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PART III
CREDIT RISK MODELS
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1. INTRODUCTION
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DETERMINANTS OF CREDIT RISK

• “Credit risk is the risk of default or of reductions in market value caused by changes in the
credit quality of issuers or counterparties”, Duffie, Darrell and Kenneth J. Singleton (2003),
“Credit Risk”, Princeton University Press.

• Credit Risk is associated to the PD of the debtor, as well as the LGD.

• Regarding the credit risk of the debtor, it is relevant not only to quantify the PDs but also the
rating transition frequencies, which also impact on bond prices.

• Nonetheless, the expected loss is usually calculated taking only default into consideration:

EL = PD x LGD

• Given the diversity of the counterparties, the market usually distinguishes between
sovereign, banking, corporate and individual/household credit risk.
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DETERMINANTS OF CREDIT RISK

Source: Duffie, Darrell and Kenneth J. Singleton (2003), “Credit Risk”, Princeton University Press.

• Bond spreads usually provide relevant information on credit risk.
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COMPONENTS OF CREDIT RISK
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COMPONENTS OF CREDIT RISK
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 Ratings are a ranking of credit risk and do
not explicitly provide any PD measure.

 However, one can obtain historical
frequencies of default for each rating
classification, as well as the historical
frequencies of transition between ratings.

 The long-term ratings of the main agencies
(S&P and Moody’s) split by 9 classes, each
of them (excluding AAA) with rating
modifiers +/ /- (S&P) or 1/2/3 (Moody’s).

PDS

S&P Moody's

Investment Grade AAA Aaa

AA Aa

A A

BBB Baa

Speculative Grade BB Ba

B B
CCC Caa
CC Ca
C C
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PDS

• Simplest measure of credit risk – default frequencies from rating agencies:

Source: S&P (2025), “Default, Transition, and Recovery: 2024 Annual Global Corporate Default And Rating Transition Study”.
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 Transition matrices illustrate the significant stability of rating classifications, being
this stability higher for better ratings.

PDS

Source: Moody’s Ratings (2025), “Annual Default Study”, 28 Feb..
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 Default frequencies also tend to change along time, namely for lower ratings.

PDS

Source: Moody’s Ratings (2025), “Annual Default Study”, 28 Feb..
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 Marginal frequencies obtained from the cumulative figures tend to exhibit a very
irregular shape.

 Marginal PD curves have different inflection points, depending on the rating class,
with the lower inflection points for the higher risk classes.

PDS
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 The irregular shape of marginal PD curves occurs even when cumulative PD curves
exhibit an apparently smooth behavior.

 It is recommended to smooth the cumulative PD curves to ensure a smother
behavior of marginal PD curves, as the marginal curves are a measure of the 1st

derivative of the cumulative curves.
 The cumulative PD curves can be smoothed by methods like the Nelson-Siegel-

Svensson, with the cumulative PD curves corresponding to the spot curves and the
marginal PD curves to the instantaneous forward curves.

PDS
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PDS

• P(t) – Cumulative probability of surviving t years

• Unconditional marginal probability of default between t and s - probability of
default between any times t and s ≥ t as seen today: difference between the
cumulative probability of default until s and the same probability until t:

d’(s) = [1-P(s)]-[1-P(t)] = P(t) − P(s) = D(s) – D(t)

difference between 2 cumulative probabilities of default (D) seen today (being D0=0)

• Cumulative default frequencies are the sum of unconditional marginal default
frequencies.
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PDS
• Cumulative probability of surviving to time s (P(s)) = probability of surviving until t

(P(t)) x probability of surviving between t and s, given that it has survived until t
(p(s|t)):

P(s) = P(t) x p(s|t)

• Conditional marginal probability of surviving to time s, given survival to time t:

p(s|t) = P(s)/P(t)

• Conditional marginal probability of default at time s, given survival to time t (or
forward default probability):

d(s|t) = 1- p(s|t) = 1-P(s)/P(t) = [P(t)-P(s)]/P(t) = -[P(s)-P(t)]/P(t) = -P’(t)/P(t)
or = d’(s|t)/P(t) (as d’(s)= P(t) − P(s))

• Cumulative default frequencies can also be calculated as is 1 - the joint (cumulative)
probability of surviving until i-1 and the probability of surviving in i:

  1111  iii DdD
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PDS

• For the Caa rating, the unconditional marginal probability of default (d’) seen today
for the 3rd year is equal to the difference between the cumulative probabilities of
default for 3 (s) and 2 (t) years: d’(3) = D(3) – D(2) = 25.639% - 18.857% = 6.782%

• Conditional marginal probability of surviving at year 3, given survival to year 2:
p(3|2)=P(3)/P(2) = (1-0.25639)/(1-0.18857) =0.91642

• Conditional marginal probability of default at year 3, given survival to year 2:
d(3|2) = 1-p(3|2)= 1-0.91642= 0.0836.

Source: Hull, John (2018), “Options, futures and other derivatives”, 10th Edition, Pearson.
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PDS

• The unconditional marginal probability of default between s and t
measured today is also the product between the cumulative probability of
survival until t and the probability of default between t and s, given survival
until t:

d’(s) = P(t) x d(s|t) d(s|t)=d’(s)/P(t) = 0.06782/(1-0.18857)= 0.0836

• Any unconditional probability of default may be measured as:

being di = d(s|t), (1-dj-1) = P(t) and with d0’ = 0

  



i

j
jii ddd

1
1

' 1

conditional marginal probability of  default 
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 The conditional probability of default between s and t, given survival until t
(d(s|t) = d’(s) / P(t)), is also called default intensity or hazard rate.

 The conditional marginal default probability to the rating Caa previously
calculated (8.36%) was for a 1-year period.

 If one considers a very short period of time t, denoting the hazard rate at t
by (t), the probability of default between t and t + t conditional on no
previous default (until t) is (t) x t.

 Many models of PDs are based on the notion of the arrival intensity of
default.

DEFAULT INTENSITY
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 The simplest version of such a model defines default as the 1st arrival time τ of a
Poisson process with some constant mean arrival rate – average default intensity or
hazard rate (λ):

P(t) = e−λt - probability of survival for t years

1/λ - expected time to default

λt – default intensity in t over a small period of length  (between t and t+t),
given survival until t.

 Example: default intensity (λ) = 0.04 => 1/λ (expected time to default) = 25 (years).

=> 1-year PD (1-P(1)) = 1-e-0.04x1 =3,9%

DEFAULT INTENSITY
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 As it was shown before, d’(s) = P(t) x d(s|t) d(s|t) =d’(s) / P(t).

 For a very short period of time t, this result becomes:

d(t+t|t) = d’(t+t)/P(t)

 As d’(t+t) is the unconditional probability of default between t and t, it is
the difference between the cumulative probabilities of default for t+t and
t:

d’(t+t) = [1– P(t+t)]-[1– P(t)] = P(t) - P(t+t) => the previous equation
becomes:

d(t+t|t) = d’(t+t)/P(t) = [P(t) – P(t+t)]/P(t)

DEFAULT INTENSITY
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 As the conditional marginal probability of default (or default intensity) for
a very short period of time is λt, we have:

[P(t) – P(t+t)]/P(t) = λt [P(t+t) - P(t)] = -λP(t) t

or

dP(t)/dt = -λP(t)

DEFAULT INTENSITY
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 If the default intensity varies along time, default intensity becomes λ(t)t and
the probability of survival for t years becomes:

P(t ) = e−[λ(1)+λ(2)+…+λ(t)]

 Actually, as P(s) = P(t) x p(s|t), for instance with s = 2 and t = 1 =>

P(2) = P(1) x p(2|1) = e−[λ(1)+ λ(2)]

 In continuous time, we get 𝑃 𝑡 = 𝑒ି ∫ ఒ ௧
೟
బ

ௗ௧

𝐷 𝑡 = 1 − 𝑃 𝑡 = 1 − 𝑒ି ∫ ఒ ௧
೟
బ

ௗ௧

The only relevant information to default risk along time is the survival until then.

DEFAULT INTENSITY

Instead of P(t ) = e−λt , where  is constant
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 However, in reality, as time passes, one should have new information,
beyond simply survival, that would bear on the credit quality of an
issuer.

 The default intensity would generally vary at random as this additional
information arrives.

 For example, one may assume that the intensity varies with an
underlying state variable (driver), such as the credit rating, distance to
default, equity price, or the business cycle.

DEFAULT INTENSITY
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 If intensities are updated with new information at the beginning of
each year and are constant during the year => Probability of survival
to time t given survival to t − 1, and given all other information
available at time t − 1:

𝑃 𝑡|𝑡 − 1 = 𝑒ିఒ ௧

 At time t, we have 2 sources of uncertainty:
(i) the behaviour in the following period (survival or default);
(ii) new information that will become available during the next period

that will be relevant to calculate probabilities of survival and default
in the following period.

DEFAULT INTENSITY

𝑃 𝑡|𝑡 − 1 is unknown before t-1, as 𝜆 𝑡 is based
on information that is revealed only at time t-1.
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 Example – 2 periods:

 Default intensity in the 2nd year (λ(2)), assuming the firm survives the 1st, is
uncertain and takes 2 possible levels, λ(2,H) and λ(2, L), with conditional
probabilities q and 1 − q, respectively (𝑝 2|1 ):

𝑝 2|1 = 𝑞𝑒ିఒ ଶ,ு + 1 − 𝑞 𝑒ିఒ ଶ,௅ = 𝐸 𝑒ିఒ ଶ

 2-year survival probability (P 2 ):

P 2 = P 1 ȉ 𝑝 2|1 = 𝑒ିఒ ଵ ȉ 𝐸 𝑒ିఒ ଶ = 𝐸 𝑒ି ఒ ଵ ାఒ ଶ

DEFAULT INTENSITY

When there was no new
information on the hazard rate
there was no uncertainty about
the ’s:
P 2 = P 1 ȉ 𝑝 2|1 = 𝑒ି ఒ ଵ ାఒ ଶ

Source: Schonbucher, Philipp J. (2003), 
“Credit Derivatives Pricing Models –
Models, Pricing and Implementation”, 
Wiley.
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DEFAULT INTENSITY

 Default time  1st time that a coin toss results in “heads,” given independent
tosses of coins, one each period, with each toss having a probability λ of heads and
1−λ of tails default is unpredictable when default does occur, it is a “surprise.”
 default time is inaccessible.
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POISSON PROCESSES

Probability of default in
a small period of time
Dt = Probability of 1
jump in the Poisson
Process

There is only 1 default,
i.e. the default is an
absorbing state.

Probability of survival
in a small period of
time t = Probability of
no jumps in the
Poisson Process



Raquel M. Gaspar   |   Interest Rate and Credit Risk Models   220Jorge Barros Luís|   Interest Rate and Credit Risk Models   220

POISSON PROCESSES

Probability of no jumps in n periods

Probability of survival in 2 small
periods is the joint probability
of survival in each of them
(given that the hazard rate is the
same for all periods of the same
magnitude)

t
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POISSON PROCESSES

Probability of no jumps
with a Poisson process

x

P(t) = e−λt
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POISSON PROCESSES

Probability of a jump

Probability of no jumps in remaining n-1 periods

t

Probability of exactly 
one jump in [t,T]

Probability of no jumps in n periods/Probability of 
no jump in 1 period (as it is assumed that there 
is a single jump during n-1).

->1 when n->∞
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POISSON PROCESSES

 For 2 jumps, there will be n/2 chances => probability of having 2 jumps is the joint
probability of each of these jumps:

 Probability of n jumps:

 When a Poisson process with constant intensity  (homogeneous Poisson process)
is used, the hazard rate does not depend on time=> the term structure of spreads
will be flat and constant over time, which does not correspond to reality => we
need a time-varying => Cox process or inhomogeneous Poisson process.
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POISSON PROCESSES

Now  is time-varying

The probability of no jumps over the period
between t and T is the joint probability of no
jumps in each moment during that period

As 𝑙𝑛 1 − 𝑥 ≈ −𝑥
for small x

Reminder - with
constant l: With variable l and t->0, l(T-t) is replaced by

the integral of l(s)

As this is the result for the log of the probability of
no jumps, this probability will be equal to:

inhomogeneous Poisson process
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DEFAULTABLE ZERO COUPON BONDS

Zero Coupon Defaultable bond (with 
recovery rate = 0 and pay-off =1)

Zero Coupon Risk-free bond 
(with pay-off =1) 

 Probability of Default:



Raquel M. Gaspar   |   Interest Rate and Credit Risk Models   226Jorge Barros Luís|   Interest Rate and Credit Risk Models   226

DEFAULTABLE ZERO COUPON BONDS

For the Zero Coupon Defaultable
bond, the pay-off will be 1 only if 
the debtor is still alive at T.

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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DEFAULTABLE ZERO COUPON BONDS

The defaultable bond price corresponds to the NPV of
the expected future cash-flows, using as discount rate
the yield of the defaultable bond (the risk-free +
hazard rate).

 If the time of default is the time of the 1st jump of a Poisson process N(t) and is
independent from the default-free interest rate, the price of a defaultable bond
with zero recovery becomes:

Assuming that the risk-free interest rate is
independent from the arrival intensity of default

Assuming that the risk-free interest rate is
correlated with the arrival intensity of default

The defaultable bond price corresponds to the price of the
risk-free bond, discounted by the hazard rate (which
corresponds to the expected loss (EL), as EL=PDxLGD and if
the recovery rate =0, the LGD=1).
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CREDIT DERIVATIVES

We need to define 
what are credit 

events.

Definition:

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and 
Implementation”, Wiley.
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CREDIT DERIVATIVES

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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CREDIT DERIVATIVES

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.

Key terms:
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Reference Credit: Firm,
institution or person
who may default.

Standardized by ISDA
(International Swap Dealers
Association), even though they
may also be freely negotiated.

Types of credit events:
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Reference 
Credit Assets

Types of reference credit assets:
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Market Terminology

 Credit derivatives can be defined on single-name or multi-name.
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Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.

 The most popular single-name credit derivative is the CDS.
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CREDIT DEFAULT SWAPS

The aim is to transfer ONLY the default risk from A to B.

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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CREDIT DEFAULT SWAPS

Source: Hull, John (2018), “Options, futures and other derivatives”, 10th Edition, Pearson.

 CDS may have different specifications regarding the default payment.

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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CREDIT DEFAULT SWAPS

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.

 Example of a CDS with a fixed repayment at default:
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CREDIT DEFAULT SWAPS

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.

 Most CDS have a physical delivery.
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CREDIT DEFAULT SWAPS

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.

 The definition of default is key:
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CREDIT DEFAULT SWAPS

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.

 CDS payments before default:

Semi-annual amount to 
be paid by the protection 
buyer
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Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.

Because the payments
are done each semester

 CDS payments after default – physical settlement:

CREDIT DEFAULT SWAPS
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CREDIT DEFAULT SWAPS

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.

 CDS payments after default – cash settlement:
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VALUATION

 In the previous example, the CDS fee or spread was given.

 However, in reality, this spread has to be calculated.

Example:

 Maturity = 5 years

 Notional amount = $1

 CDS fee = s%

 Frequency of swap payments = yearly

 Recovery Rate = 40%

 Defaults assumed to occur at mid-year

 Risk-free interest rate = 5% (continuously compounded, flat)

 Hazard rate = 2%
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VALUATION

P(t ) = e−λt

0.9802-0.9608

 Unconditional probability of default:

Source: Hull, John (2018), “Options, futures and other derivatives”, 10th Edition, Pearson.
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VALUATION

 Present value of expected payments:

= probability of survival x CDS fee

Source: Hull, John (2018), “Options, futures and other derivatives”, 10th Edition, Pearson.
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VALUATION

 Present value of expected payoffs:

 As the default occurs in mid-year, an accrual payment is owed, due to the
period between the last payment and the default date.

Source: Hull, John (2018), “Options, futures and other derivatives”, 10th Edition, Pearson.
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VALUATION

 Due to the difference between the default time (that occurs halfway through
a year) and the previous payment, an accrual payment is owed.

 This will be the sum of the present value of the expected cash-flows:
∑ 𝑑′௜ ȉ 𝜏௜ ȉ 𝑠
ହ
௜ୀଵ , being 𝜏௜ = the accrual time (0.5, as it is assumed that the

default occurs halfway through a year).

 s will be calculated from the identity between the present value of the
expected payments and the present value of the expected pay-off:
4.0728𝑠 + 0.0422𝑠 = 0.0506 𝑠 = 1.23%

Source: Hull, John (2018), “Options, 
futures and other derivatives”, 10th

Edition, Pearson.
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TOTAL RETURN SWAPS

The aim is to
swap the
actual return
of a
defaultable
bond into a
cash-flow of
LIBOR plus a
spread

A pays while the
bond price
increases (like
selling a futures
contract)

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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TOTAL RETURN SWAPS

Advantages:

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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FIRST TO DEFAULT SWAPS

The basket of a FtD tipically comprises 4 to 12 reference credits.
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COLLATERALIZED BOND OBLIGATIONS

These notes are
collateralized by the
bonds sold to the SPV

Similar to
RMBS but with
bonds instead
of residential
mortgage
loans
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In this case, no losses will
be suffered by the senior
bonds, while equity bonds
will get a total loss.
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COLLATERALIZED DEBT OBLIGATIONS

• Designed exactly in the same way as CBOs. The main difference is that the
underlying assets can be defaultable bonds or any other credit related instruments.

• Cash CDO – when the underlying assets are bonds

• Synthetic CDOs – when the underlying bonds are replaced by credit derivatives, e.g.:

• CLOs – when the underlying assets are loans.

• CDS are often used as underlying assets.
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CREDIT-LINKED NOTES
• CLNs are a combination of a medium-term note with a credit derivative, where the

underlying note pays a given reference rate plus a spread, that is related to the
issuer and the underlying entity risks.

• In its simplest form, a CLN is just a note (bond or loan) with an embedded credit
feature.

• The issuer is typically a bank, with a high rating, but can also be issued by a non-
financial entity.

• Sometimes CLNs have principal protection, i.e. only the coupon payments of the
note are at risk if a credit event occurs.

• If no principal protection is provided, a CDS is embedded in the CLN and the issuer of
the CLN is buying protection on the risk of a given underlying entity.

• In that case, the investor is exposed to 2 risks:
• The counterparty risk
• The underlying entity risk
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CREDIT-LINKED NOTES

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.

Example of a CLN with no principal protection:
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CREDIT-LINKED NOTES

• If the CLN is a 100% principal protected note, with an embedded CDS, the coupon of
the note terminates following a credit event and the note redeems at par on its
maturity date.

• The cost of the protection is usually a loss or reduction in the coupon on the note
following the credit event.

• In this case, the only principal exposure that the investor has is to the issuer of the
note, just like in a plain vanilla bond, and the CLN may be structured as a risk-free
bond + a call option on the credit risk of the reference entity.
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CREDIT-LINKED NOTES

Example of a CLN with principal protection:

• Bond issued by British Telecom, with a minimum coupon of 8.125%, increasing by 25
bps for each one-notch rating downgrade below A–/A3 suffered by the issuer during
the life of the note and decreasing by 25 bps for each ratings upgrade.

Source: Anson, Mark J.P., Frank J. Fabozzi, Moorad Choudhry, Ren-Raw Chen (2004), “Credit Derivatives: Instruments,
Applications, and Pricing Credit Derivatives: Instruments, Applications, and Pricing”, Wiley.


