations in category A_j and B_k (joint frequencies), j=1,..,l and k=1,..,c n_j = total in row j (marginal frequencies) n_k = total in column k (marginal frequencies)

CONTINGENCY TABLE: FUNDAMENTAL RELATIONSHIPS

1. Total frequencies:

$$\sum_{j=1}^l \sum_{k=1}^c n_{jk} = \sum_{j=1}^l n_{j.} = \sum_{k=1}^c n_{.k} = n$$

The sum of all joint frequencies n_{jk} equals the sum of the row totals $n_{j.}$ and the column totals n_{jk} , all equal to the total number of observations n.

2. Row totals:

$$n_{j.} = \sum_{k=1}^{c} n_{jk} \quad ext{for each row } j$$

Each row total $n_{j.}$ is the sum of the joint frequencies in that row.

3. Column totals:

$$n_{.k} = \sum_{j=1}^l n_{jk} \quad ext{for each column } k$$

Each column total n_k is the sum of the joint frequencies in that column.

EXAMPLE OF A CONTINGENCY TABLE

Variables:

• **Sex:** Male, Female

• Management Level: Junior, Mid, Senior

	Man			
Sex	Junior	Total		
Male	12	20	8	40
Female	18	22	10	50
Total	30	42	18	90

Explanation:

- Rows: Sex of employees
- Columns: Management level
- Cells: Joint frequencies n_{ik}
- Row totals $n_{j.}$ and column totals $n_{.k}$ shown in the margins
- Total: n = 90

INDEPENDENCE BETWEEN TWO ATTRIBUTES

Definition:

Two attributes A and B are said to be **independent** if the joint frequencies can be expressed as the product of the corresponding marginal proportions:

$$rac{n_{jk}}{n} = rac{n_{j.}}{n} imes rac{n_{.k}}{n}$$

Interpretation:

Independence means that the proportion of each cell is **proportional** to the product of the corresponding row and column totals.

For example, considering row j:

$$rac{n_{jk}}{n_{j.}} = rac{n_{.k}}{n}$$

Equivalently, using properties of proportions:

$$n_{jk} = rac{n_{j.} imes n_{.k}}{n}$$

This expression shows that the frequency in each cell can be obtained as the product of the corresponding marginal totals divided by the grand total — the **fundamental** condition of independence.

PEARSON'S CHI-SQUARE STATISTIC

To assess independence, the **Pearson Chi-Square statistic** is computed:

$$\chi^2 = \sum_{j=1}^l \sum_{k=1}^c rac{(n_{jk} - n^*_{jk})^2}{n^*_{jk}}$$

Interpretation:

It measures the discrepancy between the observed frequencies n_{jk} and the expected frequencies n_{jk}^{\ast} ,where

$$n_{jk}^* = rac{n_{j.} imes n_{.k}}{n}, \quad j = 1, \dots, l ext{ and } k = 1, \dots, c$$

Meaning:

• The further the Chi-Square value is from zero, the less credible the assumption of independence between the two attributes becomes.

MEASURES OF ASSOCIATION

All measures listed below are based on the **Pearson Chi-Square statistic**:

$$\chi^2 = \sum_{j=1}^l \sum_{k=1}^c rac{(n_{jk} - n_{jk}^*)^2}{n_{jk}^*}$$

Measure	Formula	Range	Interpretation (
Contingency Square	$\Phi^2=rac{\chi^2}{n}$	$\varphi^2 \ge 0$	Increases with the degree of association between variables
Contingency Coefficient	$C=\sqrt{rac{\chi^2}{\chi^2+n}}=\sqrt{rac{\Phi^2}{\Phi^2+1}}$	0 ≤ C < 1	Measures the strength of association; bounded below 1
Tschuprow's Coefficient	$T=\sqrt{rac{\Phi^2}{\sqrt{(l-1)(c-1)}}}$	0 ≤ T ≤ 1	Adjusts for the number of rows and columns
Cramer's V Coefficient	$V=\sqrt{rac{\Phi^2}{\min(l-1,c-1)}}$	0 ≤ V ≤ 1	Standardized measure of association (most used)

Interpretation:

- • Φ^2 →overall measure of association
- • $C, T, V \in [0, 1]$
 - ullet 0 o no association
 - I → perfect association

CALCULATING ASSOCIATION MEASURES: EXAMPLE I

Example Table: Employees by Sex and Management Level

	Ma			
Sex	Junior	Total		
Male	12 (13.33)	20 (18.67)	8 (8.00)	40
Female	18 (16.67)	22 (23.33)	10 (10.00)	50
Total	30	42	18	90

Step 1: Compute expected frequencies

Note:

• Values in parentheses are the expected frequencies n_{ik}^* .

$$n^*_{Male,Junior} = \stackrel{ackslash 40 imes 30}{90} = 13.33$$

CALCULATING ASSOCIATION MEASURES: EXAMPLE I

Example Table: Employees by Sex and Management Level

	Ma			
Sex	Junior	Total		
Male	12 (13.33)	20 (18.67)	8 (8.00)	40
Female	18 (16.67)	22 (23.33)	10 (10.00)	50
Total	30	42	18	90

Observed n_{jk}	Expected n_{jk}^st	Contribution
12	13.33	$(12-13.33)^2/13.33 \approx 0.133$
20	18.67	$(20-18.67)^2/18.67 \approx 0.095$
8	8	$(8-8)^2/8 = 0$
18	16.67	$(18-16.67)^2/16.67 \approx 0.107$
22	23.33	$(22-23.33)^2/23.33 \approx 0.076$
10	10	$(10-10)^2/10 = 0$

Step 2: Compute Pearson Chi-Square

$$\chi^2 = \sum_{j=1}^2 \sum_{k=1}^3 rac{(n_{jk} - n^*_{jk})^2}{n^*_{jk}}$$

$$\chi^2 pprox 0.133 + 0.095 + 0 + 0.107 + 0.076 + 0 = 0.411$$

CALCULATING ASSOCIATION MEASURES: EXAMPLE I

Step 3: Compute Measures of Association

1. Contingency Square

$$\Phi^2 = rac{\chi^2}{n} = rac{0.411}{90} pprox 0.00457$$

2. Contingency Coefficient

$$C = \sqrt{rac{\chi^2}{\chi^2 + n}} = \sqrt{rac{0.411}{0.411 + 90}} pprox \sqrt{0.00457} pprox 0.0676$$

3. Tschuprow's Coefficient

$$T = \sqrt{rac{\Phi^2}{\sqrt{(l-1)(c-1)}}} = \sqrt{rac{0.00457}{\sqrt{(2-1)(3-1)}}} = \sqrt{rac{0.00457}{\sqrt{2}}} pprox 0.048$$

4. Cramer's V Coefficient

$$V = \sqrt{rac{\Phi^2}{\min(l-1,\,c-1)}} = \sqrt{rac{0.00457}{\min(1,2)}} = \sqrt{0.00457} pprox 0.0676$$

Interpretation:

All measures are very close to zero, indicating a very weak association between Sex and Management Level in this example.

ROUGH GUIDELINES FOR STRENGTH OF ASSOCIATION (CRAMER'S V / TSCHUPROW)

Value	Strength
0.00 - 0.10	Very weak
0.10 - 0.30	Weak
0.30 - 0.50	Moderate
0.50 - 0.70	Strong
0.70 – 1.00	Very strong

Note:

- The table above presents commonly used guidelines for interpreting the strength of association for Cramer's V and Tschuprow's T.
- For the Contingency
 Coefficient C, the maximum
 value depends on the table size,
 so interpretation should be
 done carefully.
- These ranges are **guidelines**, not strict rules; some fields may adopt slightly different cutoffs.

2×2 CONTINGENCY TABLES: DEFINITION AND EXAMPLE

Definition

- A 2×2 contingency table summarizes the frequency of observations for two categorical variables, each with two categories.
- It helps analyze the **association** between variables.

General Example of a 2×2 Contingency Table

 Consider two categorical variables, A and B, each with two categories.

	В		
A	+	-	Total
+	a	Ь	a+b
-	С	d	c+d
Total	a+c	b+d	n

Where

n = total number of observations

I = total number of rows = 2

c = total number of columns = 2

The symbols + and – denote the presence and absence of the attribute, respectively.

EXAMPLE OF A 2×2 CONTINGENCY TABLE

Consider two categorical variables:

- A: Smoking status (+ = Smoker, = Non-Smoker)
- **B:** Lung disease (+ = Disease, = No Disease)

	Dis		
Smoker	Yes	No	Total
Yes	30	20	50
No	10	40	50
Total	40	60	100

SIMPLIFIED PEARSON'S CHI-SQUARE STATISTIC FOR 2×2 TABLES

For 2×2 contingency tables, **Pearson's chi-square statistic** has a simplified formula:

$$\chi^2=rac{n\,(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$

Where

- n = a+b+c+d = total sample size
- a, b, c ,d = observed frequencies

Note:

• This formula **avoids computing expected frequencies explicitly** and is valid **only for 2×2 tables**.

ASSOCIATION MEASURES FOR 2×2 CONTINGENCY TABLES

Measure	Formula	Range	Interpretation
Phi Coefficient (Φ)	$\Phi = rac{ad-bc}{\sqrt{(a+b)(c+d)(a+c)(b+d)}}$	-1 ≤ Φ ≤ 1	Measures strength and direction of association; 0 = no association, positive/negative indicates direction
Yule's Q	$Q = \frac{ad - bc}{ad + bc}$	-1 ≤ Q ≤ 1	Measures association for binary variables; 0 = no association, sign indicates direction; symmetric measure
Yule's Y (Colligation Coefficient)	$Y = rac{\sqrt{ad} - \sqrt{bc}}{\sqrt{ad} + \sqrt{bc}}$	–1 ≤ Y ≤ 1	Alternative measure of association for 2×2 tables; reduces sensitivity to extreme values; 0 = no association, sign indicates direction

YULE'S COEFFICIENTS (2×2 TABLES)

Relationship between Q and Y:

$$Q=\frac{2Y}{1+Y^2}$$

Notes:

- Yule's Q and Yule's Y are related: both indicate the same direction of association.
- Yule's Y reduces sensitivity to extreme frequencies, i.e., when some cells have very small or very large counts.
- **Sign (+/–) indicates direction**, absolute value indicates strength.

DIFFERENCES BETWEEN PHI, YULE'S Q AND YULE'S Y

Coefficient	Direction	Strength	Notes / Purpose
Phi (Φ)	Yes, sign indicates direction (+/-)	Yes, magnitude indicates strength	Measures linear association for binary variables , similar to correlation; sensitive to marginal distributions
Yule's Q	Yes, sign indicates direction (+/-)	Yes, magnitude indicates strength	Measures association (dependence) between two binary variables; symmetric; less sensitive to marginal totals than Φ in some cases
Yule's Y (Colligation Coefficient)	Yes, sign indicates direction (+/-)	Yes, magnitude indicates strength	Alternative to Q; reduces influence of extreme frequencies; also measures association (strength & direction)

INTERPRETATION GUIDELINES FOR 2×2 ASSOCIATION MEASURES (Φ,YULE'S Q, YULE'S Y)

Measure	Value (absolute)	Strength of Asso	ciation (approx.)
Phi (Φ)	0 – 0.1	Negligible / very	weak
	0.1 – 0.3	Weak	
	0.3 – 0.5	Moderate	Note:
	0.5 – 0.7	Strong	 The table refers to the absolute values of the association measures. The sign of the
	0.7 – 1	Very strong	coefficient (+ or –) indicates the direction of the association: positive values represent a
Yule's Q or Y	0 – 0.3	Weak	positive association, negative values represent a negative
	0.3 – 0.5	Moderate	association.
	0.5 – 0.7	Strong	
	0.7 – 1	Very strong	

CONTINGENCY SQUARE (Φ²) VS. PHI (Φ) FOR 2×2 TABLES

1. Phi Coefficient (Φ)

$$\Phi = rac{ad-bc}{\sqrt{(a+b)(c+d)(a+c)(b+d)}}$$

- Expressed directly in terms of cell frequencies.
- Values: –1 ≤ Φ ≤ 1
- Measures both strength and direction of association.
- 2. Contingency Square (Φ²)

$$\Phi^2=rac{\chi^2}{n}$$

- Derived from Pearson's chi-square statistic.
- Values: $0 \le \Phi^2 \le 1$ (for 2×2 tables, maximum can reach 1)
- Measures **strength only**; loses direction information.

For 2×2 tables:

$$\Phi^2 = (\Phi)^2$$

That is, the **square of the Phi coefficient** equals the contingency square. So Φ^2 gives the **magnitude**, while Φ also gives the **direction** of association.

CALCULATING ASSOCIATION MEASURES: EXAMPLE 2

Example Table: Smoker and Disease

$$a = 30, b = 20, c = 10, d = 40$$

	Dis		
Smoker	Yes	No	Total
Yes	30	20	50
No	10	40	50
Total	40	60	100

Step 1: Pearson's Chi-Square

$$\chi^2=rac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$

Substituindo:

$$\chi^2 = rac{100(30\cdot 40 - 20\cdot 10)^2}{(30+20)(10+40)(30+10)(20+40)}$$

$$\chi^2 = rac{100(1200-200)^2}{50\cdot 50\cdot 40\cdot 60} = rac{100(1000)^2}{6,000,000} = rac{100,000,000}{6,000,000} pprox 16.67$$

CALCULATING ASSOCIATION MEASURES: EXAMPLE 2

Example Table: Smoker and Disease

$$a = 30, b = 20, c = 10, d = 40$$

	Dis		
Smoker	Yes	No	Total
Yes	30	20	50
No	10	40	50
Total	40	60	100

Step 2: Phi Coefficient (Φ)

$$\Phi = rac{ad-bc}{\sqrt{(a+b)(c+d)(a+c)(b+d)}} \ \Phi = rac{30\cdot 40 - 20\cdot 10}{\sqrt{50\cdot 50\cdot 40\cdot 60}} = rac{1200 - 200}{\sqrt{6,000,000}} = rac{1000}{2449.49} pprox 0.408$$

CALCULATING ASSOCIATION MEASURES: EXAMPLE 2

Example Table: Smoker and Disease

$$a = 30, b = 20, c = 10, d = 40$$

	Dis		
Smoker	Yes	No	Total
Yes	30	20	50
No	10	40	50
Total	40	60	100

Step 3: Yule's Q

$$Q = rac{ad-bc}{ad+bc} = rac{1200-200}{1200+200} = rac{1000}{1400} pprox 0.714$$

Step 4: Yule's Y

$$Y = rac{\sqrt{ad} - \sqrt{bc}}{\sqrt{ad} + \sqrt{bc}} = rac{\sqrt{1200} - \sqrt{200}}{\sqrt{1200} + \sqrt{200}} pprox rac{34.64 - 14.14}{34.64 + 14.14} pprox rac{20.50}{48.78} pprox 0.420$$

Interpretation:

- $\chi^2 \approx 16.67 \rightarrow \text{significant association}$
- $\Phi \approx 0.408 \rightarrow$ moderate positive association
- Yule's Q ≈ 0.714 → strong positive association (focuses on odds ratio)
- Yule's Y ≈ 0.420 → moderate positive association, less extreme than Q

All measures indicate that smoking is positively associated with lung disease.

COMPARISON OF ASSOCIATION MEASURES: GENERAL VS 2×2 TABLES

Notes:

- General tables (Ixc): Only measure strength; no direction.
- 2×2 tables: Measures give both strength and direction because variables are binary.

		_		variables are binar
Measure	Used For	Range	Direction	Interpretation
Φ² (Contingency Square)	l×c tables	$\Phi^2 \geq 0$	No	Strength of association only
Contingency Coefficient (C)	l×c tables	0 ≤ C < 1	No	Standardized strength; depends on table size
Tschuprow's T	l×c tables	0 ≤ T ≤ 1	No	Adjusts for table dimensions; strength only
Cramer's V	l×c tables	0 ≤ V ≤ 1	No	Standardized; widely used; strength only
Phi (Φ)	2×2 tables	- ≤ Ф ≤	Yes	Strength and direction; correlation-like
Yule's Q	2×2 tables	-l≤ Q ≤l	Yes	Strength and direction; symmetric association
Yule's Y	2×2 tables	- ≤Y≤	Yes	Strength and direction; less sensitive to extreme frequencies

THANKS!

Questions?