Linguagens
de Programacao

Filipe Rodrigues

frodrigues@iseg.ulisboa.pt
Gab. 302 Quelhas 2

Programa

" |ntroducao a Programacao

" Tratamento de Erros

= Leitura e Escrita de Ficheiros

" Classes e Sobrecarga de Operadores

" Heranca e Polimorfismo

Bibliografia

v Programming Principles and Practice Using

C++, Bjarn Stroustrup, Second Edition, Addison-Wesley,
2014.

v'A tour of C++, Bjarn Stroustrup, Addison-Wesley
Professional, 2018.

v’ https://www.learncpp.com/

Material de Apoio

] Slides

] Sebenta

) Lista de Exercicios

. Exercicios de consolidacao

LINGUAGENS DE PROGRAMACAO

O que é a Programacao?

Programar é dizer a um computador de forma detalhada
e precisa o que queremos que ele faca.

Bla bla
bla

Linguagem e Software

Usaremos a linguagem de programacao C++
e o software QT Creator

Qt

Qt Creator

* Devem instalar o QT Creator em casa seguindo as instrucdes disponiveis no Fénix

6

Esqueleto de um programa em C++

//Predmbulo
int main () {
//Escreva aqui o seu cdédigo

return 0;

Capitulo 1 —

Variaveis e Operadores

Variaveis

* S30 as unidades basicas de qualquer programa uma vez
gue é nelas que é armazenada a informacao.

 Qualquer variavel tem um nome e é uma localizacao da
memoria do computador onde a informacao pode ser
guardada de modo a ser usada por um programa.

Meméoria do computador

Varidvel com o _
-) idade
nome “idade” que ———— | 1s
guarda um valor
inteiro

Nomes das Variaveis

SO pode comecar com uma letra ou com underscore;

N3o pode conter espacos nem caracteres que nao

sejam numeros, letras ou underscores;

Deve ser Unico na area em que é usado;

Nao pode coincidir com palavras reservadas: if, else,
for, while, try, main, int, etc...

10

Tipos de Variaveis

Tipos
Numeros inteiros X short
it
X long
long long int
Numeros inteiros positivos s1ze_t
Numeros decimais X float
double
Carater char
Texto string
Valor logico bool

Com excecao do tipo de dados string, todos os outros sao

considerados tipos de dados primitivos.

11

Declaracao e Inicializacao de Variaveis

* Declaracao

nome;

* Declaracao e Inicializacao

nome ;
nome =valor;

ou

nome =

valor;

Memoria do computador

idade

?

Memdria do computador

idade
18

12

Declaracao e Inicializacao de Variaveis

#include {iﬂstream},\\\\\\\\ﬁ-
using namespace std; -« E necessario aqui para

podermos usar o tipo de
dados string

int main(){

int idade = 18;

double peso = b6.8; o
Varidveis declaradas e

string nomeP = "Pedro"; .
j inicializadas
char ¢ = ‘)7;
bool logico = true; _
double altura; < Variavel declarada e nao
inicializada

return O;

13

Alterar Valor das Variaveis

 Uma variavel de um tipo primitivo ou string guarda
apenas um valor, sendo que esse valor pode ser
alterado ao longo da execucao do programa.

Declaragao e inicializagao

int main() { / da variavel idade com o
int idade = 10; valor 10

idade = 20;- Alteracao do valor da
//. .. variavel idade para 20
idade = -3;«

Alterac¢ao do valor da
return O; variavel idade para -3.
} E possivel?

14

Escrita de Variaveis

e Para escrever no ecra o valor guardado numa variavel
(ou qualquer outra informacao) usamos a instrucao
cout e o operador <<.

cout << nome da variavel;

cout << “qualquer texto”;

* A utilizacao destes elementos requer a inclusao da
seguinte instrucao no preambulo:

using namespace std;

15

Escrita de Variaveis - Exemplo

int i1dade = 1b5;
string nomeP = "Pedro";

cout << "Qutput: \n";

cout << nomeP;

cout << endl; ‘
cout << idade;

cout << "\n";

Mudanca de linha
ou

cout << "Qutput: \n" << nomeP << endl << idade << "\n";

Leitura de Variaveis

 Para ler uma variavel, isto é, pedir o seu valor ao
utilizador usamos a instrucao cin e o operador >>.

7

cout << “Introduza um valor: ”;

cin >> nome da variavel;

* A utilizacao destes elementos requer a inclusao da
seguinte instrucao no preambulo:

using namespace std;

17

Leitura de Variaveis - Exemplo

1int 1dade;

cout << "Introduza a idade: ";

cin >> idade;

Introduza a l1dade: Introduza a idade:

18

Constantes

e S3o variaveis cujo valor inicial nao pode ser alterado.

A sua declaracao e inicializacao é feita da seguinte
forma:

const Tipo nome =valor;

Exemplo:

int main(){
const double pi = 3.141592;
pi = 3.14; //ERRO!
return O;

19

Operadores

* Operadores aritméticos simples

Resultado

18

8

65

Operador | Nome Exemplo
+ Soma a+b
. Subtracao a-b
* Multiplicacao a*b
/ Divisao inteira ou decimal a/b
% Resto da divisao inteira a%b

2 ou 2.6
3

Se a=13 e b=5

20

Operadores

Os operador + pode também ser usado para variaveis
do tipo string como operador de concatenacdo (juncao)

string a = "Eu tenho ";

int ¢ = 18; Converte o valor numérico 18

String b =" anos."; / para a string “18

string frase = a + to_string(c) + b + " Sou Jovem!";

A nova string criada é:

“Eu tenho 18 anos. Sou Jovem!”

21

Operadores

* Operadores aritméticos compostos

Operador | Nome Exemplo | Significado Valor de a
+= Soma/atribuicao a+=b a=a+b 8
-= Subtracao/atribuicao a-=b a—=a-b 4
= Multiplicacao/atribuicao a=b a=a*b 12
/= Divisao/atribuicao a/=b a=a/b 3
++ Incremento a++ a=a+1 7
- Decremento a—- a=a-1 5)

Se a=6 e b=2

22

Operadores

O operador += pode também ser usado para
variaveis do tipo string como operador de
concatenacgdo + atribuicdo.

string a = "AA";
string b "BB";
a+=b>b

Neste caso teriamos:
a = “AABB”
b \\BB//

23

Operadores

Operadores relacionais e operadores logicos

Operador Significado
&& ou and | conjuncao (e)
| ou or disjuncao (ou)

Operador | Significado
< menor
> malor
<= menor ou igual
>= malor ou igual

!

negacao

1gual

diferente

24

Capitulo 2 —
Estruturas de Controlo
Condicionais e Ciclicas

Estruturas Condicionais

Permitem que o programa siga caminhos
distintos em funcao da verificacao ou nao de
determinadas condicdes logicas.

Estdao inevitavelmente dependentes dos
operadores relacionais e logicos.

26

Exemplo: equagao de 2°graujax” +bx+c=0

/ Ler a, bec
|n|C|0 ‘ @ @
Slm lSlm Slm
—4ac X=— 1 / |mpOSSIve|/ N&o
ﬂ» _b \/X
X =—+_—
2a 2a
- X, = ;_b_g / C. universal/
a a
o b LA
T 2a 2a
L __b A
> 2a 2a
Cin D~

27

If e If...Else

if (condicdo){

Instrucoes

if (condicdo){
Instrucoes 1

lelsef
Instrucoes 2

28

Encadeadas tipo 1

if (condicaol) {
instrucoes_1
lelse{
if (condicao 2)1{
instrucoes_2
lelse{
if (condicao 3){
instrucoes_3
lelsef
instrucoes 4

}

int qt, preco;
cout << "Quantidade: ";
cin >> qt;

if (gt <50) {
preco = 5 * qt;
}else{
if (gt <99) {
preco = 4 * qt;
}else{
if (gt < 150) {
preco = 3.5 * qt;
}else{
preco = 3.3 * qt;

}

Encadeadas tipo 2

if (condicao _1){
instrucoes_1

telse if (condicao_2) {
instrucoes 2

telse if (condicao_3) {
instrucoes_3

lelsef
instrucoes 4

int qt, preco;
cout << "Quantidade: ";

cin >> qt;

if (gt <50) {
preco = 5 * Qt;
lelse if(qt < 99) {
preco = 4 * qt;
telse if (gt < 150)
preco = 3.5 * qt;
lelsed
preco = 3.3 * Qqt;

}

Estruturas Ciclicas

Permitem executar instrucdes/processos de
forma repetitiva.

Contém uma condicao de paragem, que
determina o final do processo iterativo.

31

Exemplo: Algoritmo de “Euclides”

Dados os numeros inteiros m=38 e n=10, calcular o seu
maximo divisor comum mdc(38,10).

Como 38=3*10+8

os divisores comuns a 38 e 10 sao os comuns a 10 e §;
Como 10=1*8+2

os divisores comuns a 10 e 8 sao os comunsa 8 e 2;
Como 8=4*2+0

o maximo divisor comumentre8e 2 é 2 !

=> mdc(38,10)=2

32

Algoritmo de “Euclides” (versao |)

1. Ler m e n (inteiros diferentes de 0);
2. Se m<n Entao
maior=n, menor=m
Senao
maior=m, menor=n
3. Calcula resto=mod(maior , menor);

4. Se resto==0
Escrever menor; FIM

5. Enquanto (resto!=0)
resto=mod(maior,menor), maior=menor, menor=resto

6. Escrever maior; FIM

33

Algoritmo de “Euclides” (versao Il)

1.Ler m e n (inteiros diferentes de 0);
2.Enquanto (n!=0)

resto=mod(m,n), m=n, n=resto;
3. Escrever m; FIM

34

While e Do...While

do{ while (condicao) {

instrucoes instrucoes

fwhile (condicao);

int n; int n = 100;

int conta = 0; int conta = 0;
do{ while(n > 0){

cout << "Valor: "; cout << "Valor: ";

cin >> n; cin >> n,
if (n>0) if (n>0)
conta++; conta++;

jwhile(n > 0);

Ciclo For

for (Inicializacdo ; Condicdo ; Incremento) {
Bloco de Instrucdes

Sequenciamento de instrucoes:
HHRHH ff#ﬂ_____ﬁhhhm ﬁfﬁ#ﬂﬁ_——ﬁhﬁhﬁha
for (|Imicializacio Condigao Tncrementq){

Bloco de instrucgoes ‘ffg

Ciclo while vs Ciclo for

Ciclo while Ciclo for

int n = 4;

37

Ciclos Encadeados

* Ciclos encadeados sao ciclos que contém outros ciclos
dentro deles.

* O ciclo (ou ciclos) interior sao executados em cada
iteracao do ciclo exterior.

Exemplo:

for (Inicializacao_1 ; Condicao 1 ; Incremento_1){
for (Inicializacao_2 ; Condicao_2 ; Incremento_2){
Bloco de Instrucoes

38

Ciclos Encadeados - Exemplo

int n = 5;

for(int i = 1; i < n; i++) {
for(int j =i + 1; j < n; j++) {
cout << "(" << i << "M << § << ") vy

}

4

(1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

39

Instrucao break

A instrucdes break permitem interromper um ciclo. No caso
de ciclos encadeados, apenas um dos ciclos é interrompido.

int n = 5;

for(dnt 1 = 1; i < nj; i++) {
for(int j =i + 1; j < n; j++) {
CDut<<“(“(<i<{",“<<j<<") n;
if (j%hi==0)
break;

\ 4

(1,2) (2,3) (2,4) (3,4)

40

Capitulo 3 — Varidveis
Indexadas - Vetores

Vetores

* Permitem armazenar numa sO variavel varios
valores, desde que sejam todos do mesmo tipo.

;

Vetor de inteiros Elem.erlto que esta na
L posicao 2 do vetor.
v com 6 posigcoes

(desde 0 até 5) (v[2]=8)

vi0] v[1] v[2] v[3] v[4] V[5]
V. 5 7 8 -2 1 9

* Necessitamos do pacote vetor: #include<vector>
42

Vetores - declaracao

* Opcao 1: Declaracao e Inicializacao a partir
de uma lista.

vector<Tipo> nome = { .. };

Este processo € usado quando conhecemos os elementos
do vetor no momento da sua criacao

Exemplo:

vector<int> v = {5, 7, 8, -2, 1, 9};

43

Vetores - declaracao

 Opcao 2: Declaracao de vetor com dimensao

vector<Tipo> nome (n);

Este processo é usado quando apenas conhecemos a
dimensao do vetor no momento da sua criacao

Exemplo:

vector<int> v (0);
[v[0]=5; //ou v.at (0)=5;

Preenche cada
uma das posicoes -

ja criadas - V[5]:9;

44

Vetores - declaracao

 Opcao 3: Declaracao de vetor sem dimensao

vector<Tipo> nome;

Quando nem a dimensao do vetor nem 0s seus
elementos sao conhecidos no momento da criacao.

Exemplo:
vector<int> v, vector<int> v,
v.resize (0);
v[0]=5; v.push back (3);

)

Cria uma nova posicao no vetor e

edimensiona o vetor para criar
preenche-a com o valor 5 45

de uma sé vez todas as posicoes

Resize vs Push back

vector<int> wv; vector<int> wv;
v.resize (06) ;
v[i0]=5;
vIi1l]=7;

<

.push back(3);
.push back(7);

<

.i. .i.

Vi
0 0 0 0 0 0
Vi| 5
5 0 0 0 0 0
Vil 5 7

s {78219 ' i 46

Vetores - declaracao

O operador [] e o método .af() apenas podem
ser usados para aceder a posicdes do vetor que
ja existam.

* O método .at() verifica se a posicao do vetor
existe antes de tentar aceder a ela, enquanto
qgue o operador [] nao o faz.

* O método .push back() adiciona sempre uma
nova posicao ao vetor e preenche-a com o
valor que recebe.

47

Vetores - Exemplo

Uma empresa tem 100 produtos, cada um com o seu preco e
pretende atualizar o IVA que era de 6% e passou a ser de 23%.

100 variaveis

Declaracao
preco0;
precol;

preco99;
Atualizagao
preco0=0.23/0.06*precol
precol=0.23/0.06*precol

preco99=0.23/0.06*preco99

1 variavel indexada com 100 elementos

Declaragao
vector< > preco (100) ;

Atualizacao
(1=0; 1<=99; ++1)
preco[i1]=0.23/0.06*preco[i];

48

Vetores - Manipulacao

A manipulacao de vetores é feita posicao a posicao. Por

exemplo, para imprimir/preencher um vetor é necessario
imprimir/preencher cada uma das suas entradas.

A primeira posicao do vetor é a posicao 0. A dimensao do
vetor é dada pelo método .size() e por isso a ultima
posicao do vetor sera .size() — 1.

Usamos, normalmente, ciclos for para percorrer vetores

for(int i = 0; i < v.size(); i++)

49

Vetores — Leitura

e Se soubermos quantos elementos tera o vetor,
podemos usar um ciclo for.

vector<int> v(3);

for(int i = 0; i < v.size(); ++i){
cin >> vl[i]; //ou cin>>v.at(i);

e Caso contrario, devemos usar um ciclo while

vector<double> v;

double x;
while(cin >> x){ //Enquanto forem lidos valores numéricos
v.push_back(x) ;

Ordenar vetor

Existem varios algoritmos que podemos implementar
para ordenar um vetor. O método sort, permite
ordenar um vetor automaticamente.

vector<int> v = {6, 7, 8, -2, 1, T};

//0Ordenar vetor v por ordem crescente
sort(v.begin(), v.end());

//0Ordenar vetor v por ordem decrescente
sort(v.begin(), v.end(), greater <>());

* Necessitamos do pacote algorithm o1

Matrizes

Uma matriz em C++ é um vetor de vetores.

m

[

L
=
L
[

m[1][2]

vector<vector<int>> m;

52

Matriz — declaracao e definicao

* Opcao 1: Declaracao e Inicializacao a partir
de uma lista.

vector<vector<Tipo>> nome = {{..},.., {..}};

Exemplo:

vector<vector<int>> m ={{5,7}, {1,8}, {0,1}};

Matriz 3x2 / ‘ ‘ ‘

Primeira Segunda Terceira
linha linha linha

53

Matriz — declaracao e definicao

* Opcao 2: Definir numero de linhas, niumero de
colunas e os elementos

- vector<vector<Tipo>> nome (n);

Definir nimero ou

de linhas (n) vector<vector<Tipo>> nome;
nome.resize (n)

Definir nimero for(int 1=0; 1<n; 1++)
de colunas (m) nome[i].resize (m) ;

‘m[0] [0]= 5

Preencher

Vietiz = I m[n-1] [m-1]= 7

54

Capitulo 4 — Fungdes

Declaracao, Definicao e Chamada

f: ZxZ — R //declaracdo
double f(int, int);

f: Zx7 — R //declaracdo e definicdo

double f(int x, int y){

$ return x / (y * y + 1);

('T":'y) — f(r,y) —

y? +1 !
//chamadas
cout << £(2,3); //chamada 1

£(2,3), f(5% —8) double z1 = 5 * £(1,7); //chamada 2
P] = 1 . -
int a =6, b =1;

double z2 = f(a,b); //chamada 3

Estrutura geral de uma funcao

Tipo de objeto Argumgntos
: Recebidos
devolvido
Tipo nome(Tipo_al nome_al, ..., Tipo_an nome_an){
//...
return ... ; //Se "Tipo" for diferente de "void"

PN

Para devolver um
resultado

Uma funcao do tipo void (vazia) ndo devolve qualquer resultado, pelo

gue nao contém a instrucao return.
57

Funcao void vs nao void

void ordem(int nl,

if(nl1 <

cout << nl1 <<

else

cout << n2 <<

n?2)

int maximo(int nl,

int max = nl;

if(max < n2)

max

= n2;

return max,;

int n2){ Apenas escreve algo no
ecra, nao devolve

" <= " << n2; qualquer resultado

"= M o<<onl ordem(7,5)

int n2){ Devolve um resultado

do tipo int que pode ser
usado no programa

int y = maximo(a,b) - 6;

58

Funcoes Recursivas

Uma funcao recursiva € uma funcao que se chama a si propria.
Neste tipo de funcao, é extremamente importante definir
cuidadosamente o critério de paragem.

Exemplo:

fatorial(6) fatorial (n) {
6 * fatorial(5) (n ==)

6 * 5 * fatorial(4) 1;

6 *5 * 4 * fatorial(3)

6*5*4*3*fatorial(2) n*fatorial (n-1)
6*5*4*3*2*fatorial(1) }
6*5*4*3*2%*1]

59

Exemplo: Fibbonacci

Murnber

8 8 of pairs
1

W -
f!b(O) i 1
88 88 : :Ezrl\; ; :ib(n-l) + fib(n-2), n>1

338@ 38 3
38838%8 48 :

Exemplo: Fibbonacci

fib(5)
flb-f4) f1b(3)
flb(3) {-'1]3(’?) ;b< fll‘:)(L)
fib(2) fib(1) fib(1) fib(0) fﬂ‘:’(l) fiT-f 0) :
| | |
/ \ 1 1 { 1 1

fib(1) fib(0)

| 1

61

Passagem de argumentos

Passagem por valor. O que é passado como argumento a
funcao € uma copia do valor da variavel e nao a prépria variavel.

Tipo nome(Tipo argumento argumento){...}

Passagem por referéncia. O que é passado como argumento a
funcao é o local da memoaria onde se encontra a variavel.

Tipo nome(Tipo argumento& argumento){...}

Passagem por referéncia constante. Difere do anterior na
medida em que a funcao nao pode alterar a variavel.

62

Passagem de argumentos: Exemplo

void f(int a, int& b, const int& c){
a += 10 + c;
b += 10 + c;
//c += 10; ERRO!
cout <€ a << " " K b <K " " ¢c; [J/a=12, b=12, c=1

}

int main(){

int x =1
int y = 1;
int z = 1: E alterado

f(x, vy, z;; ////

cout <K x <" "y "KL z; //x=1, y=12, z=1

Nao é alterado
na funcao

return 0;

Passagem de argumentos

N3o é regra, mas € uma boa pratica...

Tipo de objeto associado ao

int, bool, r argumento da funcio]
char, etc... Vetor,

\ Primitivo Nao primitivo string, etc...

| /

Passagem por
valor

A fungdo
modifica o

objeto?
\ao
Passagem por Passagem por
referéncia referéncia constante

64

	Slide 1
	Slide 2: Programa
	Slide 3: Bibliografia
	Slide 4: Material de Apoio
	Slide 5: O que é a Programação?
	Slide 6: Linguagem e Software
	Slide 7: Esqueleto de um programa em C++
	Slide 8: . Capítulo 1 – Variáveis e Operadores
	Slide 9: Variáveis
	Slide 10: Nomes das Variáveis
	Slide 11: Tipos de Variáveis
	Slide 12: Declaração e Inicialização de Variáveis
	Slide 13: Declaração e Inicialização de Variáveis
	Slide 14: Alterar Valor das Variáveis
	Slide 15: Escrita de Variáveis
	Slide 16: Escrita de Variáveis - Exemplo
	Slide 17: Leitura de Variáveis
	Slide 18: Leitura de Variáveis - Exemplo
	Slide 19: Constantes
	Slide 20: Operadores
	Slide 21: Operadores
	Slide 22: Operadores
	Slide 23: Operadores
	Slide 24: Operadores
	Slide 25: . Capítulo 2 – Estruturas de Controlo Condicionais e Cíclicas
	Slide 26: Estruturas Condicionais
	Slide 27: Exemplo: equação de 2ºgrau
	Slide 28: If e If…Else
	Slide 29: Encadeadas tipo 1
	Slide 30: Encadeadas tipo 2
	Slide 31: Estruturas Cíclicas
	Slide 32: Exemplo: Algoritmo de “Euclides”
	Slide 33: Algoritmo de “Euclides” (versão I)
	Slide 34: Algoritmo de “Euclides” (versão II)
	Slide 35: While e Do…While
	Slide 36: Ciclo For
	Slide 37: Ciclo while vs Ciclo for
	Slide 38: Ciclos Encadeados
	Slide 39: Ciclos Encadeados - Exemplo
	Slide 40: Instrução break
	Slide 41: . Capítulo 3 – Variáveis Indexadas - Vetores
	Slide 42: Vetores
	Slide 43: Vetores - declaração
	Slide 44: Vetores - declaração
	Slide 45: Vetores - declaração
	Slide 46: Resize vs Push_back
	Slide 47: Vetores - declaração
	Slide 48: Vetores - Exemplo
	Slide 49: Vetores - Manipulação
	Slide 50: Vetores – Leitura
	Slide 51: Ordenar vetor
	Slide 52: Matrizes
	Slide 53: Matriz – declaração e definição
	Slide 54: Matriz – declaração e definição
	Slide 55: . Capítulo 4 – Funções
	Slide 56: Declaração, Definição e Chamada
	Slide 57: Estrutura geral de uma função
	Slide 58: Função void vs não void
	Slide 59: Funções Recursivas
	Slide 60: Exemplo: Fibbonacci
	Slide 61: Exemplo: Fibbonacci
	Slide 62: Passagem de argumentos
	Slide 63: Passagem de argumentos: Exemplo
	Slide 64: Passagem de argumentos

