
Filipe Rodrigues

frodrigues@iseg.ulisboa.pt

Gab. 302 Quelhas 2

Linguagens
de Programação

Programa

▪ Introdução à Programação

▪ Tratamento de Erros

▪ Leitura e Escrita de Ficheiros

▪ Classes e Sobrecarga de Operadores

▪ Herança e Polimorfismo

2

Bibliografia

✓Programming Principles and Practice Using
C++, Bjarn Stroustrup, Second Edition, Addison-Wesley,

2014.

✓A tour of C++, Bjarn Stroustrup, Addison-Wesley

Professional, 2018.

✓ https://www.learncpp.com/

3

Material de Apoio

❑ Slides

❑ Sebenta

❑ Lista de Exercícios

❑ Exercícios de consolidação

4

O que é a Programação?

Programar é dizer a um computador de forma detalhada
e precisa o que queremos que ele faça.

5

Bla bla
bla

Linguagem e Software

Usaremos a linguagem de programação C++

e o software QT Creator

6

* Devem instalar o QT Creator em casa seguindo as instruções disponíveis no Fénix

Esqueleto de um programa em C++

7

//Preâmbulo

int main(){

//Escreva aqui o seu código

return 0;

}

.

Capítulo 1 –
Variáveis e Operadores

8

Variáveis

9

• São as unidades básicas de qualquer programa uma vez
que é nelas que é armazenada a informação.

• Qualquer variável tem um nome e é uma localização da
memória do computador onde a informação pode ser
guardada de modo a ser usada por um programa.

Variável com o
nome “idade” que
guarda um valor

inteiro

Nomes das Variáveis

▪ Só pode começar com uma letra ou com underscore;

▪ Não pode conter espaços nem caracteres que não

sejam números, letras ou underscores;

▪ Deve ser único na área em que é usado;

▪ Não pode coincidir com palavras reservadas: if, else,

for, while, try, main, int, etc…

10

Tipos de Variáveis

11

Com exceção do tipo de dados string, todos os outros são
considerados tipos de dados primitivos.

Declaração e Inicialização de Variáveis

• Declaração

• Declaração e Inicialização

ou

12

Tipo nome;

Tipo nome ;
nome = valor;

Tipo nome = valor;

Declaração e Inicialização de Variáveis

13

Variáveis declaradas e
inicializadas

Variável declarada e não
inicializada

É necessário aqui para
podermos usar o tipo de

dados string

Alterar Valor das Variáveis

14

Declaração e inicialização
da variável idade com o

valor 10

Alteração do valor da
variável idade para 20

• Uma variável de um tipo primitivo ou string guarda
apenas um valor, sendo que esse valor pode ser
alterado ao longo da execução do programa.

Alteração do valor da
variável idade para -3.

É possível?

Escrita de Variáveis

15

• Para escrever no ecrã o valor guardado numa variável
(ou qualquer outra informação) usamos a instrução
cout e o operador <<.

• A utilização destes elementos requer a inclusão da
seguinte instrução no preâmbulo:

cout << nome_da_variável;

cout << “qualquer texto”;

Escrita de Variáveis - Exemplo

16

Mudança de linha

ou

Leitura de Variáveis

17

• Para ler uma variável, isto é, pedir o seu valor ao
utilizador usamos a instrução cin e o operador >>.

• A utilização destes elementos requer a inclusão da
seguinte instrução no preâmbulo:

cout << “Introduza um valor: ”;

cin >> nome_da_variável;

Leitura de Variáveis - Exemplo

18

Constantes

• São variáveis cujo valor inicial não pode ser alterado.

• A sua declaração e inicialização é feita da seguinte
forma:

Exemplo:

19

const Tipo nome = valor;

Operadores

• Operadores aritméticos simples

20

Se a=13 e b=5

Operadores

Os operador + pode também ser usado para variáveis
do tipo string como operador de concatenação (junção)

A nova string criada é:

21

Converte o valor numérico 18
para a string “18”

“Eu tenho 18 anos. Sou Jovem!”

Operadores

• Operadores aritméticos compostos

22

Se a=6 e b=2

Operadores

O operador += pode também ser usado para
variáveis do tipo string como operador de
concatenação + atribuição.

Neste caso teríamos:

23

a = “AABB”

b = “BB”

Operadores

• Operadores relacionais e operadores lógicos

24

.

Capítulo 2 –

Estruturas de Controlo

Condicionais e Cíclicas

25

Estruturas Condicionais

26

• Permitem que o programa siga caminhos
distintos em função da verificação ou não de
determinadas condições lógicas.

• Estão inevitavelmente dependentes dos
operadores relacionais e lógicos.

INICIO

Ler a, b e c

fim

2 4b ac = −

0a 
?

?

Exemplo: equação de 2ºgrau

1

2

2 2

2 2

b i
x

a a

b i
x

a a

−
= − +

−
= − −

0 

0b  0c

impossível

1

2

2 2

2 2

b
x

a a

b
x

a a

− 
= +

− 
= −

2 0ax bx c+ + =

Sim

Sim

Sim

NãoNão

Não

?

c
x

b

−
=

início

?
Sim

Não

c. universal

27

If e If…Else

if (condição) {

Instruções_1

}else{

Instruções_2

}

28

if (condição) {

Instruções

}

Encadeadas tipo 1

if (condição1) {
instruções_1

}else{
if (condição_2) {

instruções_2
}else{

if (condição_3) {
instruções_3

}else{
instruções_4

}
}

}
29

Encadeadas tipo 2

30

if (condição_1) {

instruções_1

}else if (condição_2) {

instruções_2

}else if (condição_3) {

instruções_3

}else{

instruções_4

}

Estruturas Cíclicas

31

• Permitem executar instruções/processos de
forma repetitiva.

• Contêm uma condição de paragem, que
determina o final do processo iterativo.

Exemplo: Algoritmo de “Euclides”

Dados os números inteiros m=38 e n=10, calcular o seu
máximo divisor comum mdc(38,10).

Como 38=3*10+8
os divisores comuns a 38 e 10 são os comuns a 10 e 8;

Como 10=1*8+2
os divisores comuns a 10 e 8 são os comuns a 8 e 2;

Como 8=4*2+0
o máximo divisor comum entre 8 e 2 é 2 !

=> mdc(38,10)=2

32

Algoritmo de “Euclides” (versão I)

_

1. Ler m e n (inteiros diferentes de 0);
2. Se m<n Então

maior=n, menor=m

Senão
maior=m, menor=n

3. Calcula resto=mod(maior , menor);
4. Se resto==0

Escrever menor; FIM
5. Enquanto (resto!=0)

resto=mod(maior,menor), maior=menor, menor=resto

6. Escrever maior; FIM

33

Algoritmo de “Euclides” (versão II)

1.Ler m e n (inteiros diferentes de 0);

2.Enquanto (n!=0)

resto=mod(m,n), m=n, n=resto;

3. Escrever m; FIM

34

While e Do…While

do{

instruções

}while (condição);

35

while (condição) {

instruções

}

Ciclo For

for (Inicialização ; Condição ; Incremento) {

Bloco de Instruções

}

Sequenciamento de instruções:

36

Ciclo while vs Ciclo for

37

Ciclo while Ciclo for

Ciclos Encadeados

• Ciclos encadeados são ciclos que contêm outros ciclos
dentro deles.

• O ciclo (ou ciclos) interior são executados em cada
iteração do ciclo exterior.

Exemplo:

for (Inicialização_1 ; Condição_1 ; Incremento_1){

for (Inicialização_2 ; Condição_2 ; Incremento_2){

Bloco de Instruções
}

}
38

Ciclos Encadeados - Exemplo

39

(1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

Instrução break

A instruções break permitem interromper um ciclo. No caso
de ciclos encadeados, apenas um dos ciclos é interrompido.

40
(1,2) (2,3) (2,4) (3,4)

.

Capítulo 3 – Variáveis

Indexadas - Vetores

41

Vetores

• Permitem armazenar numa só variável vários

valores, desde que sejam todos do mesmo tipo.

42

Vetor de inteiros
v com 6 posições
(desde 0 até 5)

Elemento que está na
posição 2 do vetor.

(v[2] = 8)

* Necessitamos do pacote vetor:

-

Vetores - declaração

• Opção 1: Declaração e Inicialização a partir
de uma lista.

Este processo é usado quando conhecemos os elementos
do vetor no momento da sua criação

Exemplo:

43

vector<Tipo> nome = { … };

vector<int> v = {5, 7, 8, -2, 1, 9};

Vetores - declaração

• Opção 2: Declaração de vetor com dimensão

Este processo é usado quando apenas conhecemos a
dimensão do vetor no momento da sua criação

Exemplo:

44

vector<Tipo> nome(n);

vector<int> v(6);
v[0]=5; //ou v.at(0)=5;

...

v[5]=9;

Preenche cada
uma das posições

já criadas

Vetores - declaração

• Opção 3: Declaração de vetor sem dimensão

Quando nem a dimensão do vetor nem os seus
elementos são conhecidos no momento da criação.

Exemplo:

45

vector<Tipo> nome;

vector<int> v;
v.resize(6);

v[0]=5;

...

Cria uma nova posição no vetor e
preenche-a com o valor 5

vector<int> v;

v.push_back(5);

...

Redimensiona o vetor para criar
de uma só vez todas as posições

Resize vs Push_back

46

vector<int> v;
v.resize(6);

v[0]=5;

v[1]=7;

...

vector<int> v;

v.push_back(5);

v.push_back(7);

...

Vetores - declaração

• O operador [] e o método .at() apenas podem
ser usados para aceder a posições do vetor que
já existam.

• O método .at() verifica se a posição do vetor
existe antes de tentar aceder a ela, enquanto
que o operador [] não o faz.

• O método .push_back() adiciona sempre uma
nova posição ao vetor e preenche-a com o
valor que recebe.

47

Vetores - Exemplo

Uma empresa tem 100 produtos, cada um com o seu preço e
pretende atualizar o IVA que era de 6% e passou a ser de 23%.

100 variáveis

Declaração
double preco0;

double preco1;

…
double preco99;

Atualização
preco0=0.23/0.06*preco0

preco1=0.23/0.06*preco1

…
preco99=0.23/0.06*preco99

1 variável indexada com 100 elementos

Declaração
vector<double> preco(100);

Atualização
for(int i=0; i<=99; ++i)

preco[i]=0.23/0.06*preco[i];

48

Vetores - Manipulação

• A manipulação de vetores é feita posição a posição. Por
exemplo, para imprimir/preencher um vetor é necessário
imprimir/preencher cada uma das suas entradas.

• A primeira posição do vetor é a posição 0. A dimensão do
vetor é dada pelo método .size() e por isso a última
posição do vetor será .size() – 1.

• Usamos, normalmente, ciclos for para percorrer vetores

49

Vetores – Leitura

• Se soubermos quantos elementos terá o vetor,
podemos usar um ciclo for.

• Caso contrário, devemos usar um ciclo while

50

Ordenar vetor

51

Existem vários algoritmos que podemos implementar
para ordenar um vetor. O método sort, permite
ordenar um vetor automaticamente.

* Necessitamos do pacote algorithm

-

Matrizes

Uma matriz em C++ é um vetor de vetores.

15 2

8 0 6

7 2 3

1 3 1

52

Matriz – declaração e definição

• Opção 1: Declaração e Inicialização a partir
de uma lista.

Exemplo:

53

vector<vector<Tipo>> nome = {{…},…,{…}};

vector<vector<int>> m = {{5,7}, {1,8}, {0,1}};

Matriz 3x2
Primeira

linha
Segunda

linha

Terceira
linha

Matriz – declaração e definição

• Opção 2: Definir número de linhas, número de
colunas e os elementos

54

vector<vector<Tipo>> nome(n);
ou

vector<vector<Tipo>> nome;
nome.resize(n)

for(int i=0; i<n; i++)

nome[i].resize(m);

m[0][0]= 5

…

m[n-1][m-1]= 7

Definir número
de linhas (n)

Definir número
de colunas (m)

Preencher
Matriz

.

Capítulo 4 – Funções

55

Declaração, Definição e Chamada

56

Estrutura geral de uma função

Uma função do tipo void (vazia) não devolve qualquer resultado, pelo
que não contém a instrução return.

57

Tipo de objeto
devolvido

Argumentos
Recebidos

Para devolver um
resultado

Função void vs não void

58

Apenas escreve algo no
ecrã, não devolve

qualquer resultado

Devolve um resultado
do tipo int que pode ser

usado no programa

Funções Recursivas

Uma função recursiva é uma função que se chama a si própria.
Neste tipo de função, é extremamente importante definir
cuidadosamente o critério de paragem.

Exemplo:

59

int fatorial(int n){

 if (n == 1)

 return 1;

 else

 return n*fatorial(n-1);

}

fatorial(6)
6 * fatorial(5)
6 * 5 * fatorial(4)
6 * 5 * 4 * fatorial(3)
6 * 5 * 4 * 3 * fatorial(2)
6 * 5 * 4 * 3 * 2 * fatorial(1)
6 * 5 * 4 * 3 * 2 * 1

Exemplo: Fibbonacci

60

fib(0) = 1
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2), n > 1

Exemplo: Fibbonacci

61

Passagem por valor. O que é passado como argumento à
função é uma cópia do valor da variável e não a própria variável.

Passagem por referência. O que é passado como argumento à
função é o local da memória onde se encontra a variável.

Passagem por referência constante. Difere do anterior na
medida em que a função não pode alterar a variável.

Passagem de argumentos

62

Passagem de argumentos: Exemplo

63

Não é alterado
na função

É alterado

Passagem de argumentos

64

Não é regra, mas é uma boa prática…

Vetor,
string, etc…

int, bool,
char, etc…

	Slide 1
	Slide 2: Programa
	Slide 3: Bibliografia
	Slide 4: Material de Apoio
	Slide 5: O que é a Programação?
	Slide 6: Linguagem e Software
	Slide 7: Esqueleto de um programa em C++
	Slide 8: . Capítulo 1 – Variáveis e Operadores
	Slide 9: Variáveis
	Slide 10: Nomes das Variáveis
	Slide 11: Tipos de Variáveis
	Slide 12: Declaração e Inicialização de Variáveis
	Slide 13: Declaração e Inicialização de Variáveis
	Slide 14: Alterar Valor das Variáveis
	Slide 15: Escrita de Variáveis
	Slide 16: Escrita de Variáveis - Exemplo
	Slide 17: Leitura de Variáveis
	Slide 18: Leitura de Variáveis - Exemplo
	Slide 19: Constantes
	Slide 20: Operadores
	Slide 21: Operadores
	Slide 22: Operadores
	Slide 23: Operadores
	Slide 24: Operadores
	Slide 25: . Capítulo 2 – Estruturas de Controlo Condicionais e Cíclicas
	Slide 26: Estruturas Condicionais
	Slide 27: Exemplo: equação de 2ºgrau
	Slide 28: If e If…Else
	Slide 29: Encadeadas tipo 1
	Slide 30: Encadeadas tipo 2
	Slide 31: Estruturas Cíclicas
	Slide 32: Exemplo: Algoritmo de “Euclides”
	Slide 33: Algoritmo de “Euclides” (versão I)
	Slide 34: Algoritmo de “Euclides” (versão II)
	Slide 35: While e Do…While
	Slide 36: Ciclo For
	Slide 37: Ciclo while vs Ciclo for
	Slide 38: Ciclos Encadeados
	Slide 39: Ciclos Encadeados - Exemplo
	Slide 40: Instrução break
	Slide 41: . Capítulo 3 – Variáveis Indexadas - Vetores
	Slide 42: Vetores
	Slide 43: Vetores - declaração
	Slide 44: Vetores - declaração
	Slide 45: Vetores - declaração
	Slide 46: Resize vs Push_back
	Slide 47: Vetores - declaração
	Slide 48: Vetores - Exemplo
	Slide 49: Vetores - Manipulação
	Slide 50: Vetores – Leitura
	Slide 51: Ordenar vetor
	Slide 52: Matrizes
	Slide 53: Matriz – declaração e definição
	Slide 54: Matriz – declaração e definição
	Slide 55: . Capítulo 4 – Funções
	Slide 56: Declaração, Definição e Chamada
	Slide 57: Estrutura geral de uma função
	Slide 58: Função void vs não void
	Slide 59: Funções Recursivas
	Slide 60: Exemplo: Fibbonacci
	Slide 61: Exemplo: Fibbonacci
	Slide 62: Passagem de argumentos
	Slide 63: Passagem de argumentos: Exemplo
	Slide 64: Passagem de argumentos

