INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO

INVESTIGAÇÃO OPERACIONAL

6 de junho de 2025

Época Recurso

Duração: 2h00

TÓPICOS DE RESOLUÇÃO

- **1.** a) $x^* = (35, 5, 30, 0, 0, 35, 0)$. Devem ser produzidos por mês 35 cadeirões T1, 5 T2 e 30 T3. A disponibilidade das matérias-primas, couro e tecido, é consumida na totalidade. A seção de montagem e corte trabalha com uma folga de 35 horas mensais e a imposição que resulta do contrato com o cliente (pelo menos 35 cadeirões T2+T3) é cumprida sem
 - b) Apenas a restrição 3 referente à capacidade da seção de montagem e corte está não saturada, tem uma folga de 35 horas. As restantes restrições têm todas folgas nulas.
 - c) $y^* = (12.5, 10, 0, -22.5)$. $y_4^* = 12.5$ significa que a receita aumenta 12.5 u.m. por cada rolo adicional de couro disponível. $y_4^* = -22.5$ significa que a receita decresce 22.5 u.m. se a exigência passar a ser 36 cadeirões dos tipos T2 e T3, em vez dos 35 exigidos atualmente. As alterações na receita são proporcionais às variações (do recurso e da exigência) desde que estas estejam nos respetivos IS.
 - d) 120 u.m. dá para comprar 4 rolos de couro ou de tecido. Relativamente ao couro como $IS\Delta b_1 = [-30, 23.3]$, e $4 \in IS\Delta b_1$ o aumento de receita será $y_1^* \times \Delta b_1 = 12.5 \times 4 = 50$ u.m. Relativamente ao tecido como $IS\Delta b_2 = [-90, 15]$, e $4 \in IS\Delta b_2$ o aumento de receita será $y_2^* \times \Delta b_2 = 10 \times 4 = 40$ u.m.. Portanto o mais vantajoso será comprar 4 rolos de couro.
 - e) $\Delta c_1 = 5$ como $IS\Delta c_1 = [-16.875, \infty[$ e $\Delta c_1 \in IS\Delta c_1$ a solução ótima do primal mantém-se e o valor da receita aumenta $x_1^* \times \Delta c_1 = 5 \times 35 = 175$ u.m.
 - f) A restrição dual correspondente seria $y_1 + 0.5y_2 + 2y_3 \ge 15$, como $17.5 \ge 15$, não vale a pena considerar a produção deste novo cadeirão, para valer a pena a sua receita unitária teria de ser pelo menos 17.5.
 - g) Definam-se as variáveis:

$$y_j = \begin{cases} 1 \text{ se há produção de cadeirões tipo Tj} \\ 0 \text{ caso contrário} \end{cases} j = 1,2,3$$

 $u = \begin{cases} 1 \text{ se h\'a quantidade ilimitada de couro} \\ 0 \text{ se h\'a quantidade ilimitada de tecido} \end{cases}$

M uma constante suficientemente grande e as restrições para as alíneas i) e iii):

$$x_i \le My_i \text{ para } j = 1,2,3.$$

i)
$$y_1 + y_3 \le 1$$
; $y_1, y_3 \in \{0.1\}$

ii)
$$2x_1 + 3x_2 + x_3 \le 115 + Mu$$
$$x_1 + x_2 + 3x_3 \le 130 + M(1 - u)$$

iii)
$$y_1 \le y_2$$
; $y_1, y_2 \in \{0.1\}$

excesso.

2. Problema na forma aumentada:

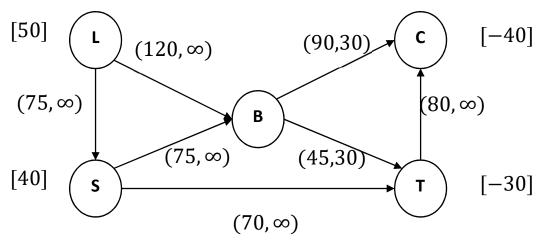
Max
$$Z = 4x_1 + 2x_2 + 3x_3$$

s. a:
$$\begin{cases} 2x_1 + 3x_2 + x_3 + x_4 &= 120\\ x_1 + x_2 + 2x_3 &+ x_5 = 100\\ x_j \ge 0 \ j = 1,2,3,4,5. \end{cases}$$

								_
VB	Coeficientes de						TI	Critérios de entrada e de saída
	Z	x_1	x_2	x_3	x_4	x_5		Criterios de entrada e de salda
Z	1	-4	-2	-3	0	0	0	CE: $Min \{-4; -2; -3\} = -4$ $\leftarrow x_1$
x_4	0	<u>2</u>	3	1	1	0	120	CS: $\frac{120}{2}$
<i>x</i> ₅	0	1	1	2	0	1	100	$100/1 \stackrel{\int Min}{\longrightarrow} x_4$
Z	1	0	4	-1	2	0	240	
x_1	0	1	$^{3}/_{2}$	$^{1}/_{2}$	1/2	0	60	
x_5	0	0	$-\frac{1}{2}$	$^{3}/_{2}$	$-\frac{1}{2}$	1	40	

 $\mathbf{x}^* = (60, 0, 0, 0, 40)$ é uma solução básica admissível não ótima. Não é ótima porque há valores na linha da FO < 0.

3. a) É um problema de fluxo de custo mínimo com oferta superior à procura. Os valores junto dos arcos representam a distância e a capacidade dos mesmos, (c_{ij}, u_{ij}) . Os vértices são identificados pela inicial da cidade que representam. Os valores junto dos vértices são o fluxo gerado nos mesmos.



- **b)** Associando a cada arco (i,j) da rede definida em a) uma variável designada por x_{ij} a representar a quantidade de livros que devem atravessar esse arco uma solução admissível é por exemplo: $x_{LS}=30$; $x_{ST}=70$; $x_{TC}=40$; restantes $x_{ij}=0$. Todas as restrições do problema, capacidades, ofertas, procuras e conservação de fluxo, são satisfeitas.
- **4.** a) Afirmação falsa. Basta pensar num exemplo em que as afetações do individuo k à tarefa k são as mais caras, como é o caso de $c_{kk}=100$ para $k=1,\ldots,n$ e $c_{ij}=1$ para $i\neq j$.
 - b) Para haver garantia de obter uma solução ótima com a aplicação do algoritmo de Prim é necessário escolher sempre a aresta de menor custo. Contudo, existem situações em que apesar da regra não ser aplicada corretamente no final obtém-se uma solução ótima.