

1. Solve the following problems graphically.

(a)	$\max z = -2x_1 - x_2$	(b)	$\max z = 4x_1 + 3x_2$
	s.t. $-x_1 + x_2 \leq 1$		s.t. $3x_1 + 4x_2 \leq 12$
	$x_1 + x_2 \geq -3$		$x_1 + x_2 \geq 4$
	$x_1 \leq 0$		$4x_1 + 2x_2 \leq 8$
			$x_1, x_2 \geq 0$
(c)	$\max z = 3x_1 + 9x_2$	(d)	$\max z = 2x_1 + x_2$
	s.t. $x_1 + 4x_2 \leq 8$		s.t. $x_1 - x_2 \leq 10$
	$x_1 + 2x_2 \leq 4$		$2x_1 - x_2 \leq 40$
	$x_1, x_2 \geq 0$		$x_1, x_2 \geq 0$
(e)	$\min z = 2x_2 - 6x_1$	(f)	$\max z = 4x_1 + 14x_2$
	s.t. $2x_1 - x_2 \leq 2$		s.t. $2x_1 + 7x_2 \leq 21$
	$x_1 \leq 4$		$7x_1 + 2x_2 \leq 21$
	$x_1, x_2 \geq 0$		$x_1, x_2 \geq 0$

2. Solve the problems in Exercise 1 using the simplex method.

3. A factory produces three types of products: A, B, and C. Each unit of product A generates a profit of 8 euros, product B generates 4 euros, and product C generates 8 euros. Each product consumes two limited resources: raw materials and labor hours. The factory has 20 kg of raw materials and 90 labor hours available. Each unit of product A consumes 2 kg of raw materials and 1 hour of labor; for product B, these values are 1 kg and 4 hours, and for C, they are 2 kg and 2 hours. Formalize and solve an LP problem that allows you to maximize total profit while respecting the availability of resources.

4. Resolva graficamente (apenas os problemas (a) e (c)) e pelo método simplex.

(a)	$\max z = x_1 + 2x_2$	(b)	$\max z = x_1 - 3x_2 + 4x_3$
	s.t. $x_1 + x_2 \leq 4$		s.t. $x_1 - x_2 + x_3 = 4$
	$x_1 + 2x_2 \geq 2$		$2x_2 \leq 6$
	$x_1, x_2 \geq 0$		$-x_2 + 2x_3 \geq 0$
			$x_1, x_2, x_3 \geq 0$
(c)	$\min z = 4x_1 + x_2$		
	s.t. $3x_1 + x_2 = 3$		
	$4x_1 + 3x_2 \geq 6$		
	$x_1 + 2x_2 \leq 4$		
	$x_1, x_2 \geq 0$		