

Microeconomics Fall 2025-2026 Midterm November 2025

Duration: 1 hour (60 minutes)

Coordinator: Matilde Cappelletti

General Guidelines

- You may use a calculator;
- You may not use a programmable calculator;
- You may **not** use notes or books;
- You may have some food and beverages on your desk;
- All other belongings, including phones, must be on the floor;
- You can only leave the room after 30 minutes into the exam and up to 15 minutes before the exam ends;
- Write all your answers on the blank answer sheets brought by you;
- Write your name and student number on every answer sheet;
- Number all your answer sheets and hand them in in chronological order;
- If a question does not ask for an explanation, there is no need to give one;
- This exam is to be handed in together with your answer sheets;
- Any form of fraud will, at least, imply an invalid grade for this course.

1. Production (5 points)

Consider the production function $y=\frac{1}{2}x_1^{1/2}x_2^{1/2}$, where y is the output and x_1 , x_2 are the two inputs.

- 1.1 Find the technical rate of substitution (TRS).
- **1.2.** Sketch the isoquant and the input requirement set corresponding to the output level $= \bar{y}$:

$$\{(x_1, x_2) \text{ in } R_+^2 \mid \frac{1}{2} x_1^{1/2} x_2^{1/2} = \bar{y} \}$$

1.3. Using the formula of the TRS, and/or the figure of the isoquant, discuss how the TRS depends on the levels of x_1 and x_2 . Provide an economic interpretation of this relationship.

2. Profit maximization (8 points)

A firm produces output y using one input x. The output price is p, and the input price is w. The table below reports the firm's choices and prices over two years. Suppose the firm forgot to record its output in Year 2, so that y^2 is missing in your data. You observe the following:

Year	р	w	у	х
1	6	3	8	2
2	4	2	а	3

- **2.1.** For which value(s) of α the firm's behavior **does not violate** WAPM?
- **2.2.** Briefly explain why WAPM is only a necessary (but not sufficient) condition for profit maximization.
- **2.3.** Now assume differentiability and y = f(x). Consider the firm produces one output y and multiple inputs \mathbf{x} , solving

$$\pi(p, w) = py - wx$$

Write the first order condition with respect to input x_1 . Then suppose that expression is positive. Should the firm increase or decrease x1 to raise profits? Explain.

3. Constrained optimization (4 points)

A firm uses inputs x_1 and x_2 to produce output y. Imagine that the prices for x_1 and x_2 are $w_1=4$ and $w_2=1$ respectively. The production function is given by $y=x_1^{1/3}x_2^{2/3}$.

3.1. Calculate the minimum costs to produce y = 12.

5. Cost functions (3 points)

5.1. Provide a brief but rigorous (mathematical) proof to show the short-run marginal cost curve (SMC) is equal to short-run average cost (SAC) at the point of minimum SAC. That is, let $y = y^*$ be the point of minimum SAC, and show that:

$$\frac{\partial c(y^*)}{\partial y} = \frac{c(y^*)}{y^*}$$

 $\frac{\partial c(y^*)}{\partial y} = \frac{c(y^*)}{y^*}$ Hint: Recall that SAC = $\frac{c(y)}{y}$ and MC = $\frac{\partial c(y)}{\partial y}$.