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Integer Linear Programming Knapsack Problem

Knapsack Problem

In Knapsack type problems, given n objects, each with an associated cost or
utility uj , j = 1, . . . , n, and weight or volume vj , j = 1, . . . , n, the decision to be
made is whether to select the object j in order to optimize the total utility and
not to violate the imposed volume constraint of C .

One must decide if xj = 1, which means that the object j is selected, or if xj = 0,
which means that the object j is not selected

The ILP model of the Binary Knapsack is

max

n∑
j=1

ujxj

s. to:

n∑
j=1

vjxj ≤ C

xj ∈ {0, 1}, j = 1, . . . , n
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Integer Linear Programming Knapsack Problem

Knapsack Problem: Example

utility =(4,2,2,1,10)
weight=(12,2,1,1,4)
W=15

max 4x1 + 2x2+
2x3 + x4 + 10x5

s. to: 12x1 + 2x2 + x3+
x4 + 4x5 ≤ 15

xj ∈ {0, 1}, j = 1, . . . , n

x = (1, 1, 1, 0, 0), z = 8, v = 15
x = (0, 1, 1, 1, 1), z = 15, v = 8
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Integer Linear Programming Knapsack Problem

Knapsack Problem

References:

P. Toth, S. Martello. Knapsack problems: algorithms and computer
implementations. Wiley, 1990.
H. Kellerer, U. Pferschy, D. Pisinger. Knapsack Problems. Springer, 2004

The knapsack problem is NP-hard.

There are several variants.

Given
C – capacity of the knapsack,
n – number of different objects,

for j = 1, . . . , n
uj – utility or cost of object j ,
vj – volume or weight of object j
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Integer Linear Programming Knapsack Problem

Knapsack Problem: ILP models

Binary decision variables:

xj =

{
1, if object j is selected,
0, otherwise,

j = 1, . . . , n,

Binary Knapsack

max
n∑

j=1

ujxj

s.t.
n∑

j=1

vjxj ≤ C

xj ∈ {0, 1}, j = 1, . . . , n

Subset-sum

max
n∑

j=1

vjxj

s.t.
n∑

j=1

vjxj ≤ C

xj ∈ {0, 1}, j = 1, . . . , n
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Integer Linear Programming Knapsack Problem

Knapsack Problem: ILP models

Integer decision variables:

xj ∈ N0 number of objects type j selected, j = 1, . . . , n,

Limited Knapsack

max
n∑

j=1

ujxj

s.t.
n∑

j=1

vjxj ≤ C ,

xj ∈ {0, 1, . . . , ℓj},
j = 1, . . . , n

Change Machine

max
n∑

j=1

xj

s.t.
n∑

j=1

vjxj = C ,

xj ∈ {0, 1, . . . , ℓj},
j = 1, . . . , n

ℓj ∈ N0
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Integer Linear Programming Knapsack Problem

Multiple Knapsack

m – number of different knapsacks,
Ci – capacity of knapsack i , i = 1, . . . ,m
Binary decision variables:

xij =

{
1, if object j is selected for knapsack i ,
0, otherwise,

max

m∑
i=1

n∑
j=1

ujxij

s.t.

n∑
j=1

vjxij ≤ Ci , i = 1, . . . ,m

m∑
i=1

xij ≤ 1, j = 1, . . . , n

xij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n
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Integer Linear Programming Knapsack Problem

Generalized Assignment

uij – utility obtained from assigning task j to machine i ,
vij – consumption of resource (machine) i by task j ,

max
m∑
i=1

n∑
j=1

uijxij

s.t.
n∑

j=1

vijxij ≤ Ci , i = 1, . . . ,m

m∑
i=1

xij ≤ 1, j = 1, . . . , n

xij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n

different utility and weights depending on the knapsack selected
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Integer Linear Programming Knapsack Problem

Binary Knapsack

From now on, consider the Binary Knapsack.
Binary decision variables:

xj =

{
1, if object j is selected,
0, otherwise,

j = 1, . . . , n,

Binary Knapsack

max

n∑
j=1

ujxj

s.t.

n∑
j=1

vjxj ≤ C

xj ∈ {0, 1}, j = 1, . . . , n

Example:
n = 6,C = 12, u = (2, 5, 3, 4, 5, 4),
v = (6, 8, 4, 6, 7, 2).

max z = 2x1 + 5x2 + 3x3 + 4x4 + 5x5 + 4x6

s.t. 6x1 + 8x2 + 4x3 + 6x4 + 7x5 + 2x6 ≤ 12

xj ∈ {0, 1}, j = 1, . . . , 6
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Integer Linear Programming Knapsack Problem

Binary Knapsack: the Critical index

Assumptions:

uj > 0, j = 1, . . . , n,

0 < vj ≤ C , j = 1, . . . , n,

n∑
j=1

vj > C > 0

u1

v1
≥

u2

v2
≥ · · · ≥

uk

vk
≥ · · · ≥

un

vn

Critical index:

k such that:

k−1∑
j=1

vj ≤ C

and
k∑

j=1

vj > C

Example: n = 6, C = 12, u = (2, 5, 3, 4, 5, 4), v = (6, 8, 4, 6, 7, 2).

i 1 2 3 4 5 6

ui
vi

2
6

5
8

3
4

4
6

5
7

4
2

0.(3) 0.625 0.75 0.(6) 0.7 2

j 1 2 3 4 5 6

uj
vj

2 0.75 0.7 0.(6) 0.625 0.(3)

i 6 3 5 4 2 1

reorder: ū = (4, 3, 5, 4, 5, 2), v̄ = (2, 4, 7, 6, 8, 6) → k = 3 is the critical index

initial items position (6, 3, 5, 4, 2, 1)
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Integer Linear Programming Knapsack Problem

Upper bound with the Linear Relaxation:

Linear Relaxation (LR):

max
n∑

j=1

ujxj

s.t.
n∑

j=1

vjxj ≤ C

0 ≤ xj ≤ 1, j = 1, . . . , n

Algorithm:
• Obtain the critical index k
• The optimal LR solution is

x∗
j =


1, 1 ≤ j ≤ k − 1;
C−

∑k−1

j=1
vj

vk
, j = k;

0, k + 1 ≤ j ≤ n.

Example (reordered): ū = (4, 3, 5, 4, 5, 2), v̄ = (2, 4, 7, 6, 8, 6)→ k = 3

the LR optimal solution is x∗
LR = (1, 1, 12−6

7 , 0, 0, 0) = (1, 1, 0.85, 0, 0, 0)

with value z∗
LR = 4 + 3 + 5× 0.85 = 11.28
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Integer Linear Programming Knapsack Problem

Lower Bounds by feasible solutions:

Greedy Heuristic:
• Obtain the critical index k
• Let

xj = 1, j = 1, . . . , k − 1;
xj = 0, j = k, . . . , n;

Z ′ =
k−1∑
j=1

uj .

• Take Z = max{Z ′, uk}

Example (reordered):
ū = (4, 3, 5, 5, 4, 2)
v̄ = (2, 4, 7, 8, 6, 6)
critical index → k = 3
the greedy feasible solution is

x̄G = (1, 1, 0, 0, 0, 0)
with value Z ′ = 4 + 3 = 7
the lower bound is
Z = max{Z ′, uk} = max{7, 7} = 7
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Integer Linear Programming Knapsack Problem

Lower Bounds by feasible solutions:

Greedy utility Heuristic:
• Order objects by
non-increasing order of
utility
• For j = 1, . . . , n take object j
→ if

∑j
i=1 vi ≤ C

then xj = 1,
otherwise xj = 0,

→ Z ′ =
j∑

i=1

uixi .

• Take Z = Z ′

Example:
u = (2, 5, 3, 4, 5, 4)
v = (6, 8, 4, 6, 7, 2)
Order objects by non-increasing
order of utility
û = (5, 5, 4, 4, 3, 2)
v̂ = (8, 7, 6, 2, 4, 6)

the greedy utility feasible solution is
x̂G = (1, 0, 0, 1, 0, 0)

with value Z ′ = 5 + 4 = 9
and used capacity 8 + 2 = 10
the lower bound is Z = 9

In the example, the ties that occurred in the ordering process were decided without any rules.
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Facility Location Problem
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Integer Linear Programming Facility Location Problem

Facility Location Problem

This problem involves determining the best location for a facility,
like a warehouse, factory, or service center, to serve all the demand and

minimize costs
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Integer Linear Programming Facility Location Problem

Facility Location Problem: Example

A company plans to build a new warehouse to serve its factories located in three
cities: City A, City B, and City C.
The warehouse can be built in any one of the three cities. The transportation cost
between a potential warehouse location and each of the cities is shown in the
table below (in arbitrary units):

Warehouse Location To A To B To C

A – 25 19
B 25 – 12
C 19 12 –

The goal is to select the warehouse location that minimizes the total
transportation cost to all three cities.

Master DAB (ISEG) Decision Making and Optimization 2025-2026 18 / 63



Integer Linear Programming Facility Location Problem

Facility Location Problem

Consider the decision variables

yj =

{
1, if j is selected,
0, otherwise,

j = 1, . . . , n,

xij =

{
1, if j is served by facility in i ,
0, otherwise,

i , j = 1, . . . , n,

the ILP model of the Facility Location Problem is

min

n∑
i,j=1

cijxij

s. to:

n∑
i=1

xij + yj = 1, j = 1, . . . , n

xij ≤ yj , i , j = 1, . . . , n
xij ≥ 0, i , j = 1, . . . , n
yj ∈ {0, 1}, j = 1, . . . , n
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Integer Linear Programming Facility Location Problem

Facility Location Problem: ILP Formulation

Sets:

1 I = {1, . . . ,m}− customers

2 J = {1, . . . , n}− services

Parameters:

1 fj = cost of installing a service in j , j ∈ J

2 cij = cost of customer i being served by the service installed in j , j ∈ J

Decision variables:

yj =

{
1, if a service is installed on j ;
0, otherwise;

j ∈ J

xij =

{
1, if customer i is served by service j ,
0, otherwise

, i ∈ I , j ∈ J
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Integer Linear Programming Facility Location Problem

Facility Location Problem: ILP Formulation

min
∑
i∈I

∑
j∈J

cijxij +
∑
j∈J

fjyj

s.t. :
∑
j∈J

xij = 1,∀i ∈ I

linking constraints

xij ∈ {0, 1}, i ∈ I , j ∈ J

yj ∈ {0, 1}, j ∈ J
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Integer Linear Programming Facility Location Problem

Facility Location Problem: ILP Formulation

Linking constraints - to ensure that a center j can only serve a customer i
if a center is installed in j :

xij = 1⇒ yj = 1

Alternative 1

xij ≤ yj ,∀i ∈ I , j ∈ J

Alternative 2 ∑
i∈I

xij ≤ myj , ∀j ∈ J
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Integer Linear Programming Facility Location Problem

Lower and Upper Bounds

Since the problem is formulated as a minimization problem, we have:

Lower bounds

Lower bounds for the optimal value of the problem are provided by
relaxations (e.g., linear, Lagrangian, etc.).

Upper bounds

Upper bounds for the optimal value of the problem are provided by feasible
solutions (obtained, for example, using heuristics).
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Integer Linear Programming Facility Location Problem

Facility Location Problem: Greedy Heuristic

Step 0: Initialization

• calculate zj = fj +
∑m

i=1 cij , for all j = 1, . . . , n
• determine j∗ such that zj∗ = minj=1,...,n zj
• S := {j∗} (solution)
• C (S) := zj∗ (solution cost)
• ui = cij∗ for all i = 1, . . . ,m

Step 1: Selecting a new center

• for each j ̸∈ S calculate ρj = fj +
∑m

i=1 min(0, cij − ui )
• determine j∗ such that ρj∗ = minj ̸∈S ρj

• if ρj∗ ≥ 0, STOP S contains the obtained solution of cost
C (S)

• else (Update)
• S := S ∪ {j∗}
• C (S) := C (S) + ρj∗

• ui := min(ui , cij∗) for all i = 1, . . . ,m
• if |S | < n, repeat this step
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Integer Linear Programming Facility Location Problem

Facility Location Problem: Example

m = 4, n = 6, [fj ] = [3 2 2 2 3 3]

[cij ] =


6 6 8 6 0 6
6 8 6 0 6 6
5 0 3 6 3 0
2 3 0 2 4 4


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Integer Linear Programming Set Covering Problem

Set Covering Problem

Master DAB (ISEG) Decision Making and Optimization 2025-2026 26 / 63



Integer Linear Programming Set Covering Problem

Set Covering Problem: Example

To promote safety on campus, the Security Department is in the process of
installing emergency equipment in selected locations. The department
would like to install a minimum number of these devices to serve each of
the main campus streets. The figure below shows the main campus roads.
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Integer Linear Programming Set Covering Problem

Set Covering Problem

one must decide if xj =

{
1, if j is selected,
0, j is not selected,

j = 1, . . . , n,

the ILP model of the Set Covering Problem is

min
n∑

j=1

cjxj

s. to:
n∑

j=1

aijxj ≥ 1, i = 1, . . . ,m

xj ∈ {0, 1}, j = 1, . . . , n

with aij =

{
1, if j serves i ,
0, otherwise,

i = 1, . . . ,m, j = 1, . . . , n,
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Integer Linear Programming Set Covering Problem

Set Covering Problem

Given a matrix of zeros and ones and a cost associated with each column,
determine the subset of columns that covers all the rows, i.e. such that for each
row there is at least one in one of the selected columns.
The set covering problem is NP-hard.

Sets:

• N = {1, . . . , n}− set of columns

• M = {1, . . . ,m}− set of rows

• Ni = {j ∈ N : aij = 1}, i ∈ M.

• Mj = {i ∈ M : aij = 1}, j ∈ N.

Parameters:

1 cost cj associated with each column j , j ∈ N

2 matrix A = [aij ] of zeros and ones, with aij = 1 if column j covers row i and
aij = 0 otherwise, for all i ∈ M, j ∈ N
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Integer Linear Programming Set Covering Problem

ILP formulation for the Set Covering Problem

Variables:

xj =

{
1, if column j is selected
0, otherwise;

j ∈ J

min
∑
j∈N

cjxj

s.a :
∑
j∈N

aijxj ≥ 1,∀i ∈ M

xj ∈ {0, 1}, j ∈ N

Note: If constraints
∑

j∈N aijxj ≥ 1,∀i ∈ M are replaced by constraints∑
j∈N

aijxj = 1,∀i ∈ M

we get the partition problem
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Integer Linear Programming Set Covering Problem

Set Covering Problem: Variants

Multiple Set Covering problem

min
∑
j∈N

cjxj

s.a :
∑
j∈N

aijxj ≥ bi ,∀i ∈ M

xj ∈ {0, 1}, j ∈ N

Generalized Set Covering problem

min
∑
j∈N

cjxj

s.a :
∑
j∈N

aijxj ≥ bi ,∀i ∈ M

xj ≥ 0 and integer,j ∈ N

bi is an integer greater than or equal to 1. For example, it could represent the minimum number

of workers on the shift i .
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Integer Linear Programming Set Covering Problem

Set Covering Problem: Preprocessing

Reductions:

1 If there exists i ∈ M such that Ni = ∅ then the problem is impossible.

2 If i ∈ M is such that Ni = {j(i)} (i is covered by only one column)
then j(i) is in the solution.

3 (Dominance between rows) If i , ℓ ∈ M are such that Ni ⊆ Nℓ then the
row ℓ can be eliminated.

4 (Dominance between single columns) If k, j ∈ N are such that
Mk ⊆ Mj and ck ≥ cj then column k can be removed.

5 (Dominance between columns) If k, j1, . . . , js ∈ N are such that

Mk ⊆
s⋃

t=1

Mt and ck ≥
s∑

t=1

ct then column k can be removed.

6 (Weak dominance between columns) Let di = minj∈Ni
cj and k ∈ N

such that ck ≥
∑
i∈Mk

di then column k can be removed.
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Integer Linear Programming Set Covering Problem

Set Covering Problem: Greedy Algorithm

Greedy Algorithm
Initialise R ← M, S ← ∅, t ← 1
Step t:

Let i∗ ∈ R be such that | Ni∗ |= mini∈R | Ni |
Choose j(t) such that f (cj(t), kj(t)) = min{f (cj , kj) : j ∈ Ni∗ ∧ kj > 0}
where kj =| Mj ∩ R |, ∀j ∈ Ni∗

Make R ← R \Mj(t), S ← S ∪ {j(t)},
If R ̸= ∅, set t ← t + 1 and repeat step, otherwise:

Sort the S cover in non-increasing order of costs: S = {j1, . . . , jt}.
For i = 1 to t do:

If S \ {ji} is cover then S ← S \ {ji}

There are several alternatives to f (cj , kj). For example f (cj , kj) = cj/kj .
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Integer Linear Programming Set Covering Problem

Set Covering Problem: example

m = 5, n = 6, [cj ] = [2 2 3 3 5 7]

[aij ] =


1 0 1 0 1 1
1 1 0 1 0 1
0 1 1 1 1 0
0 0 1 0 0 1
0 0 0 1 1 1


Exercise

Formulate the dual of the linear relaxation of the Set Covering problem.
What is the relationship between the optimal value of the Set Covering
problem and the value of a feasible solution to the dual?
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Traveling Salesperson Problem (TSP)
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Example of a Travelling Salesperson Problem

A courier service needs to deliver packages to several locations in a city.
The goal is to find the shortest possible route that allows the courier to
visit each location exactly once and return to the starting point.

Location A B C

A 5 25 19
B 20 22 12
C 15 35 34
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Travelling Salesperson Problem (TSP)

TSP deals with finding the shortest (closed) tour in an n-city situation,
where each city is visited exactly once before returning back to the starting
point.

The associated TSP model is defined by two pieces of data:

1 the number n of cities,

2 the distances dij between cities i and j (dij =∞ if cities i and j are
not linked).

The maximum number of tours in an n-city situation is (n − 1)! if the
network is directed (dij ̸= dji ) and half that much if it is not.
Note that 10! = 3 638 800
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Example of a TSP

The daily production schedule at the Rainbow Company includes batches
of white (W), yellow (Y), red (R), and black (B) paints. The production
facility must be cleaned between successive batches.

Inter-batch Cleanup Times (in minutes)

Paint White Yellow Black Red

White ∞ 10 17 15
Yellow 20 ∞ 19 18
Black 50 44 ∞ 22
Red 45 40 20 ∞

The objective is to determine the sequencing of colors that minimizes the
total cleanup time.
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Example of a TSP

Solution of the Paint Sequencing Problem by Exhaustive Enumeration

No. of feasible solutions (production loops): (n − 1)! = 3! = 6

Production loop Total cleanup time (min)

W → Y → B → R → W 10 + 19 + 22 + 45 = 96

W → Y → R → B → W 10 + 18 + 20 + 50 = 98

W → B → Y → R → W 17 + 44 + 18 + 45 = 124

W → B → R → Y → W 17 + 22 + 40 + 20 = 99

W → R → B → Y → W 15 + 20 + 44 + 20 = 99

W → R→ Y→ B→ W 15 + 40 + 19 + 50 = 124
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Integer Linear Programming Traveling Salesperson Problem (TSP)

ILP formulation for the TSP

xij =

{
1 if paint j follows paint i

0 otherwise
i , j = W ,Y ,B,R; i ̸= j

min
∑

i,j=W ,Y ,B,R;i ̸=j

cijxij∑
i=W ,Y ,B,R

xij = 1, j = W ,Y ,B,R,

∑
i=W ,Y ,B,R

xji = 1, j = W ,Y ,B,R,

xij ∈ {0, 1}, i , j = W ,Y ,B,R, i ̸= j

????
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Example of a TSP

The solution
xWY = xYW = xBR = xRB = 1

satisfies all the previous constraints

xWY + xWB + xWR = 1

xYW + xYB + xYR = 1

xBY + xBR + xRW = 1

xRW + xRY + xRB = 1

xYW + xBW + xRW = 1

xWY + xBY + xRY = 1

xWB + xYB + xRB = 1

xWR + xYR + xBR = 1

xij ∈ {0, 1} ∀i , j i ̸= j

W Y

B R

and min 10xWY + 17xWB + 15xWR + 20xYW + 19xYB + 18xYR + 50xBW + 44xBY + 22xBR +

45xRW + 40xRY + 20xRB
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Integer Linear Programming Traveling Salesperson Problem (TSP)

ILP formulation for the TSP

Subtour elimination constraints are missing

for example

xWB + xWR + xYB + xYR + xBW + xBY + xRW + xRY ≥ 1

how to establish such constraints?
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Dantzig, Fulkerson, Johnson, 1954:

For every set S of cities, add a constraint saying that the tour leaves S at
least once. For every S ⊆ {1, 2, . . . , n} with 1 ≤ |S | ≤ n − 1 :∑

i∈S

∑
j ̸∈S

xij ≥ 1

This will happen for any tour: eventually, we must go from a city in S to a
city not in S . In a solution to the local constraints with subtours, this is
violated if we take S to be the set of cities in a subtour

• The formulation with the subtour elimination constraints describe
TSP.

• Number of constraints increase exponentially: for n cities, there are
2n − 2 subtour elimination constraints! 2n−1 − 1 if we assume 1 ∈ S .
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Dantzig, Fulkerson, Johnson, 1954:

The complete model is:

min
∑

i,j∈{1,2,...,n};i ̸=j

cijxij∑
i∈{1,2,...,n}

xij = 1, j ∈ {1, 2, . . . , n},

∑
i∈{1,2,...,n}

xji = 1, j ∈ {1, 2, . . . , n},

∑
i∈S

∑
j ̸∈S

xij ≥ 1 S ⊆ {1, 2, . . . , n}, 1 ≤ |S| ≤ n − 1

xij ∈ {0, 1}, i , j ∈ {1, 2, . . . , n}, i ̸= j
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Miller, Tucker, Zemlin, 1960:

Add variables representing the time at which a city is visited.
For i = 1, . . . , n,, let ti denote the time at which we visit city i , with
1 ≤ ti ≤ n − 1. We leave t1 undefined.
We want an inequality to encode the logical implication

if xij = 1, then tj ≥ ti + 1 for every pair of cities i , j ̸= 1.

How do we know that the timing constraints get rid of subtours?

1 For any tour, we can satisfy the timing constraints. If we visit cities
i1, i2, . . . , i(n−1), in that order from city 1, set
i1 = 1, i2 = 2, . . . , i(n−1) = n − 1.

2 If there is a subtour, then we can’t satisfy the timing constraints.

3 Suppose xab = xbc = xca = 1 and none of a, b, c are 1. Then we can’t
satisfy the three constraints tb ≥ ta + 1, tc ≥ tb + 1 ta ≥ tc + 1
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Miller, Tucker, Zemlin, 1960:

If xij = 1, then tj ≥ ti + 1.
Using the big number M:

tj ≥ ti + 1−M(1− xij) for some large M.

When xij = 1, this simplifies to tj ≥ ti + 1.
When xij = 0, we get tj ≥ ti + 1−M, which has no effect on the value of
ti , tj .

We can check: if we take M = n, then any actual tour can satisfy these
constraints. The times t2, . . . , tn can be chosen between 1 and n − 1, so
tj ≥ ti + 1− n always holds.

The inequality is

tj ≥ ti + 1− n(1− xij)
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Miller, Tucker, Zemlin, 1960:

The complete model is:

min
∑

i,j∈{1,2,...,n};i ̸=j

cijxij∑
i∈{1,2,...,n}

xij = 1, j ∈ {1, 2, . . . , n},

∑
i∈{1,2,...,n}

xji = 1, j ∈ {1, 2, . . . , n},

tj ≥ ti + 1 − n(1 − xij ) i , j ∈ {1, 2, . . . , n}, i ̸= j

xij ∈ {0, 1}, i , j ∈ {1, 2, . . . , n}, i ̸= j
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Integer Linear Programming Traveling Salesperson Problem (TSP)

DFJ versus MTZ

On the one hand:

• DFJ’s formulation has 2(n−1) − 1 extra constraints, plus the 2n local
constraints.

• MTZ’s formulation has only n2 extra constraints. There are n − 1
extra variables, which can be integer variables, but don’t need to be.

On the other hand:

• DFJ’s formulation has an efficient branch-and-cut approach.

• MTZ’s formulation is weaker: the feasible region has the same integer
points, but includes more fractional points.
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Relaxations for the TSP

The Assigment relaxation:

min
∑

i,j∈{1,2,...,n};i ̸=j

cijxij∑
i∈{1,2,...,n}

xij = 1, j ∈ {1, 2, . . . , n},

∑
i∈{1,2,...,n}

xji = 1, j ∈ {1, 2, . . . , n},

xij ∈ {0, 1}, i , j ∈ {1, 2, . . . , n}, i ̸= j
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Relaxations for the TSP: the paints example

Solving the Assigment Relaxation using the Solver of the Excel
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Constructive heuristics for the TSP: nearest
neighbor

Input: G = (V ,A),V = {1, 2, . . . , n}, |V | = n, costcij → (i , j) ∈ A

Initialization

Arbitrarily choose a cityi ∈ V

L = {1, 2, . . . , n} − {i} (L set of cities not yet visited)

Iteration

REPEAT

Select in L city j closest to i

Insert the city j immediately after i in the route

Update i = j

L := L − {i}
UNTIL L = ∅ OR no city can be selected

If possible complete the cycle by going back to the beginning

and calculate the total distance

STOP
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Improvement Heuristics for the TSP

• Starting from a feasible circuit, try edge swapping that can lead to
new lower-cost circuits.

• The algorithm consists of starting with a feasible circuit and swapping
r edges until it is no longer possible to improve the solution.

Swapping 2 edges: delete, reverse, connect
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Improvement Heuristics for the TSP: 2-optimal

Consider the case of heuristics that perform 2 edge swaps to improve the
solution already obtained.

• If you have a circuit and you swap 2 edges that are not consecutive,
how many different circuits can you get?

n[(n − 1)− 2]

2

• Let N2(T ) be the neighborhood of the circuit T , i.e. N2(T ) is the set
of circuits that differ from circuit T on a maximum of 2
(non-consecutive) edges.

• |N2(T )| = n(n−3)
2 + 1
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Paints example of swapping 2 edges
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Integer Linear Programming Traveling Salesperson Problem (TSP)

2-opt neighborhood - remove
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Integer Linear Programming Traveling Salesperson Problem (TSP)

2-opt neighborhood - reverse

Master DAB (ISEG) Decision Making and Optimization 2025-2026 56 / 63



Integer Linear Programming Traveling Salesperson Problem (TSP)

Improvement Heuristics for the TSP

1st version

1 Determine a circuit T .

2 Determine Nr (T ) (the set of all possible swaps of r edges) and the
cost of all its circuits.

3 Determine a circuit Q ̸= T such that Q is the circuit with the
minimum cost in Nr (T )\{T}.

4 If the cost Q is less than the cost T , then do T := Q and return to
step 2, otherwise STOP, it is not possible to improve the current
circuit.
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Integer Linear Programming Traveling Salesperson Problem (TSP)

Improvement Heuristics for the TSP

2nd version

1 Determine a circuit T .

2 Sequentially examine the elements Q ̸= T of Nr (T ) and determine its
cost.

3 If cost Q is less than cost T , then do T := Q. Return to step 2. If
there is no more element to search in Nr (T ) then STOP (it is not
possible to improve the current circuit in the considered
neighborhood).
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Integer Linear Programming Traveling Salesperson Problem (TSP)

TSP: Exercise

[cij ] =


− 10 22 12 10
− 12 8 13
− 15 15
− 9
−


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Integer Linear Programming Sequencing Problem

Sequencing Problem
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Integer Linear Programming Sequencing Problem

Example of a Job Sequencing Problem

Jobco uses a single machine to process three jobs. For each job, both the
processing time and the due date (in days) are given in the following table.
The due dates are measured from zero, the assumed start time of the first
job.

Job Processing time (day) Due date (day) Late penalty ($/day)

1 5 25 19
2 20 22 12
3 15 35 34

The objective of the problem is to determine the job sequence that
minimizes the late penalty for processing all three jobs.
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Integer Linear Programming Sequencing Problem

Sequencing Problem

if xij =

{
1, if i precedes j ,
0, otherwise,

i , j = 1, . . . , n,

if tj = start time of job j , j = 1, . . . , n (measured from time 0)

let δj be the processing time of job j , j = 1, . . . , n

the ILP model of the Sequencing Problem has the following constraints

tj ≥ ti + δi −M (1− xij),
ti ≥ tj + δj −M xij

that model the sequence disjunction:

tj ≥ ti + δi or ti ≥ tj + δj

either job j is after job i or job i is after job j
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Integer Linear Programming Sequencing Problem

Sequencing Problem

let dj be the due date of job j , j = 1, . . . , n

the job j is late if tj + δj > dj

thus the following constraints

tj + δj − (s+j − s−
j ) = dj ,

s+j , s−
j ≥ 0

define that
job j is ahead of schedule if s−

j > 0

job j is behind schedule if s+j > 0
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