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Evaluation Process

Regular period

- Written exam (scaled from 0 to 20)
15t May 2026

Repeat period

To get approval (or to improve the grade)

- Written exam (scaled from 0 to 20)
2" June 2026

To get approval in the OR course, the Final Grade must be greater than or equal to 9.5.

For both periods: An oral examination may be required when the final grade is higher than 17.
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Ways of clarifying doubts

If you have doubts:

 Come to my office
(but tell us first ...)

* Online by TEAMS (or by e-mail)
(any time) _—

Chapter 0. Introduction to OR
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What is Operational Research?

Consists of studying operations (activities) within an
organization in order to make them more efficient.

!

Decrease costs and increase profits
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What is Operational Research?

OPERATIONAL RESEARCH 1S COMPQOSED OF THE FOLLOWING ACTIVITIES:

1.DEFINE THE PROBLEM
Identify decisions, data and objectives

2.BUILD A MODEL FOR THE PROBLEM
Create a mathematical representation of the problem

3.USE SOLUTION METHODS
Create/apply scientific procedures for solving the model created

4.MODEL VALIDATION
Test and adjust the mathematical model and the solution methods

5.0BTAIN SOLUTIONS
Propose solutions to the decision-maker

6.IMPLEMENTATION
Implementation of the designed procedures and solutions in practice

Chapter 0. Introduction to OR



% TABLE 1.1 Applications of operations research to be described in application vignettes

Organization Area of Application Section Annual Savings
Federal Express Logistical planning of shipments 1.3 Not estimated
Continental Airlines Reassign crews to flights when schedule 22 $40 million
disruptions occur
Swift & Company Improve sales and manufacturing 3.1 $12 million
performance
Memorial Sloan-Kettering Design of radiation therapy 3.4 $459 million
Cancer Center
United Airlines Plan employee work schedules at airports 34 §6 million
and reservations offices
Welch's Optimize use and movement of raw materials 33 $150,000
Samsung Electronics Reduce manufacturing times and inventory levels 43 $200 million more revenue
Pacific Lumber Company Long-term forest ecosystem management 6.7 $398 million NPV
Procter & Gamble Redesign the production and distribution system 8.1 $200 million
Canadian Pacific Railway Plan routing of rai freight 9.3 $100 million
United Airlines Reassign airplanes to flights when disruptions occur 9.6 Not estimated
U.S. Military Logistical planning of Operations Desert Storm 10.3 Not estimated
Air New Zealand Airline crew scheduling 11.2 $6.7 million
Taco Bell Plan employee work schedules at restaurants 1.5 $13 million
Waste Management Develop a route-management system for trash 1.7 $100 million

collection and disposal



SCHOOL OF CHAPTER 1.
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Summary:

- Formulate and interpret LPP;
- Assumptions, properties, and main definitions in LP;

- Solve an LPP with 2 variables either by evaluating all corner points or by the
graphical method (all possible cases);

- Solve LPPs by using the Excel Solver.

*See H&L, Chapter 3, pages 25-71



Linear Programming problems

A linear programming problem (LPP) has the general form:

n
. 4 Objective function (OF)
min/ max CjX;
Jj=1
n
St Z a;j x; < by, i=1..k Functional constraints

j=1

n

Z i xj = by, i=k+1,..¢F Signal constraints

j=1

n

Zaijxj=bi, l=£+1, , M |

j=1 H

. where:

xj =0 j=1,..,s

xj <0 j=s+1,..,t " Xx; — decision variable
xj free j=t+1..,n = ¢; — objective function coefficient of variable x;

= p; — right-hand side coefficient of constraint i
a;j — technical coefficient of variable x; in constraint

9
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Formulate a LPP —an example

LP1. A small farmer produces packs of strawberry and
banana-flavored milk and has a profit equal to 20 and 30
cents per each produced pack.

The farmer has resources for producing only 30 packs of

milk and must ensure that the number of banana-flavored
packs Is at least twice the number of strawberry-flavored
packs.

How many packs of each type should be produced to

achieve the highest possible profit?
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Exercise 1

Alfredo has a farm where he wants to raise chickens, rabbits, and goats. The price of each chicken,
rabbit, and goat is 2, 5, and 40m.u., respectively.

To receive a financial support to the farm, the sum of the number of legs of all animals on the farm
cannot be less than 30 and the sum of animal heads cannot be less than 15. In addition, the number of
chickens cannot exceed 20% of the number of the remaining animals and the farm only has capacity for
feeding up to 800 animals.

It is estimated to obtain a profit of 1, 2, and 30, m.u. for each chicken. rabbit, and goat and Alfredo
wants to obtain a profit not lower than 500 m.u.

The chicken’s house is small and therefore can only accommodate up to 20 chickens.

There is a large stable on the farm reserved to the goats and rabbits. In this stable there are 500
compartments, and each compartment can be empty or (when occupied) must contain exactly one
goat and two rabbits, because the goats are afraid of being alone at night. There is no other place
available for the goats on the farm, but there is an extra compartment with capacity for at most 50
rabbits.

Formulate the problem to determine the number of animals of each type that Alfredo should buy for
his farm to minimize the total purchase cost of the animals (considering all constraints of the problem).
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Assumptions of LP

Proportionality: The contribution of each variable to the value of the objective function and
to the left-hand side of the constraints is proportional to the value of such a variable.

4x, $33xF $R.Jx, $Ren

Additivity: The value of the objective function and the value of the left-hand-side of the
constraints are the sum of the individual contributions of the decision variables.

4x; + x5 2@31112 %xlfxg

Divisibility: The decision variables assume real values (x; € R).

Certainty: Every coefficient/parameter (¢j, a;j, and b;) is assumed to be a known constant.
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LP definitions

* The solution of a LPP is represented by a vector x = (x4, ... , Xp,)

* The set of constraints of an LPP defines a region called the Feasible Region (FR)

* The corner points in the FR are called extreme points

 Classification of solutions:
* Feasible solution (FS) = belongs to the FR

* Infeasible / Non-feasible solution (NFS) — does not belong to the FR (does not satisfy at
least one of the constraints).

e Optimal solution = FS with the best objective function value

e Alternative optimal solution — FS with an objective function value equal to the best

possible objective function value.

* The optimal value of an LPP is the value of the objective function at any optimal solution.

* A constraint is binding in a feasible solution if it holds on the equality on that solution.

Chapter 1. Linear Programming



LP properties

Prop 1. The Feasible Region of an LPP is either an empty set or a convex set.

Prop 2. If the Feasible Region of an LPP is nonempty and bounded, then at least one optimal solution exists.

Prop 3. If an LPP has an optimum, then at least one of its extreme points is an optimal solution.

Prop 4. Given an LPP with an optimum, if an extreme point has no adjacent extreme points with a better objective
function value, then that point is an optimal solution.

Method for solving LPPs by evaluating the extreme points

1. Represent the feasible region of the problem.

2. If the feasible region is non-empty and bounded, determine all extreme points.

3. Determine the objective function value of each extreme point. The point (or
points) with the best objective function value is the optimal solution of the
problem and the associated value is the optimal value.
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Graphical method

1. Represent the feasible region
2. If the feasible region is empty

STOP - The problem is infeasible.
3. Else

3.1. Represent the gradient vector of the objective function

3.2. Draw a line perpendicular to the gradient
The equation of such alineis c;xy + cy,x, = k,fork € R

3.3. For a maximization problem, move the line in the direction of the gradient.
For a minimization problem, move the line in the opposite direction of the gradient.

3.4. If the line never leaves the feasible region
The problem is unbonded.
3.5. Else

The optimal solution is the last point (or set of points) intersected by the line
before leaving the feasible region.
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Graphical method - Example

min 3x

max x4 + 3x,

a

max 4x, + 2x,

A
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Unbounded problem
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The optimal solution is point A

0 1 2 3 5

All points in the semi-line AB
are optimal solutions



Solve an LPP in the Excel spreadsheet

max  xq + 3x, + 5x3
s. t. X1+ 2x, + x3 < 10 =SUMPRODUCT(C3:E3;$C$8:SES8)
Yo — xa > 3 =SUMPRODUCT(C4:E4;$C$8:SES8)
2 3 = ~SUMPRODUCT(C5:E5;5C$8:$E$8)
2x1 +x3 = 4 =SUMPRODUCT(C6:E6;$C$8:SES8)
6x1 —2x, +2x3 =0 =SUMPRODUCT(C7:E7;$C$8:$E$8)
X1,X2,X3 >0 \
A B C D E F G H
1
2 x1 X2 X3 Signal RHS
B Constraint 1 1 2 1 0 <= 10
4 Constraint 2 0 1 -1 0 >= 3
5 Constraint 3 2 0 1 0 >= 4
6 Constraint 4 6 -2 0 >= 0
7 O.F. 1 3 5 0
8 Solution:
9

O

) How to make the Solver available in the tab Data of the Excel:  Windows: File / Options / Add-ins / Go / Solver Add-in Mac: Tools / Add-ins / Solver Add-in

Chapter 1. Linear Programming 17



Solve an LPP in the Excel spreadsheet

H 1 J K L M N O F
1 Solver Parameters >
2 x1 x2 x3 Signal RHS
3 Constraint 1 1 1 0 <= 10 Set Objective: s : +
4 Constraint2 0 1 -1 0 >= 3 ===
5 Constraint3 2 0 1 0 >= 4 To: (@ max O min O value of:
6 Constraint 4 6 -2 '-._._E._._.. >= 0 By Changing Variable Cells:
7 O.F. 1 3 ) I 0 | SCS8:5ESE 4
8 Solution:
9 Subject to the Constraints:
%F53 <= 5HS3 Add
10 §FS4 »= SHS4 =
3F53 == SH35
11 SF56 »= SHSE Change
12
. . . Delete
13| The optimal solution will appear here.
14 Reset All
15
16 Load/Save
17 Make Unconstrained Variables Non-MNegative
18 iﬂ:;tﬂzlsmuing Simplex LP i Options
19
20 Solving Method
21 Select the GRG Monlinear engine for Solver Problems that are smooth nonlinear, Select the LP
Simplex engine for linear Solver Problems, and select the Evolutionary engine for Solver
22 problems that are non-smooth.
23
24 Help Solve Close

Chapter 1. Linear Programming
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Summary:

- Write an LPP in the standard form and in the augmented form;
- Identify Basic solutions of LPPs and their properties;
- Solve an LPP by using the simplex method (all possible cases);

- Understand the ideas behind the simplex method.

*See H&L, Chapter 4, pages 93 - 115



Standard Form and Augmented form of an LPP

The standard form and the augmented form of a maximization LPP are as follows:

Augmented form

Standard form

n
max z C]X] X i
- =1

j=1
n n
S.t Zaljxjgbi, i=1..,m S.t. Zaijxj+si=bi, i=1..,m
j=1 j=1
n xj20, j=1,...,n
SiZO, l:]., ,

( Constraints with < and variables >0 ) ( Constraints with = and variables >0 )

To write a general LPP in the augmented form, start by writing it in the standard form and then
add positive slack variables s; to convert the < constraints into equalities.

Chapter 2. Simplex Method



The standard form of an LPP

Any LPP can be written in the standard form of a maximization problem:

d Minimization problem
A minimization problem can be converted into a maximization problem by multiplying the o.f. by -1.

n n
min f(xq,...,xp) = z CiX; & max — f(xq, ..., X)) = z —CjX;
j=1 j=1
Example:
minz = 3xq — 2X, + X3 & max—z = —3x1 + 2x, — X3

(J Constraints >

A" = " constraint can be converted intoa " < " constraint by multiplying it by -1.
n

_aij x] < _bi

n
=1

a;j xj = b; &
1 J

J

Example:
3xqy — 2x5 +x3 = =5 = —3x1 +2x, —x3 <5

Chapter 2. Simplex Method



The standard form of an LPP

J Equality constraints

An equality constraint can be converted into two " < " constraints.

n n
zaiij-:bi — z S z ClUX]_ i

j:l ]:1

Example:
3x1 —2x, + X3 =5 & 3x1 —2x,+x3 <5 and —3x;+2x, —x3< -5

1 Variables < 0 or free

Variables < 0 or free can be equivalently replaced by new variables = 0.

xj <0 & Xj = —X; with xj>0
U —
xj free & Xj =xj —x; with x] ,xj =20

Chapter 2. Simplex Method



Basic solutions of an LPP

Standard form

n
max Z C]X]

1

Solution: (x7, ..., x5)

Points resulting from the intersection of two constraints

Infeasible Corner Points

(Feasible) Corner Points
(outside the FR)

of the FR

Augmented form

n
max z C]X]
j=1
n
S.t. zainj‘l‘Si:bi, i=1,...,m

j=1
xj20, j=1,...,n
SiZO, i=1,...,m

Solution: (x3, ..., %5, S1, ..., Sm)

Basic Solutions

Basic Non-Feasible
Solutions

Basic Feasible
Solutions
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Basic solutions of an LPP

Consider the following LPP with m constraints and n+m variables written in the augmented form:

j=1
n

S.t zaux]+sl=bl, i=1,..,m
j=1

xj>0, j=1,..,n

Sl>0’ l‘:l) )

In a basic solution (x4, ..., X, S, ..., S;p ), €ach variable is designated as non-basic variable or as basic
variable and:

- The number of basic variables equals the number of functional constraints (m).
- The number of non-basic variables equals the total number of main variables (n).
- All non-basic variables are equal to zero.

- The set of basic variables is called the basis of the solution.

Chapter 2. Simplex Method



Basic solutions of an LPP

To identify a basic solution of an LPP with m constraints and n+m variables written in the augmented form:

1. Set nvariables equal to zero (which will be the non-basic variables)

2. Solve the system of equations
n

Zainj+Si:bi, i=1,...,m
j=1

to determine the value of the remaining m variables (which will be the basic variables).

3. If the system has a unique solution:
3.1 The obtained solution - (non-basic variables + basic variables) - is a basic solution.
3.2 If such a solution satisfies all the signal constraints
XJZO, j=1,...,7’l
s; =0, i=1,..,m

It is a basic feasible solution (BFS). Otherwise, it is a basic non-feasible solution (BNFS).

Chapter 2. Simplex Method



Basic solutions of an LPP - Example

Example: Identify all the basic solutions of the following LPP

max 3x; + 5x, max 3Xx; + 5Xx;
s.1. X1 <4 S.1. X4 + 54 =4
2x, = 12 2x, +5, = 12
3x1 + 2x2 < 18 3x; + 2x, + 5, = 18
X1, X2 =0 X{,X9,51,55,53 =0
X1 X2 S1 S2 S3 Fa
0 0 4 12 18 BFS A
0 - 0 - -
0 6 4 0 6 BFS B
0 9 4 -6 0 BNFS
4 0 0 12 6 BFS E
- 0 0 -
6 0 -2 12 0 BNFS | G
4 6 0 0 -6 BNFS | H
4 3 0 6 0 BFS D
2 6 2 0 0 BFS C

Chapter 2. Simplex Method



Adjacent BFSs

1 Each BFS corresponds to a corner point of the feasible region.

 Two BS are adjacent if their set of non-basic variables differs in exactly one variable.

Example: In the previous example the BS associated with the corner points B and C are adjacent

PointB — BFS: (0,6,4,0,6) — Non-basic variables {x4, s,}

PointC — BFS: (2,6,2,0,0) —— Non-basic variables {s3, 55}

O Non-basic variables always take value zero, but variables with value zero are not necessarily non-basic
variables.

Chapter 2. Simplex Method



Simplex Method

M The simplex method is an iterative method used to determine the optimal solution of an LPP.

[ Its starts from an initial BFS, then successively goes through adjacent BFSs until determine the optimal
one or to prove that it does not exist.

At each iteration, a basic variable in the
current BFS becomes non-basic and a non-
basic variable becomes a basic variable

[ BFS can easily be identified by performing elementary operations with the functional constraints of the
model in the augmented form.

Chapter 2. Simplex Method



Simplex Method

Original Problem Augmented form Reformulation

max 3x; + 5x,
s.t. X1 <4 s.t. X1 +Sl =4 s.t. X1 +Sl = 4
ZXZ < 12 2x2 + SH =12 Xy + Sy =6
< =
3x;1 + 2x, < 18 3x1 + 2x, + s3|= 18 3, —s,Fsl=6
X1, X2 >0

BFS (0,0,4,12,18) BFS (0,6,4,0,6)

new _ pold old
R3 _RS _RZ

1
new __ old

Chapter 2. Simplex Method




Simplex Method - Build the Initial Tableau

Original Problem Augmented form
max z = 3x; + 5x, max z — 3x; — 5x, =
s.t. X1 <4 s.t. X1 +54 —
2x, < 12 2X5 + 55 =12
3x1 +2x, < 18 3x, + 2x, +s3; =18
X1,%3; =0

X1,X2,51,S82,53 = 0

Initial tableau

BV Z | X1 | X2 | S1|S2|S3 |RHS
Z 1113|5100 ]0] O
S1 oOo(1(0|1]|]0|0]| 4
S O,0(2|0]|1|0] 12
S3 0320|0118
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Simplex Method — Update the simplex tableau

Initial tableau

BV | Zz | X1 | x| 51| S2 |53 |RHS| w BFS(0,0,4,12,18)
Z 13,5000 0 = EC:x, goes to the basis
51 011 E 11010} 4 . LC:min{%,?}=% — s, leaves the
s olof2Yo|[1]|0]| 12 basis
2 "~/
S3 0(3}2 (0,0 1]18 Tableau #1
BV Z x1 xz Sl SZ S3 RHS
Elementary Operations: z 11-300]5210]30
Rgew — Rgld_l_ ERgld S1 0 1 0 1 0 0 4
2
R{lew — Ri)ld X9 0 0 1 0 1/2 0] 6
1 _
R;lew =§Rgld S3 0 3 0 0 1 1 6
Rnew — potd _ pold = BFS(0,6,4,0,6)
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Simplex Method — Update the simplex tableau

Tableau #1
BV Z X1 | X | S1 | S2 | S3 |RHS » BFS(0,6,4,0,6)
z 11-3|10]|0|52]|0] 30| = EC:x,goesto the basis
51 0 1 011,010} 4 = LC:min {%g} = g — S3 leaves the basis
X5 0 0] 1 0 1/2|0 6
s | O (5) olo|-1]1] 6 Tableau #2
BV Z | X1 | X | S1 So sz |RHS
VA 1 0 0 0 3/2 1 36
Elementary Operations:
Rnew — Rgld+ Rgld S1 0 0 0 1 1/3 | -1/3 2
Rj?:l@W _ R](_)ld— %Rgld XZ O 0 1 0 1/2 0 6
RIew — Rgld X1 0 1 0 0 -1/3 | 1/3 2
RIew =1Rgld = BFS(2,6,2,0,0) «— Optimal solution
3 z* =36 «— Optimal value
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Simplex Method — Particular Cases

Unbounded problem Alternative optimal solutions

If a non-basic variable has coefficient zero in the z-row of
the optimal tableau, then such a variable can enter the
basis keeping the objective function value unchanged.
This means that the problem has alternative optimal

If there 1s at least one variable in the z-row with a
negative coefficient, such a variable may enter the basis
because it improves the objective function value.
However, if in the pivotal column there are no positive

coefficients, then the new variable entering the basis will solutions.
not be bounded and therefore it may increase as much as
we want, meaning that the problem is unbounded. BV 1z| X1 | X2 | X3 | X4 |RHS
VA 1| O 0 1 0 6
BV X1 Xo X3 X, |RHS X, 0 0 3 1 1 2
Z 0O |21 1 0 6 x; |0] 1 1 0 0 4
x, 0] O 0 1 1 2
0 1 . 5 0 1 If there 1s at least one positive coefficient in the column
X1 associated with the non-basic variable with coefficient

zero in the z-row, then we can determine an alternative
optimal solution by performing an extra iteration of the
simplex Method.
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Simplex Method - Summary

Step 1: Write the problem in the augmented form.
Step 2: Build the initial tableau.
Step 3: Check if any variable has a negative coefficient in the z-row.

If not, then the current solution is optimal. If there is a non-basic variable with coefficient zero in the z-row, it means that
there are alternative optimal solutions.

If yes, choose the variable with the most negative coefficient to enter in the basis (Entering Criterion). The column
associated with such a variable is called the pivotal column. Check if any coefficient in the pivotal column is positive.

If not, then the problem is unbounded.

If yes, perform the minimum ratio test to determine the variable that must leave the basis. (Leaving criterion).

RHS;
ll Vi > O}

Vi

Denoting by v4, ... , v, the positive values in the pivotal column, we compute min{

Remove the basic variable determined with the minimum ratio test from the basis and update the tableau:
- Divide the pivotal row by the pivot.
- Perform elementary operations in the remaining rows.

Step 4: Go back to Step 3.

Chapter 2. Simplex Method



Simplex Method -Remarks

U Possible draws happening when applying the leaving criterion or the entering criterion are solved by
arbitrary choices.

U In this course, we just solve LPPs that can be written in the augmented form satisfying the following
conditions:

- There 1s a slack variable in each constraint with a positive signal.
- The right-hand side of each constraint is a non-negative value.

max 2xq + 5x, max 2x; + 5x,
- @, a
7x1 + 2x, = 18 7x1+2x5— S, ¥ 18 © —7x; — 2x; + 5, =187
\x__/ \x__/
X1, X2 =0 X1,X2,51,S, =0

Chapter 2. Simplex Method



SCHOOL OF CHAPTER 3.

~ =4 ECONOMICS &
! = €“ MANAGEMENT

UNIVERSIDADE DE LISBOA

Duality and Sensitivity Analysis

Summary:

- Build the dual problem;
- Properties of duality theory;

- Determine the solution of the dual problem by solving the primal problem first
(four methods);

- Economic interpretation of the solution of an LPP;
- Determine sensitivity intervals (graphically or by the solver reports);

- Analyze outputs from the Excel solver and perform sensitivity analysis.

*See H&L, Chapters 6 and 7, pages 197 — 253



Pair of dual problems

the standard form is as follows:

Any LPP (called primal) has a complementary LPP (called dual) associated with it. A pair of dual problems in

Maximization Problem (Standard form)
n

max 2 C]X]

—1
n

J
S.t. Z aij XJ < bi'

Jj=1

.X'JZO, j=1,...,n

max c’x

s.t. Ax <b

x>0

Chapter 3. Duality and Sensitivity Analysis

Minimization problem (Standard form)

m
min z bi)’i
i=1
m
S.t. z a;; yi = Cj,

j=1,..,n
i=1
y; = 0, i=1,..,m
min bTy
s.t. ATy > ¢
y=0




The dual problem

To write the dual problem, have in mind the standard forms of minimization and maximization problems.

Primal Problem ‘ Dual Problem

O Associate a dual variable to each constraint.
O The objective function coefficients of one problem are the RHSs of the complementary problem.
[ The technical coefficients of each constraint are given by the technical coefficients of the associated variable.

O The signal of each variable in one problem is associated with the signal of one constraint in the other problem:
- An equality constraint in one problem is associated with a free variable of the other problem.

- If a constraint (resp. variable) has a correct signal in one problem, then the corresponding variable (resp.
constraint) in the complementary problem also has the correct signal.

III

“Correct signal” means that the signal is according
e to the standard form of the corresponding problem.

Chapter 3. Duality and Sensitivity Analysis



The dual problem - Example

Primal Problem Dual Problem
max 9x4 + x5 min 7y; +y, + 8y,
s.t. Xxq +5x; =7 +— 4 S. t. V1 +4y; ~ 9 ()
6, >1 — v, 0 6y, +2y; -0 @
4y +2x,+x3 <8 —— v, D ‘ 5y, + y3=1 @
X1,X2 — 0 @ y, free
X3 =0 O y, <0

Chapter 3. Duality and Sensitivity Analysis



Duality Theory: properties

Prop 1: The dual of the dual is the primal.

Prop 2: Given a pair of dual problems where
x is a feasible solution to the maximization problem
y is a feasible solution to the minimization problem
It holds Value(x) < Value(y).
If Value(x) = Value(y), then x and y are optimal solutions
for the corresponding problems.

Prop 3: If both problems have at least one feasible solution each, then

both problems are bounded, and their optimal value coincides.

\ 4

-

— Value of a FS for

the min problem

Optimal value for
both problems

Value of a FS for
the max problem

Prop 4: If one of the problems is unbounded, then the complementary problem is impossible.

Prop 5: If one of the problems is impossible, then the complementary problem is either impossible or unbounded.
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Dual Solution (Shadow Prices)

Each dual variable y; is associated with a specific constraint of the primal problem (constraint i)
and its optimal value y;" is called shadow price.

n
Z a;jx; <b; * i)

j=1

The shadow price y; represents the variation in the optimal value of the primal problem caused
by increasing/decreasing the RHS of constraint i in one unit (if the optimal basis is kept).

The dual solution can be determined by solving the dual problem directly (graphical method,
simplex method, or Excel Solver) or indirectly by solving the primal problem first:

i. If the primal problem was solved by the simplex method, see the optimal tableau.
ii. If the primal problem was solved by the solver, see the excel reports.
iii. If the primal problem was solved by the graphical method, see the graphic.

iv. If we have the primal solution, you can use the complementary slackness relations.
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Determine the Dual Solution (i)

i. The dual solution can be read from the z-row of the optimal simplex tableau of the primal problem. It
corresponds to the coefficients of the slack variables.

Primal Problem Optimal simplex tableau
max z = 3x; + 5x, Basic zZ | Xy X, 5 S, s3 | RHS
s.1. X1 <4 Variables
2x, < 12 » » z 1/ 0 0 0 3/2 1 | 36
3x; + 2x, < 18 Sq 0 0 0 1 1/3 -1/3 2
X1,%, =0 X5 ol o 1 0 12 0 | 6
X1 0 1 0 0 -1/3 1/3 2

Dual Solution: (y7,y5,y3) = (0,;, 1)
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Determine the Dual Solution (ii)

ii. The dual solution can be read from the shadow prices column displayed in the sensitivity report
obtained when solving the primal problem by using the Excel solver.

Constraints

Final Shadow Constraint Allowed Allowed
Name Value Price Right side Increase  Decrease
Ci 2 0 4 1E+30 2
C2 12 1,5 12 6 6
C3 18 1 18 6 6

4

Dual Solution: (y{,y5,v3) = (O,%, 1)

Chapter 3. Duality and Sensitivity Analysis



Determine the Dual Solution (iii)

iii. Each shadow price is the variation in the optimal value caused by increasing the RHS of the
corresponding primal constraint in one unit. By doing such an increase, we can determine the change in
the optimal value to obtain the associated shadow price.

max z = 3x; + 5x,

S.t. Xy < 4
2x, < 12
3x; + 2x, £ 18

X1,%X, =0

4

* —

Zold = 36

* * X L
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Determine the Dual Solution (iii)

2x2 = 13 3x1 + 2x2 < 19

y1 =36—-36=0 y; =37.5—-36 =15 y:=37-36=1
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Determine the Dual Solution (iv)

iv. Having the solution of the primal problem, we can use the complementary slackness relations to
determine the dual solution.

Primal problem Dual problem
n m
max z CjXj min z by
j:]_ P
J i=1
m
S. t. Zaij Xj Sbi, i=1,..,m «— (Yi) s. t. ZjSyi ZC]', j= 1,...,n +«— (Xj)
j:]_ =1
x]>0, ]=1; n YLZO' l:]., , m

The complementary slackness relations are as follows:

yi (b — i=1 aijxf) =0 and x}k(cj — iz aji)’i*) =
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Determine the Dual Solution (iv)

The Complementary Slackness relations are as follows:

yl'*(‘bi — 2= Clijxf) =0 and xj‘(‘cj —>ny ajl-ylf';) =0
| |

\ |

= Vi X s; = and x; Xu; =0

Hence:

- If a primal constraint is not binding in the optimal solution (s; # 0), then the optimal value of
the corresponding dual variable is zero (y; = 0).

- If the optimal value of a primal decision variable is not zero (x; # 0), then the corresponding
dual constraint is binding (¢; — X7, a;;y; = 0).
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Determine the Dual Solution (iv)

For this example...

Primal Dual

max z = 3x; + 5x, min 4y, + 12y, + 18y,

s.t. X4 <4 <Y1

s.1. v, + 3y; =3 <+ Xxq
2X; = 12‘_% 2y, +2y; > 5 <« X2
< -«—
3x; + 2x, < 18 V1,V2, V2 =0
X1, X9 =20
The complementary slackness relations are:
(y1 Xs; =0 and sj#0 = y;=0 (y; =0 (v — 0
y2 X s3 =0 L y1—3
$yixs3=0 = - = ly=
x;Xu;j =0 and x7#0 = u;j=0 y1 +3y; =3 "
Xixui=0 and x5 #0 = u,=0 2y3+2y; =5 RE

- A

(x1,x5,51,85,53) = (2,6,2,0,0)
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Sensitivity analysis

Original Problem

max Xxq+ 2x, + X3
s.t.  xq +x3 <10
3x1 — 2%, + x3 < 12
X, <5

X1,X9,X3 =0

Modified Problem 1

4

Solution: (6,5, 4)
Optimal value: z* = 20

Chapter 3. Duality and Sensitivity Analysis

max Xxq+ 2x, + X3
s.t.  xq +x3 <10
3x1 — 2x, + x3 < 14
X, <5

X1,X9,X3 =0

Modified Problem 2

max x;+ 1x, + x3
s.t.  Xxq +x3 <10
3x1 — 2x5 +x3 < 12
Xy <5

X1,%X2,X3 =0

-
2




Sensitivity analysis

Recall...

A basic feasible solution of an LPP is composed of basic variables and non-basic variables.
[ The set of basic variables is called the basis of the BFS.

 Two BFS are adjacent if their set of basic variables differs in exactly one variable.

A variation in a parameter of the original problem may change the optimal solution and/or the optimal
value. If such a variation keeps the basis of the optimal solution, then we can determine the consequences
of the change without solving the problem again.

The minimum and maximum values that a specific parameter can assume keeping the current basis
optimal define the sensitivity interval.

Keep the basis means that the set of basic variables does
! not change (however, the value of the basic variables can
change)
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Sensitivity analysis

Sensitivity analysis for the RHS coefficients

Change:

n n
new
Z' Clinj < bi = z Clijx]' < bi
J=1 j=1

In the sensitivity interval (SI) for parameter b;:
v’ the shadow prices are kept

v’ the optimal solution may change

v’ the optimal value is changed according to
the formula:

- *
Znew = Zold + Yi X Abi

Sensitivity analysis for the O.F. coefficients

Change:

. . new
min / max ... ¢jx; .. = min/max.. ¢;""x;

In the sensitivity interval (Sl) for parameter ¢;:
v’ the optimal solution does not change

v’ the optimal value is changed according to the
formula:

_ *
Znew = Zola T xj X ch

The sensitivity intervals in both cases can either be determined graphically or by using the solver reports.
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Sensitivity analysis (Solver Reports)

The sensitivity intervals can be obtained from the sensitivity report provided by the Excel Solver

Variable Cells
Final Reduced Objective Allowable Allowable
Name Value Cost Coefficient Increase Decrease
x1 2 0 3 4,5 3 «— SI,, =[3-3,3+45]=1[0,7.5]
X2 6 0 5 1E+30 3 «— Sl,=[5-3,54+00 =[2,+0]

Constraints

Final Shadow Constraint Allowable Allowable
Name Value Price R.H. Side Increase Decrease

C1 2 0 4 1E+30 2 «— S, =[4—2,4+ 0 =][2,400]
c2 12 1,5 12 6 6 «— SI,, =[12—6,12+6] = [6,18]
C3 18 1 18 6 6 «—— SIp, =[18—6,18+ 6] = [12,24]
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Sensitivity analysis (Graphically)

To obtain the sensitivity interval for the RHS coefficient of constraint i

] 1@i;Xj < b;
Step 1: Represent the feasible region of the problem.

Step 2: Move the line associated with constraint i in both directions while the optimal basis is kept. This

may lead to a critical point from which the optimal basis changes or to the conclusion that the
optimal basis never changes.

Step 2.1. In the former case, replace the critical point(s) found in the corresponding constraint(s):

min max
] 10X < b; and /or ] 1Qi;Xj < b;
to determine the value of b™" and/or b4~
Step 2.2. In the later case, we have b™™ = —oo0 or h** = +co,

Step 3: The SI,,, is defined by the values b™M™ and hmax,
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Sensitivity analysis (Graphically)

Example:

max 3x; + 5x,

s.1. X1 <4
2x, < 12
3x; + 2x, < 18
X1,%X, =0

For the first RHS:

Critical point (on left) (2,6) —» b™" = 2

There is not a critical point on the right = b"** = 400

= Slbl — [2, +OO[ -
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Sensitivity analysis (Graphically)

Example:

max 3x; + 5x,

st xq <4 . 7
2x, < 12
3x; + 2x, < 18
X1,%X, =0

For the second RHS:

Critical point (on top) (0,9) —» bJ'*** =18
Critical point (on bottom) (4,3) — by"" =6

= SI,, = [6,18] s
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Sensitivity analysis (Graphically)

Example:

max 3x; + 5x,

s.1. X1 <4
2x, < 12
3x; + 2x, < 18
X1,%X, =0

For the third RHS:

Critical point (on top) (4,6) — b§*** = 24
Critical point (on bottom) (0,6) — bJ*" = 12

= Sl,, = [12,24]
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Sensitivity analysis (Graphically) - Example Sensitivity interval for ¢4

Consider max ¢y x1 + 2x5
Example: ~ moax  3x; + 2x;

st x1+2x, <8

=  When ¢4 decreases...

In a first moment, the slope of the green line becomes closer to
X1 — Xo < 2 the slope of AS. At certain point, the slope of the green line
equals the slope of AS, making all points in that segment optimal.
If ¢; continues to decrease, the slope of the green line becomes
higher than the slope of segment AS, and the optimal solution
changes to point A. Thus,

X1,%X3 =0

—C —1
slopep r < slopegz © Tl < - & =1

= When cq increases...
The green line becomes more and more vertical, but the optimal
solution is always point S regardless the increase. Thus, ¢; can
increase as much as we want.

Thus: SI., = [1,+00]

The slope of an affine function
4 ax; + bx, = cis—a/b.
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Sensitivity analysis (Graphically) - Example Sensitivity interval for ¢,

Example:

max 3xq + 2x,

S.t.

X1+2xZS8

xl_xZSZ

X1,%X3 =0

Consider max 3x1 + X5

When c; increases...

The interpretation is similar to the first point in the previous slide. Thus,
-3 -1
slopep . < slopegs © . < 3 S <6
2
When c, decreases... but remains positive...
The green line becomes more and more vertical, and the optimal

solution is always point S. Thus, ¢, can decrease to zero.

When c, decreases... and becomes negative...

When c, is a very small negative value (-0.001, for example) the green

line is almost vertical. If ¢, continues decreasing, point S remains

optimal in a first moment. At certain point, the slope of the green line

equals the slope of SC, making all the points in that segment optimal. If

C, continues to decrease, the optimal solution changes to point C. Thus,
-3 1

slopegr < slopesg © . < 1 S =3
2

Thus: SI., = [-3, 6]
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Sensitivity analysis

Final Remarks:

We already know:

In the sensitivity interval (SI) for parameter b;:
v’ the shadow prices are kept

v’ the optimal solution may change

v’ the optimal value is changed according to
the formula:

_ *
Znew = Zola T Vi X Ap,

@ -
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In the sensitivity interval (Sl) for parameter ¢;:
v’ the optimal solution does not change
v’ the optimal value is changed according to
the formula:
Znew = Zola T Xj X Ac;

This means that we can only analyze the changes in the optimal value and/or optimal solution if
the new value of the parameter suffering a change is within the sensitivity interval!



Introduction of a new variable

O Adding a new variable implies adding a new column to the original problem, which is equivalent
to adding a new constraint to the dual.

new ..new

max CixX; +-rCpXx, +C 77X

s.t. 11X+ @ypXy +ai?x" e < by

new new new
» ap; "yttt @ Yn=C

new ...new
A1 X1 + o QnX,, +an ¥ x < b,

X1, ey Xy, XV =0

O If the optimal solution of the original dual problem (yy, ..., ¥, ) satisfies this new constraint, then
it does not change when introducing the new variable, and therefore, the introduction of the
new variable is irrelevant.
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Transportation and Assignment Problems

Summary:

- Formulation of TPs/APs and their variants;
- Obtain feasible solutions for TPs/APs;
- Obtain the optimal solution of TPs/APs (by using the Solver);

- Properties and variants of TPs and APs.

*See H&L, Chapter 9, pages 318 — 327, 348 — 356



The Transportation Problem (TP)

There is a product produced in m sources that must be sent to n destinations. Each connection

between a source and a destination has a cost that depends on the quantity sent. The main goal is to
determine the quantities to send from each source to each destination at the minimum cost.

Sources Destinations
' Parameters:
i
[s1] E& =i > [d4] s; - supply at source i
1 1 d; - demand of destination j
~ = cjj - cost of sending one unit of product from
[S2] E& X N [d,] source i to destination j
2 2
. . Decision variables:
) Xij - quantity of product to send from
~ OoO—0O . . . .
source i to destination j.
(sm] |t X (U8 ) /
m = n
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LP formulation

If the total supply equals the total demand, the problem is balanced and:

The total amount received by each destination is equal to its demand

The total amount sent by each source is equal to its supply

Sources Destinations
9
[s1] k& =5 R 'g.l.}} [d4]
! 1 min Y% Mg CijX;;
1 .
1> () s.t. Yt xj=d;, j=1,..,n
[s2] k& - . [0 [d] » i |
2 2 Zj:lxij =s;, L=1,...,m
: . x,;jzo, i=1,...,m j=1,..,n
e =
sm) o X (I ()
m = n
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Feasible solution

Data:
Costs D1 D2 D3 D4 Supply
Origins Destinations 01 2 5 0 7 10
02 1 6 3 4 5
HO]E& '!.'—'-} [5] 03 5 8 1 9 7
1 : Demand| 5 8 6 3
~ o (@
S 2
2 Example of a feasible solution:
()
~ ory (6] DI | D2 | D3 | D4 | Supply
7 oy ’
01 5 5 10
3 ml\
3] 02 3 2 5
03 6 1 7
Demand 5 8 6 3

Total Cost = 76
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Optimal solution (by using the Excel Solver)

A B C D E F G H

1 =SUM(C8:F8)
2 Costs D1 D2 D3 D4 =SUM(C9:F9)
3 01 2 5 0 7 =SUM(C10:F10)
4 02 1 6 3 4
5 03 5 8 1 9
6
7 Solution D1 D2 D3 D4 Supply
8 01 0 = 10
9 02 0 = 5
10 03 0 = 7
11 0 0 0 0
12 = = = =
13 Demand
14
15 O.F. 0

|

=SUMPRODUCT(C3:F5;C8:F10)
=SUM(C8:C10) =SUM(D8:D10) =SUM(E8:E10) =SUM(F8:F10)
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Optimal solution (by using the Excel Solver)

Solver Parameters >
|

1
2 Costs D1 D2 D3 D4 Set Objective: 3L315 +
3 01 2 5 0 7

Ta () Max (@ Min () Value Of:
4 02 1 6 3 4
5 03 5 2 1 g By Changing Variable Cells:

SCSESF10 *+
6
Fi Solution D1 D2 D3 D4 Supply Subject to the Constraints:
s o1 3 7 10 = 10 SC511:5F511 = 5C813:8F513 Add

S$G5&5G510 = 515851510 -
9 02 2 3 5 =

Change

10 03 1 b 7 = 7
11 5 3 B 3 Delete
12 = = = =
13 Demand 5 3 6 3 Reset All
14 ——— e ——————————— i Load/5ave
15 LL ______ 6 _g______.l Make Unconstrained Variables Non-MNegative
16

Select a Solving Simplex LP i Ciptions
17 Method:
18
19 Solving Method

Select the GRG Monlinear engine for Solver Problems that are smooth nonlinear. Select the LP
20 Simplex engine for linear Solver Problems, and select the Evolutionary engine for Solver
problems that are non-smooth,

21
22
23 Help Salve Close
24
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TP Variants and Properties

Variants of TPs:
O Total supply > Total demand — " < " constraints in the sources
1 Total supply < Total demand — " < " constraints in the destinations

O Minimum and maximum demands = A" < " constraint and a" > " constraint for each destination

L Minimum and maximum supplies = A" <" constraint and a " =" constraint for each source

O Impossible links between source i and destination j = Impose x;; = 0 or define ¢;; = o

Properties of TPs
Prop 1: The TP has at least one feasible solution, and consequently it has an optimal solution.

Prop2: A TP where all supplies and demands are integer values has at least one integer optimal solution,
that is, a solution where all variables assume integer values.
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The Assignment Problem (AP)

The problem consists of assigning n individuals to n tasks to minimize the total cost of assignment.

Individuals Tasks

@ N\
- . A
1 1
@ N\
a : /\
2 2
® \

- A

Chapter 4. Transportation and Assignment Problems

Parameters:

Cij - cost of assigning person i to task j

Decision variables:

X = 1 if person i is assigned to task j
70 otherwise

LP Formulation

: mn n
min 2, Zj=1 CijXij
s.t. Xizx;j=1 j=1..,n

n —_ ] —
=1 %=1, 1= 1,...,n




AP — Remarks and Variants

Remarks:

d Due to the structure of the problem, the binary constraints can be replaced by non-negativity
constraints

x;; € {0,1}, Lj=1,..,n =) x;; = 0, i,j=1,..,n

O The AP is a particular case of the TP

Variants of AP:
d # of individuals > # of tasks — " < " constraints for the individuals
1 # of individuals < # of tasks — " < " constraints for the tasks

O Impossible assighment of individual i totaskj = Impose x;; = 0 or define ¢;; = o0
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Network Optimization Problems

Summary:

- Definitions associated with networks;
- Minimum Cost Flow problem;

- Shortest Path problem;

- Minimum Spanning Tree problem;

- Feasible solutions, optimal solutions, properties, and relations between the problems.

*See H&L, Chapter 10 pages 372 — 436



Part O - Basic Definitions

A network (or graph) is an ordered pair G = (V, A) where V is the set of nodes or vertices and A is a set of
links connecting pairs of nodes.

Road Map Network
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Part O - Basic Definitions

Undirected network

The links are called edges and are represented by
(i,j) or {i,j}, where i and j are adjacent nodes,
also called extremities.

A path between i and j is a sequence of distinct
edges connecting these nodes.

Directed network

The links are called arcs and are represented by

(i,j) or i = j, where i is the predecessor of j
and j is the successor of i.

A directed path from i and j is a sequence of
distinct edges connecting these nodes, toward j.

A network with both directed and undirected links is called mixed network.
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Part O - Basic Definitions

For both Directed and Undirected networks:
 Edge/Arc (i,j) is incident in nodes i and j.

 An undirected path from node i to node j is a sequence of connecting arcs/edges whose direction
(if any) can be either toward or away from node j.

[ A cycle is a path that begins and ends in the same node.

e ( (1,3),(3,6),(6,5),(5,2), (2, 1)) — Directed path (and cycle)

o ((3,6),(3,1),(1,2),(2,4)) —» Undirected path between 6 and 4
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Part O - Basic Definitions

d Two nodes are connected if the network contains at least one undirected path between them.

O A network is connected if every pair of nodes is connected.

(1)
(2) (2)
¥ o o
O O

Connected network Network not connected
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Part O - Basic Definitions

[ The flow in a directed network is the amount of “product” that crosses its arcs.

Transshipment / Intermediate nodes Demand / Destination / Sink nodes

4

Flow generator node Flow conservation node Flow consumer node
( Outflow > Inflow ) ( Outflow = Inflow ) ( Outflow < Inflow )

[50] ®_ @

‘ v
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Part | — Minimum Cost Flow Problem (MCFP)

let G =(V,A) be a directed and
connected network with at least one
supply node and at least one
destination node, being the remaining
nodes transshipment nodes.

The MCFP consists of determining how
to send the available supply from the
supply nodes to the destination nodes
to satisfy the demand at the minimum
cost (c;j) by respecting arc capacities

(i),

Parameters:

cij - cost of sending one flow unit through arc (i, j)
U;j - Maximum flow quantity in arc (i, j)

b; - Flow generated by node i

Decision variables:

xij : Flow that crosses arc (i, j)

LP Formulation

min 2 jyea CijXij

___________________________________________

A"/

Flow out — Flow in = Generated flow
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Part | — Minimum Cost Flow Problem (MCFP)

Assumptions of the MCFP

O The network is directed and connected.
d Arc capacities are compatible with supplies and demands.
O In a balanced MCFP, the total supply is equal to the total demand (3, b; = 0).

Properties of the MCFP

(d The MCFP has at least one feasible solution, and therefore, it also has an optimal solution.

L A MCFP where all b; and u;; are integer values has, at least, one integer optimal solution.

MCFP Variants
O Total supply > Total demand = " < " constraints in the sources

1 Total supply < Total demand = " < " constraints in the destinations

O Maximization problem

| TPsare particular cases of MCFPs!
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Part | — Minimum Cost Flow Problem (MCFP)

Constraints

=SUMIF($B$4:$BS$10;H4;$D$4:5D$10) - SUMIF($CS$4:5C$10;H4;5D$4:5D5$10)
[30] =SUMIF($B$4:$BS$10;H5;$D$4:5D$10) - SUMIF($C$4:5C$10;H5;$D$4:5D%10)
@ (5,10) (3.0) @ =SUMIF($B$4:$BS$10;H6;$D$4:$D$10) - SUMIF($CS$4:$C$10;H6;$D$4:5D$10)
\ / =SUMIF($B$4:$BS$10;H7;$D$4:$D$10) - SUMIF($CS$4:$C$10;H7;$D$4:5D$10)
l(&S{}) 2. (4,10) =SUMIF(SBS$4:SBS10;H8;$DS$4:$D$10) - SUMIF(SCS4:5CS$10;H8;$DS$4:5D$10)
(9,-) =SUMPRODUCT(D4:D10;E4:E10)
210 10
120} (1,40) [-50]
A B C D F F G H J K L
1
2 M Generated
3 From To Flow Cost  Capacity Node | Constraints| Signal Flow
4 1 2 8 50 1 = 30
5 1 3 5 10 2 = 20
6 2 3 9 1000 3 = 0
7 2 5 1 40 4 = 0
8 3 4 3 1000 5 = -50
9 3 5 2 1000
10 4 5 4 10 O.F
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Part | — Minimum Cost Flow Problem (MCFP)

Sabver Parameters >
B C 0 E F G H J K
N I
Generated set Objective: I_;‘.I;‘iﬂ 1 +
From To Flow Cost Capacity Node Constraints  Signal Flow . -
1 ) 2 ) 1 0 _ 30 o () Max (® Min () Value OF: L
1 3 > 10 2 0 - 20 By Changing Variable Cells:
2 3 2 1000 3 0 - 0 $D34:50510 +
2 5 1 40 4 0 = 0
3 aq 3 1000 5 0 = -50 Subject to the Constraints:
3 5 2 1000 $DS4:50510 <= SF54:5F510 <+—— Add
4 5 il 10 O.F L 0 5154:5158 = SKS:5K58 <€— -
Change
Delete
Reset All
Load/5ave
Make Unconstrained Variables Mon-Megative
Select a Solving Simplex LP i Options

Method:

Solving Method

Select the GRG Nonlinear engine for Solver Problems that are smooth nonlinear, Select the LP
Simplex engine for linear Solver Problems, and select the Evolutionary engine for Solver
problems that are non-smooth,

Help Solve Close
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Part | — Minimum Cost Flow Problem (MCFP)

A B C D E F G H J K L

1

2 Generated
3 From To Flow Cost Capacity Node Constraints  Signal Flow

4 1 2 20 8 50 1 30 = 30

5 1 3 10 5 10 2 20 = 20

6 2 3 9 1000 3 0 = 0

7 2 5 40 1 40 4 0 = 0

8 3 4 3 1000 5 -50 = -50

9 3 5 10 2 1000
10 4 5 4 10 O.F 270
11
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Part Il — Shortest Path Problem (SPP)

Let G=(V, A) be a directed and connected network with only one origin (s) and one destination (t).

The Shortest Path Problem (SPP) consists of determining the path with the minimum distance (c;;)
between such an origin and such a destination.

\ / --H%---“EE%_ . 3_—
o  — o O
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Part Il — Shortest Path Problem (SPP)

The SPP is a particular case of the MCFP where there is only one source, one destination, and one unit of flow
to send and no capacities. Therefore, the idea behind the formulation is similar.

Parameters: LP Formulation (node s)
cj - cost associated with arc (i, j) min Z(i,j)EA CijXi (node )
t. L . — ( others)
Decision variables: S-t. Ljs.peaXs) 1
o {1 if arc (i,j) isin the path —2j(jeaXic = —1
Yo otherwise :
LiGijpeaXij — LjineaXii =0, TeEV\{s t}
xij E{O,l] (I,j)EA
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Part Il — Shortest Path Problem (SPP)

Remarks

O In the LP model, if each constraint x;; € {0,1} is replaced by 0 < x;; < 1, then at least one integer
optimal solution exists.

Q If¢;; > 0forall (i,j) € A, then the constraints x;; € {0,1} can be replaced by constraints x;; = 0.

1 Any undirected link can be converted into two directed links

Gji (= Cij)

@ Cij @ =) @O@
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Part Il = Minimum Spanning Tree Problem (MSTP)

Let G = (V, A) be an undirected and connected network with lengths (c;;) associated to the edges.
A spanning tree of network G is a connected network containing all nodes V' and without cycles.

The Minimum Spanning Tree Problem (MSTP) consists of choosing the set of edges that represents the spanning
tree having the minimum total length
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Part Il = Minimum Spanning Tree Problem (MSTP)

O A spanning tree of a network with n nodes has the same n nodes and n-1 edges.

O The MST can be determined by the Prim Algorithm.

Prim Algorithm
Step 1. Choose any node. Initialize the tree with that node.
Step 2. If all nodes are in the tree, then
Go to Step 3.
Else
Select the shortest edge linking a node outside the tree to a node already in the tree.
Add the edge to the tree.
Go to Step 2.

Step 3. Draw the minimum spanning tree and determine its total length.
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Part Il = Minimum Spanning Tree Problem (MSTP)

Tteration Nodesin Adjacent closest Edge Edge to
the tree node not in the length  include in the

tree tree

1 4" 5 2 (4,5)

2 4 3 2 (5,3)
3 3 1
4 1 3

3 5 6 5 (1,3)
3 1 1
4 - -

4 5 6 5 (3,2)
3 2 3
1 2 8
4 - -
5 6 5

5 3 6 6 (2,7)
1 7 10
2 7 2
4 - -
5 6 5

6 3 6 0 (6,7)
1 - -
2 6 7
7 6 3

*arbitrary choice.
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Integer Linear Programming

Summary:

- Integer Linear Programming problems;
- LP-relaxation of an ILP problem:;

- LP formulations with binary variables.

*See H&L, Chapter 12 pages 474 — 501



Integer Linear Programming Problem

An Integer Linear Programming (ILP) problem is an optimization problem containing decision variables that
can only assume integer values.

Examples:
y — “Number of cows to raise” x — “Number of cars to buy”
? ?

- G
- =N

An ILP problem can be classified as:

- Pure ILP problem: when all decision variables are integer
- Mixed ILP problem: when just a subset of decision variables are integer
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LP - relaxation

ILP problem Linear Programming Relaxation (LP-relaxation)

max E} 1 GjX; max Ej 1 GjX;

s.t. J _1a;jx; <b;, 1=1,..,m s.t. } 1@ <b;, 1=1,..,m

= 2o . e o T x =20, j=1..,n

Only the integer points in the region All points in the region defined by the
defined by the constraints are feasible constraints are feasible

¥ ¥

Optimal value: z;; p

is not better than Optimal value: zp
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Binary Integer Programming

Binary Integer Programming (BIP) problems are ILP problems containing binary decision variables.

A BIP problem can be classified as:

- Pure BIP problem: when all decision variables are binary
- Mixed BIP problem: when just a subset of decision variables are binary

Examples: Shortest Path problems and Assignment problems f)
([ J
r . " " . . . .
X = 1 ifarc (i,)) is in the path @ @
0 otherwise
o = :1 if person i is assigned to task j () O . y,
70 otherwise dh \

\
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Binary Integer Programming

1. Mutually exclusive products:
Let x; and x, be the quantities of products P, and P, to produce, and assume that at most one of the
products can be produced.

Option 1 Option 2

Define a new binary variable: Define a new binary variable:

1 =1,2

Yi

{1 if P; is produced

, = 1 if P; is produced (and P, is not produced)
0 otherwise B

0 if P, is produced (and Py is not produced)

and impose the constraints: and impose the constraints:

yit+y. =1 x, <M(1—2)
x; <My, i=1,2 X1 < Mz
y; €{0,1} i=1,2 z € {0,1}

where M is a sufficient large value. where M is a sufficient large value.
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Binary Integer Programming

2. Alternative constraints:
Consider that only one of the following constraints must be satisfied:

(C1) LHS; < RHS; or (C2) LHS, < RHS,.
Define a new binary variable:

|1 if constraint (C1) is satisfied (active)
Y= 10 if constraint (C2) is satisfied (active)

and impose the constraints:
LHS; < RHS; + M(1 —y)
LHS, < RHS, + My

y €{0,1}
where M is a sufficient large value.
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Binary Integer Programming

3. Setup costs:
Let us assume that the quantity to produce of product P is given by variable x. A setup cost (s) is a fixed
cost that must be paid to produce the product regardless of the quantity to produce .

Define a new binary variable:

_ )1 if product P is produced
Y 0 otherwise

and impose the constraints:
max z —S Xy
s.t x < My
y €1{0,1}

. . ) o o . In @ minimization problem
where M is a sufficient large value and z is the original objective function. | the setup cost is added to

the objective function

Chapter 6. Integer Linear Programming



Binary Integer Programming

1. Other situations:
Consider the production of two products (P, and P, ) and the following binary variables:

1 if product P; is produced .
— =1,2
Vi {O otherwise T
Then:
1 Only one of the products is produced s Y1ty =1
L At most one of the products is produced — y1t+ty; <1

U Either both products are produced or none of them is produced —— y; =7y,

 Producing P, implies to produce P, — V1=
(Or: if P, is not produced then P, cannot be produced as well)

7 Many other situations can be
e modeled with binary variables...
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